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Intramolecular dynamics from a statistical analysis of vibrational levels:
Application of two coupled Morse oscillator models to the HCN molecule
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Two local-mode model Hamiltonians containing stretch-stretch couplings have been utilized to obtain the

vibrational energy levels of the HCN molecule for the purpose of studying them statistically. The effect of the

kinetic coupling has been clearly obtained from the statistical analysis which includes nearest-neighbor level-

spacing distributions (NNLSD) and the k3 statistics of Dyson and Mehta. For NNLSD, a pronounced tendency

towards the Wigner distribution has been found. The role of isotopic masses in the statistical properties of the

vibrational spectra has also been elucidated. Comparison has been made between the results obtained from the

two models. Correlation has been found between a transition to chaos (utilizing Poincare sections and

Lyapunov exponents) through classical mechanics and the above statistical behavior of the spectra.

PACS number(s): 31.15.Qq, 33.15.—c

I. INTRODUCTION

Polyatomic molecules have complex spectroscopic fea-
tures arising from the interaction between electronic, vibra-

tional, and rotational degrees of freedom. By employing per-
tinent factorizations of the total molecular wave function it is

possible, however, to isolate part of the spectrum and con-
centrate on characteristics that arise specifically from one
kind of motion. In the limits of the well-known Born-
Oppenheimer approximation and due to the experimental
limitations, most of the molecular spectroscopic activity has
been focused on the lower-energy part of the potential energy
surface (PES) where the description of the vibrational spec-
trum has been very effective in terms of normal modes (NM)
[1,2]. There has been significant development in both experi-
mental and theoretical research, in recent years, in order to
take a close look at the higher-energy part of the PES, where
the strong coupling between the vibrational degrees of free-
dom plays an important role. The most important conse-
quence is that, due to the very high density of levels in this

energy region of the spectra, the assignment of each energy
level becomes rather complicated. The information that one
obtains, while quantitative, in some sense does not give a
broad general picture of the basic characteristics of the spec-
tra [3,4]. Such a situation occurred in nuclear spectroscopy
some time ago and the solution to the problem was given in
terms of statistical analysis of the spectra [5]. It was found
that certain trends in the statistical features of the spectra can
be linked to the dynamics, thereby a global view of the spec-
tra could be obtained. The same conclusions are now being
drawn also for the vibrational spectra of polyatomic mol-
ecules in various, recent studies [6—15]. First, experiments
are being performed in the higher-energy part of the spectra,
resulting in sufficient data for making statistical analysis.
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Second, theoretical vibrational spectra are being obtained by
utilizing the local-mode (LM) description, which is more rel-
evant and realistic at these energy domains [16—19]. With
reasonable spectroscopic Hamiltonians, in the LM descrip-
tion, theoretical energy levels are obtained, they are made to
satisfy accurately the energy eigenstates at the lower ener-

gies, and then their higher part is calculated. The statistical
analysis of the entire spectrum is then done and it is either
compared with exiting data or predictions are made for fu-
ture experiments. Thus dynamics of molecular vibrations in

an energy region which had not been looked at before begins
to be elucidated at a level which has not been possible pre-
viously. In this context, we have shown recently how statis-
tical properties of vibrational levels are affected by isotopic
mass dependence of the constituent atoms [12—14] and by
increasing molecular complexity of the polyatomic system
under study [8,15].The above considerations have to be, of
course, applied to specific molecular systems which have
been well studied so that the starting point for such research
is reasonably secure. In this context, triatomic molecules rep-
resent molecular systems where the complex vibrational dy-
namics is determined by the presence of a minimum number
of couplings between stretching and bending (local) modes.
In this paper, we have chosen to subject the HCN molecule
to such a study because of the experimental and theoretical
information available for this molecule. Experimentally, it
has been possible to study dispersed Iluorescence [20], infra-
red overtone [21], and stimulated emission pumping spectra
[22] of the HCN molecule and obtain a large amount of
information from them. Furthermore, ab initio and empirical
potential energy surfaces have been calculated [23—28] and
both classical and quantum mechanical studies have been
made regarding both spectra as well as the dynamics of the
same molecule [29—33]. We have recently studied the prob-
lem of vibrational chaos classically [12], utilizing an accu-
rate spectroscopic potential described below. A transition
from regular dynamics to chaos has been seen between 2.8
and 2.9 eV calculating relevant Lyapunov exponents and
Poincare sections. Otherwise, little information is available
regarding the vibrational energy levels in the higher-energy

1050-2947/95/52(4)/2624(8)/$06. 00 2624 1995 The American Physical Society



52 INTRAMOLECULAR DYNAMICS FROM A STATISTICAL . . . 2625

region of the spectra. We believe that this theoretical descrip-
tion is accurate enough to explore its quantum features and
make certain predictions of statistical nature for the higher-
energy part of the vibrational spectra. This is done in this
study. Furthermore, it appears that the experimental work
will extend into this region in the near future, so that this
study is rather relevant at this time.

2

H, = +V;;z, (i=1,2),
2pi

(6)

the so-called simple Morse (SM, model I) [25] and the
generalized Morse (GM, model II) [26] model Hamilto-
nians.

Model I.

II. COUPLED MORSE OSCILLATOR MODELS

A convenient description of the dynamics in the relatively
high-energy regime is provided by a LM model, which ex-
plicitly considers the bonds and the relevant angles of the
molecule. In the last years, a relatively large number of such
local-mode vibrational Hamiltonians has become available
from molecular spectroscopy and they have been utilized for
statistical analysis of small polyatomic molecules [6—15].
For triatomic molecules, in the frozen-bending approxima-
tion, the Hamiltonian can in general be written as a sum of
kinetic and potential energy terms,

H)p=
cos( 0t2)

PiP2+ Vi2ziz2
mg

Model II.
2

2p, ;

H)p=
cos( gt2)

P1P2 + V12z iz2+ V112z iz2+ V122z lz2 ~

(7)

where

P2
7'(pt p2)=2 +2 +

2p] 2p2

cos( gt2)
P iP2mc

H= T(p ~,p2)+ V(rt, rq),

(2)

For both models V;;z; (i = 1,2) correspond to the Morse po-
tential Viit(r, ) for the ith bond. These two Hamiltonians rep-
resent a good description for a large number of highly ex-
cited vibrational levels, in particular the SM model fits the
first 20 levels and the GM model the first 40 levels from the
ground vibrational state in a satisfactory manner. The param-
eters V, ; and V; are related to the internal harmonic stretch-
ing force constants [35] as follows:

is the kinetic term with p; (i = 1,2) the momenta of the two
oscillators and ~; (i = 1,2) the reduced masses, mc the mass
of the central carbon atom, and 0&2 the angle between two
bonds (for the HCN molecule 0,2 is 180'). In this descrip-
tion only the kinetic part is analytic, while specific expres-
sions for the potential function V( r &, r2) are to be deter-
mined. For bending motion with a lower frequency than
stretching, a good description of the vibrational dynamics
may be given in terms of two coupled oscillators. The most
realistic oscillator, which mimics this dynamics, is the Morse
diatomic potential function [34]

f„„=2V,;a, , (10)

f.R V,,a,a, , —

+...,= ~'.
,
(r i)@'.,(r2)

where &P„(r;) is the Morse eigenfunction given by
l

(12)

with V;; =D, . The eigenstates of both Hamiltonians may be
built as a linear combination of products of Morse eigenfunc-
tions as

V~(r;) =D,(1 —e "") (i =1,2), (3) ( x
4„(r;)=N, xt ~ '~ " exp ——~L ' ' (x), (13)

where D, is the bond dissociation energy and r; the bond
displacement from the equilibrium position. Further im-
provements in this description have been made by molecular
spectroscopists with empirically determined potential energy
surfaces for some triatomic molecules, by fitting the spectra
with an expansion in the Morse oscillator coordinate

z, =(1—e "'"') (i=1,2) .

The number of terms utilized to express V(r, , r2) depends
on the quantity of the experimental levels to be fitted. One
may rewrite the Hamiltonian as

with

N
[a;(2P;—2 v; —1)v;!]

I (2P;—v;)

x = 2P, exp( —a;r;),

1
Pi =

g ~2piDea;

(15)

H=Hi+H~+Hi2, (5)
E = —D, 1 — v;+-

2iP; (17)

with H; (i = 1,2) as unperturbed Hamiltonians and H &2 being
the interaction term. In our study we have chosen two differ-
ent spectroscopic Hamiltonians, both based on the LM de-
scription, available for the HCN molecule. These are

where v; represents the vibrational quantum number of the
Morse oscillator, with the maximum number equal to

p; —
—,. L ' ' (x) represents the Laguerre associate poly-2Pi 2v; —1

t

nomial and N, is a normalization factor containing the
t
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gamma function I (2P; —p;). The matrix elements needed
for both Hamiltonians are analytic functions and they can be
constructed from the linear combinations of Morse oscillator
matrix elements [36].

III. STATISTICAL ANALYSIS

A. General considerations

( +2) re+1

P(S) =A — exp ——I'
D D (co+ I' (18)

where S is the spacing between nearest levels, A a normal-
izing factor, and D the average spacing of the ensemble. The
Brody parameter co is a function of the strength of the level
interaction and it assumes values between 0, corresponding
to a Poisson distribution for noninteracting levels, and 1,
corresponding to a Wigner distribution for a set of levels
characterized by a linear repulsion. The other statistical test
utilized, the A3 statistics of Dyson and Mehta, gives us an
account of the so-called spectral rigidity or, in other
words, the long-range correlation of the spectra. The expres-
sion that defines 6& [44] is

With the two LM Hamiltonians described above, i.e., the

SM and GM models, the vibrational energy levels of the

HCN molecule were calculated. This consisted of standard

diagonalization of the relevant Hamiltonian, after which the

statistical analysis was done. For both models, the statistical

analysis has been performed up to 90000 cm '. Since the

C—H bond dissociation energy is near 42000 cm, the

results of the analysis are significant for experimental pur-

poses up to that value. The analysis of the energies above the
dissociation limit is of somewhat theoretical interest, even

though they may be relevant for studying resonant (predis-
sociating) states in the continuum. This choice allows us to

get a clearer comparison between the predictions made be-
tween the SM and the GM models. The statistical theory of
energy levels is based on random matrices, introduced by
Wigner to study the complex behavior observed in nuclear
spectra [37].The construction of such matrices, made of in-

dependent matrix elements, requires the invariance of the
ensemble under orthogonal transformations. This defines the
so-called Gaussian orthogonal ensemble (GOE). Due to
interaction between levels, nuclear [5,38], atomic [39], and
molecular [3] spectra show some features of the GOE-type
systems, such as regularity (i.e., level clustering) and ir
regularity (i.e., level repulsion). Since many reviews about
the statistical analysis of energy levels are available

[5,10,40—42], we give only a brief description of the statis-
tical measures used in this work. We have utilized two
widely used statistical tests: nearest-neighbor level-spacing
distribution (NNLSD) and b, s statistics of Dyson and Mehta.
Their application to the HCN vibrational spectra permits its
characterization by assignment of so-called correlation
properties [40]. NNLSD represents the most significant
test relative to the correlation between nearest levels. We
refer to the literature for various derivations [41]. For our
purpose, we employed the Brody distribution function [43]

TABLE I. Parameters for the simple Morse potential for different
HCN isotopic species [25].

Parameter HCN DCN H'3CN HC' N

DcH (eV)

acH (A ')
DcN (eV)

acN (A ')
Vi2 (eV)

6.384
1.727

10.384
2.363

—0.450

5.954
1.783

11.256
2.259

—0.325

6.357
1.732

10.639
2.334

—0.486

6.344
1.730
7.872
2.753

—0.470

t EL+.
[N(E) AE ——B) dE,43(Lj ) = min& ii

I+1 J ej
(19)

N(E) is the staircase function for the levels at energy E;
FL+, —E~ represents the energy range containing L+j levels
on which the test is performed. For different values of L we
have

~s(L) = ~3(L j) (2o)

The calculated points generally fluctuates between the L/15
straight ling (no correlation) and the GOE logarithmic curve

/

1
(L) =

2 [lnL —0.0687] . (21)

The goodness of the above statistical tests may depend on
the unfolding or deconvolution procedure [10,42]. It
consists of the elimination of the so-called "secular behav-
ior" of the spectra, due to the natural variation of the level
density with the energy. Among the various methods used for
this purpose, we have chosen the polynomial method, that
consists of fitting the X(E) function with a polynomial ex-
pansion of degree m. The new set of eigenenergies so ob-
tained, characterized by a constant density of levels and an
average level spacing, represents the new ensemble to which
the above cited statistical tests will be applied.

B. Model I

Let us consider the SM model [25], i.e., Eqs. (6) and (7),
whose parameters are listed in Table I. These parameters
allowed us to calculate the energy levels of the various iso-
topes. The number of Morse (i.e., bound) states per oscillator
[see Eq. (17)] chosen are 25 and 40 for C—H and C—N
bonds, respectively, for all the isotopic species under study,
involving diagonalization of 1000' 1000 matrices. The very
high-energy parts of the spectra were discarded since they
would be inaccurate due to the absence of any discrete-
continuum coupling. The useful portion of the spectra is then
subjected to the unfolding procedure by polynomial fitting.

Consider the vibrational levels for the H' C'"N isotopic
species. We calculate both the Brody parameter co for
NNLSD as well as the A3 test of Dyson and Mehta (see
Table III and Fig. 1). The number of levels considered were
40, 89, 184, 291, 578, and 839 with corresponding maximum
energies (E,„) of 20000, 30000, 42 000, 50000, 70000,
and 90000 cm ', respectively. Up to 20000 cm ', the
Brody parameter co is close to 0 (Poisson distribution), which
is not surprising since the density of levels in this region of



52 INTRAMOLECULAR DYNAMICS FROM A STATISTICAL . . . 2627

TABLE II. Parameters for the generalized Morse potential for
HCN [26].

acH= 1.847 393 A

V»=5.697 14 eV

V», =0.475 28 eV

Vq ) i g
= 8.426 X 10 eV

cN= 2 306 172 A

V22= 10.994 46 eV
V222=0.499 332 eV

V2222= 5.954X 10 eV

~is= 0 307 63 eV

V&&2= 9.425' 10 eV

22= 3.657 x 10 eV

the spectra is low. Above about 30000 cm ', a significant
deviation from the Poisson distribution can be seen with co at
0.54. At the higher energies, co steadily increases, reaching
0.89. Since the signer distribution, co = 1.0, we see that with
the increasing of the density of levels, the NNLSD has a
clear tendency towards the %'igner distribution. In Fig. 1

three of the NNLSD histograms are plotted with smooth
curves going through them. The transition towards the
Wigner distribution is unequivocal. Alongside the calculated
values of b.3 are plotted as a function of l. Figs. 1(d)—1(f).
The straight lines representing the Poisson distribution are
extremely far from the obtained values of 53 which for al-
most all L considered lie on the GOE logarithmic curve.

The three isotopic species DCN, H' CN, and HC' N were
next considered with appropriate diagonalization of the
Hamiltonian, i.e., Eqs. (6) and (7), followed by a similar
statistical analysis. The values of the Brody parameter co, for
all energy levels above E „=42000 cm ', are 0.69 (261
levels), 0.32 (195 levels), and 0.67 (201 levels) for DCN,
H' CN, and HC' N isotopic species, respectively. Compar-
ing the four different isotopes we note that only when the
central atom is increased in mass, i.e., ' C is replaced by
' C, does co get significantly reduced. Since the central mass

mc is inversely proportional to the kinetic coupling term,
increase of the mass of the central atom produces a decrease
in the coupling, thereby explaining this tendency towards the
Poisson distribution as the coupling is reduced. In Fig. 2 both
NNLSD and 53 statistics for DCN, H' CN, and HC' N are
plotted. The most significant of these is that for the isotopic
species H' CN, the NNLSD histogram is significantly
peaked towards lower values of SID. The corresponding
A3 test for low values of L, where it is more significant,
shows deviations from the GOE curve and a small tendency
towards the L/15 straight line. However, this change of the
isotope from ' C to ' C has a significant effect on the results
of the statistical analysis and can be clearly seen by compar-
ing Fig. 1(b) with Fig. 2(b).

C. Model II

The description of HCN vibrational dynamics by the GM
model [26], i.e., Eqs. (8) and (9), is in principle more accu-
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rate due to the higher number of experimental levels fitted.
The parameters needed are given in Table II. Therefore it is
interesting to study the statistical properties of this model
and then compare the results with the SM model. The results
of the calculation are shown in Table III and Fig. 3. We note
first that in the same range of energies, the number of levels
are essentially the same, in both SM and GM models. For the
GM model, ~ starts at 0.12 for the first 40 levels
(E,„=20 000 cm '), slowly increasing to 0.14 atE,„=30000 cm ' (88 levels), to 0.22 for E „=42000
cm ' (186 levels). For E,„=50000 cm ' (283 levels)
co=0.35, for E,„=70000cm ' (567 levels) to=0.62, and
finally for E,„=90000 cm ' (823 levels) co=0.72. One
does see a slow transition towards the Wigner distribution. It
is helpful to utilize the histograms in Figs. 3(a)—3(c) to ap-
preciate how the change of the statistical behavior arises with

TABLE III. Number of levels (N„,) and Brody parameter (cu)
for simple and generalized Morse potentials for HCN, calculated at
different values of F

increasing density of levels. The 53 statistics, which are plot-
ted in Figs. 3(d)—3(f), all show marked deviation from the
straight line. The first two curves for low values of I, 53 is
linear while for larger L it deviates sharply from the straight
line. Since 63 is more significant for small L, one cannot say
that for F „up to 42000 cm ' a Wigner-like behavior has
been obtained. For the highest energy (E „=90 000
cm ') h3 lies completely on the GOE curve through the
entire range for L [Fig. 3(f)].

It is helpful to get a global picture of variation of the
Brody parameter co with the energy (E,„) for the two mod-
els (see Fig. 4). Both the models clearly tend toward the
Wigner distribution with increasing F „,i.e., with increas-
ing density of levels. The SM model produces a larger value
of co except at very low energies where statistical analysis
may not be that significant. One can therefore conclude that
both the SM and the GM model produce a similar effect due
to interactions between unperturbed levels.

IV. QUANTUM-CLASSICAL CORRESPONDENCE

Z „(cm ')

20 000
30 000
42 000
50 000
70 000
90 000

40
89
184
291
578
839

0.01
0.54
0.61
0.69
0.83
0.89

Simple Morse

&ie

40
88
186
283
567
823

0.12
0.14
0.22
0.35
0.62
0.72

Generalized Morse

»eV
Since both these two models show an unequivocal ten-

dency towards the Wigner distribution for the energy levels
at the higher-energy part of the spectra, it is tempting to
correlate such behavior with classical dynamics of the same.
In fact, it is possible to characterize the intramolecular dy-
namics classically utilizing Poincare sections [45] and
Lyapunov exponents [46,47].

Using the Hamiltonian model II [Eqs. (8) and (9)] for the
HCN molecule, we have shown previously that the threshold
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energy for chaos lies between 22 585 and 23 391 cm '. In
Fig. 5 we plot the Poincare sections for three values of en-
ergies, calculated for the C—H and C—N bonds, with an
identical number of initial conditions. These are Figs. 5(a)
and 5(d) at energy of 22585 cm ', Figs. 5(b) and 5(e) at
23 391 cm ', and Figs. 5(c) and 5(f) at 24 198 cm '. Fig-
ures 5(a)—5(c) correspond to the C—H bond calculated at
r2= 0 and Figs. 5(d) —5(f) refer to the C—N bond calculated
at r j

= 0. At energy of 22 585 cm ', the Poincare sections in

the two bonds are regular curves and each curve is made up
of the intersection of points generated by one initial condi-
tion. With the increase of energy, the coupling between mo-
ments and positions grows and irregular motion appears
[12,13].At energy of 23 391 cm, for certain initial condi-
tions, some erratic points around the regular trajectories tend
to appear. At energy of 24 198 cm ', these random distribu-
tions of points are quite dominant. From this analysis it is
clear that the irregular motion depends on the initial condi-
tions and the specific value of the control parameter, which
determines the molecular energy. At 22 585 cm ', a large
number of trajectories has been calculated and all of these
result in regular curves as has been checked by examining
the Poincare sections. For certain initial conditions, the
Lyapunov exponent has been calculated and found to be
negative ( —0.1). For 23 391 cm ', the irregular curves start
to appear and the Lyapunov exponent calculated has been
positive with the value 0.3, thereby showing a change of sign
between these two energies [12].

Recently we have considered that the isotopic masses of
the constituent atoms can be chosen as a control parameter in
intramolecular dynamics [12] and have utilized classical dy-
namics to calculate photodissociation probability for a HCN
molecule [48]. In quantum mechanics from a set of eigenval-
ues, applying random matrix theory, the fluctuations of the
spectra are analyzed to determine corresponding statistical
ensembles and to assign correlation properties of the eigen-
value spectra. The link between the classical and the quan-
turn analysis is energy. From Table III, one observes that the
Brody parameter increases with energy. For low energies,
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are reflected in the statistical properties of the spectra. An
effect of the masses of the constituent atoms has also been
found. We have made a comparison between the two models
which shows that they both produce similar trends, even
though with quantitatively different results. Strong correla-
tions have been found between classical chaos and non-
Poisson distribution at the higher energies. It should be in-
teresting to test the predictions of these models against
experiments.

necessarily with few eigenvalues, the Brody parameter is
close to zero (Poisson distribution) while at higher energies,
the Brody parameter tends to that corresponding to the
Wigner distribution. The classical mechanical analysis
closely follows this qualitative change and the dynamics
makes the transition from regular to irregular motion.

V. CONCLUSIONS

In summary, in this work we have utilized two local-mode
Hamiltonians to construct theoretical (stretching) vibrational
eigenenergies for a HCN molecule at energy domains that
have not yet been experimentally explored. We find strong
evidence of the role that the kinetic coupling plays in the
correlation properties assigned to the corresponding stretch-
ing vibrational spectra. Especially clear is the trend towards
the Wigner distribution (e.g. , the Brody distribution with cu

lying far from zero) which signifies how the coupling be-
tween the local modes produces strong dynamical effects that
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FIG. 5. Poincare sections at different values of energy: (a), (d) at 8=22 585 cm ', (b), (e) at +=23 39l cm ', and (c), (f) at
&= 24 l98 cm '. (a) —(c) for C—H bond at r2 = 0 and (d) —(f) for C—N bond at r, = 0
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