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Motion and ionization equilibrium of hydrogen atoms in a superstrong magnetic field
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We study the effects of finite proton mass on the energy levels of hydrogen atoms moving transverse to a
superstrong magnetic field B with generalized pseudomomentum K~ . Field strengths of order B-10' 0 are
typically found on the surfaces of neutron stars, but we also study the regime B~B,„;,=4.23' 10' G, where
the Landau excitation energy of the proton is large, We adopt two different approaches to the two-body
problem in strong magnetic fields and obtain an approximate but complete solution of the atomic energy as a
function of B and K~ . We show that, for B~B„;t,there is an orthogonal set of bound states that do not have

any Landau excitation contribution in their energies. The states with very large Kj have small binding energies
and small transverse velocities, but are nevertheless distinct from the fully ionized states. The final results for
the excitation energies are given in the form of analytical fitting formulas. The generalized Saha equation for
the ionization-recombination equilibrium of hydrogen gas in the presence of a superstrong magnetic field is
then derived. Although the maximum transverse velocity of a bound atom decreases as B increases, the
statistical weight due to transverse motion is actually increased by the strong magnetic field. For the astro-

physically interesting case of relatively low density and temperature, we obtain analytic approximations for the
partition functions. The highly excited bound states have a smaller statistical weight than the fully ionized

component.

PACS number(s): 32.60.+i, 97.10.Ld, 31.15.Ar, 97.60.Jd

I. INTRODUCTION

m, e c2 3

B,= ', =2.35X10' G,
B

b=- —.
Bp

When b)& 1, the cyclotron energy of the electron
@to,=6(eB/m, c) =11.58Bi2 keV, where Bi2 is the mag-
netic field strength in units of 10' G, is much larger than
the typical Coulomb energy; thus the Coulomb forces act as
a perturbation to the magnetic forces on the electrons, and at
most temperatures the electrons settle into the ground Lan-
dau level. Because of the extreme confinement of electrons
in the transverse direction, the Coulomb force becomes much
more effective for binding electrons in the parallel direction.
The atom has a cigarlike structure. Moreover, it is possible
for these elongated atoms to form molecular chains by cova-
lent bonding along the field direction.

Hydrogen atoms in a strong magnetic field have been
studied extensively [3—7]. We have also recently completed

It is well known that a superstrong magnetic field of order
B)10' G, typically found on the surfaces of neutron
stars, can dramatically change the structure of neutral atoms
and other bound states (see, e.g. , Ref. [1]for an early review
and Ref. [2] for a recent text on atoms in strong magnetic
fields). The atomic unit Bo for the magnetic field strength
and a dimensionless parameter b are

a study of the electronic structure of hydrogen molecules and
chains in the strong field regime (b))1) [8]. However, in

many of these studies, the center-of-mass (c.m. ) effects of
the proton motion have been neglected. In the case of the
hydrogen atom, although significant effort has been devoted
to calculating the energy levels of an electron in the static
Coulomb potential of a fixed proton (infinite mass) to a high
precision and for arbitrary magnetic field strength [6,7], the
two-body problem in a strong magnetic field, including the
effects of finite proton mass, has been studied in detail only
recently (e.g. , [9,10]).In this paper we focus on the hydrogen
atom, but discuss those aspects which are important for ap-
plication to molecules in very strong fields (we shall study
molecular excitation levels in a later paper [11]).

A free electron confined to the ground Landau level, the
usual case for b&)1, does not move perpendicular to the
magnetic field. Such motion is necessarily accompanied by
Landau excitations. When the electron (still in the Landau
ground state) combines with a proton, the mobility of the
neutral atom across the field depends on the ratio of the
atomic excitation energy and the Landau excitation energy
@to„=keB/(m~c) for the proton. As the typical Coulomb
excitation is lnb in atomic units, it is convenient to define a
critical field strength B,„;, via

crit bcrit
me

Electronic address: dong tapir. caltech. edu Bcrit = bcrit Bp
=4.23 X 10 G. (1.2)
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For B(&BO (terrestrial conditions) the Landau energies of
both electron and proton are minor perturbations and one can
construct wave packets that mimic the classical motion of a
neutral atom across the field. In this case the internal struc-
ture of the atom or molecule is coupled to the center-of-mass
motion only through a "motional Stark effect" (see Sec. II).
In the opposite limit of B&&B„;,&&Bp, the Landau energies
are larger than the Coulomb excitation energy, and both elec-
tron and proton (in the atom) are in the Landau ground state
at reasonable temperatures. In this case, quantum mechanics
cannot mimic classical motion. The canonical field strengths
of radio pulsars, with B slightly less than B,„;,, present an
intermediate case. However, at all field strengths one can
introduce a pseudomomentum K~ perpendicular to the field
and, in principle, find the bound-state energy F as a function
of K& . One question of interest is the range of K& for which
K increases linearly with K~ (as it does for ordinary kinetic

energy); but in any case 8'(Ki) is needed to evaluate the
Saha equation for the equilibrium between neutral and ion-
ized hydrogen (Sec. V). Previous treatments [12—15] of the
ionization equilibrium in strong magnetic fields did not prop-
erly take account of the nontrivial effects of atomic motion.
States with large K~, where velocity decreases with increas-
ing Ki [see Ref. [10] and our Eq. (3.29)] are of particular
interest, especially for B larger than B,„;,.

The separation of the center-of-mass motion of a bound
state in the presence of a magnetic field has been studied
previously based on the conserved pseudomomentum (e.g. ,

[16—21]).We briefiy review and clarify this pseudomomen-
tum scheme in Sec. II. When B&&B„;,, perturbation calcu-
lations for hydrogen atom motion (e.g. , [19,22,23]) are valid
over a wide range of K~ values and lead to interesting phe-
nomena, such as bent trajectories [23]. Model atmospheres
can be affected by details of the transverse motion (e.g. ,

[24,25]). Some accurate numerical calculations for general
Ki and for several values of 8 (but all below 8„;,) are now
available [9,10], but we concentrate on the B~B,„,, regime
in Secs. III and IV. A different approach to the two-body
problem (for positronium atom) in the superstrong field re-
gime b&) 1 has been developed in [26].

Our purpose in this paper is not to obtain accurate energy
spectra of a moving hydrogen atom in certain limited re-
gimes, as has been done in most of the papers mentioned
above; rather, we seek complete (though approximate) solu-
tions of the two-body problem for a wide range of parameter
space, including 8 just below 8,„;, (a common case for neu-
tron stars), but especially for B&B,„,, (in case 8~10' G
exists in some neutron stars, as has been suggested recently
[27—29]). Our emphasis is on finding physically meaningful
approximate fitting formulas for the atomic energy of the
moving atom over all relevant values of Ki (Sec. III), in
order to determine the equilibrium between neutral and ion-
ized hydrogen (Sec. V). However, in practice we shall be
interested mainly in the regimes where the thermal energy
k~T is much less than the ground-state binding energy of the
atom, while the gas density is much smaller than the internal
density of the atom, so that the neutral and ionized fractions
are of the same order of magnitude. In such cases, we are
most interested in two kinds of excited bound states: (i) those
with excitation energies up to a few atomic units (compa-
rable to ktiT but a small fraction of the binding energy) and

(ii) states that are only barely bound (e.g. , those with ex-
tremely large Ki), for which one has to check whether
phase-space factors make them unimportant relative to ion-
ized hydrogen. For applications to molecules [8,11]and mul-
tielectron atoms [30] with B&)B,„;,, a controversy arises re-
garding the "coupling" of the electron's orbital quantum
number with the Landau level of the proton (or nuclei). This
is discussed in Sec. IV.

Our calculations in this paper are based on nonrelativistic
quantum mechanics. For 8~8„~= (6cle ) Bo
=4.414X10' G (note that 8„, is close to 8,„;, only by
coincidence), i.e., fico, ~m, c, the transverse motion of the
electron becomes relativistic. However, the relativistic cor-
rection to the atomic binding energy is small as long as the
electron remains nonrelativistic along the field direction [31].
Except as otherwise noted, we shall use atomic units (a.u. )
throughout the paper, in which mass and length are ex-
pressed in units of the electron mass m, and the Bohr radius

ao = 6 l(m, e ) = 0.529 X 10 cm, energy in units of
2 Ry=e lap=2X13.6 eV; field strength is in units of Bp
[Eq. (1.1)], and temperature in units of 3.15X 10 K.

II. SEPARATION OF CENTER-OF-MASS MOTION:
PSEUDOMOMENTUM APPROACH

To set the scene, we briefly review the pseudomomentum
approach to the two-body problem of a hydrogen atom in a
strong magnetic field [17—19].However, the physical mean-
ing of the pseudomomentum of the atom needs some clarifi-
cation.

K= II+ e;Bx r. (2 1)

That K is a constant of motion can be easily seen from the
classical equation of motion for the particle
dIIldt = e;(drldt) X 8. The parallel component K, is simply
the linear momentum, while the constancy of the perpendicu-
lar component K~ is the result of the fact that the guiding
center of the circular orbit of the particle does not change
with time. The position vector R, of this guiding center is
related to K& by

Kixg
R, —

e;
(2.2)

Mathematically, the conservation of K is the result of the
invariance of the Hamiltonian under a spatial translation plus
a gauge transformation [18].

The existence of the integration constant K~ or R, im-
plies infinite degeneracy of a given Landau energy level. We
can use K to classify the eigenstates. However, since two
components of K~ do not commute, [K,K~] = —ie;8, only

A. Pseudomomentum

For a free particle of charge e; and mass m; in a constant
magnetic field (assumed to be aligned along the z axis), there
are three momentumlike vectors: the canonical momentum
P= —i V; the mechanical momentum II= P—e;A = m; v,
where A is the vector potential and v is the velocity; and the
pseudomentum (or the generalized momentum), as defined

by
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one function of K,E can be diagonalized for stationary
states. This means that the gniding center of the particle can
not be specified accurately. If we use K to classify the
states, then the wave function has the well-known form
e 'P(y) [32], where the function @(y) is centered at

y, = —IC, /(e;B), as can be inferred from Eq. (2.2). The Lan-
dau degeneracy in an area, M =L is thus given by
(I g/2~) fd&, =(1g/2m)lE, gl

=M g(le;lB/2 r7), where we
have used E = —e,BLg . On the other hand, if we choose
to diagonalize E~=E,+E, we obtain the Landau wave
function W, (ri) in cylindrical coordinates [32], where m is
the "orbital" quantum number (denoted by s in some refer-
ences). For the ground Landau level this is

(although we shall discuss an alternative set of basic states in
Sec. IV). From Eq. (2.2) we have

KxB
RIr- Rc 1 c2 B2 (2"8)

Thus we see that K~ is directly related to the separation
Rx. between the guiding center of the Landau orbit of the
electron and that of the proton.

Consider the energy eigenstate with a fixed K. Introduce
the center-of-mass coordinate R= (m, ri+ m~r2)/(m, + m~)
and the relative coordinate r= r&

—r2. Writing the two-body
wave function as

(
Wii (ri )=—W ( p, 8) =

(2~m! )'"p I 2p)

( 2)
X exp .2 exp( —i m 8)

&4p )
(2 3)

%(R,r) =exp[i(K+ —,'BXr) R]@(r), (2.9)

Hp(r) = (Ho+ H ) p(r) = F (b(1), (2.10)

so that W(R, r) has a well-defined value of K, while

exp[i(BX r) R/2) is a gauge factor, the Schrodinger equation
reduces to'

The distance of the guiding center of the particle from the
origin is given by with

p„= (2m+1) '"p,

where p is the cyclotron radius

m = 0, 1,2, . . . , (2 4)
Ho= + p+ —BXr

2p ( 2 m

1
B (rXp) ——,

r ' (2.1 1)

/ g ) I/2 ( B ) 1/2

p= =ao —
~ =b " (a.u. )'& B)

K 1H'= + —(KXB) r, (2.12)

=2.57X10 ' Bi2" (cm). (2 5) where p= —i 8/Br, M =m, + m„=m„/m, (a.u.), and

p, =m, m~/M =m, . We will make no distinction between M
and m, nor p, and m, , in our following calculations. Equa-
tions (2.10)—(2.12) have already been derived in Refs. [16—
19]. Clearly, the c.m. motion is coupled to the internal mo-
tion through the second term in H', which has the form of
the potential in a motion-induced electric field (K/M) XB.
This term represents the so-called motional Stark effect (al-
though such a description is not exactly accurate, since
K~/M does not correspond to the c.m. velocity [20]). For
small E~, this effect can be considered by treating H' as a
perturbation (Sec. III), but the eigenstates of Ho can in prin-
ciple be used as a set of basic states for developing eigen-
states of the full Hamiltonian for any value of K~ . However,
the following transformed version of the Hamiltonian is
more convenient for large K~ .

Motivated by the fact that K~ measures the separation of
the guiding centers of the electron and the proton, we can
remove the Stark term by introducing a displaced coordinate
r' =r—Rz, where Rir is given by Eq. (2.8). After a gauge
transformation, with

The corresponding value of K~ is given by
@~=le;lB(2m+1). Note that IC~ assumes discrete values
since m is required to be an integer in order for the wave
function to be single valued. The degeneracy mg of the
Landau level in an area .M~g 7TRg is then determined

by p = (2mg) '
p =Rg, which again yields m

=angl eI B(/2~)
We also note that K~ is related to the z angular momen-

tum 1, , as is evident from the e ™0factor in the cylindrical
wave function [Eq. (2.3)]. In general, we can show that

where we have used II~ = le;lB(2n+ 1), and n is the quan-
tum number for the Landau excitations.

B. Hydrogen atom as a two-body problem

We now consider the electron-proton system. It is easy to
show that, even with the Coulomb interaction between the
particles, the total pseudomomentum is a constant of motion,

m„—m,
@(r)~exp i " Ki r P(r'), (2.13)

J,=xpy yp = (K~ II~) = (m n), (2.6)—
2e;B

K= K)+ K2, (2.7)

where the subscripts 1,2 refer to electron (charge —1) and
proton. Moreover, unlike the single-particle case, here all
components of K commute. Thus it is natural to separate the
c.m. motion from the internal degree of freedom, using the
vector pseudomomentum K as an explicit constant of motion

'The spin terms of the electron and the proton are not explictly
included. However, it should be understood that for the ground

Landau state, the zero-point Landau energy is exactly canceled by
the spin energy. Also, the abnormal intrinsic magnetic moment of
the proton is neglected, since it does not play a role in our analysis.
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the Hamiltonian becomes

H= + p'+ —BXr'
2M 2p, 2

Equations (3.2) and (3.3) refer to the "tight-bound" states
for which the number of nodes v of the z wave function f(z)
of the electron is zero. For p&0, the energy eigenvalues are
approximately given by [33]

1
~ ( '&&p') —

~, +R
~

(2.14)
4pE,= — 1—

2vi i viap/' v, =1,2,3, . . . (3.4)

where p' = —id/8r'. This expression has been obtained in
Refs. [18,19]. We shall see in Sec. III that this alternative
form of the Hamiltonian is useful in the regime where b is
much larger than b, „;,, defined in Eq. (1.2).

1F,= —
2

1—
2 Pl v, ln(ao/p )

'

for the odd states ( v = 2 vi —1), and

(3.5)

III. APPROXIMATE SOLUTIONS AND FITTING
FORMULAS

A. Zeroth-order solutions

We consider first the Hamiltonian formulation in terms of
Eqs. (2.11) and (2.12). For the zeroth-order Hamiltonian

Ho the quantum numbers for the basic states are K, , the
number of nodes in the z wave function v, the electron Lan-
dau level integer n, and the "orbital" quantum number
m = 0,1,2, . . . . In this paper we only consider b &) 1 and thus
restrict ourselves to n =0. The energy eigenvalues of Ho for
the p= 0 states can be written as

for the even states ( v= 2 v, ). The sizes of the wave functions
are p perpendicular to the field and L,—v (a.u. ) along the
field. These states have much lower binding energies com-
pared to the tight-bound states.

We now consider the energies and eigenstates of the atom
for finite K~ . The two different Hamiltonian forms are dis-
cussed in Secs. III B and III C, and the general approximate
expressions for the energies are then given in Sec III D. We
focus on the tight-bound states only, since finite K~ will
make the weakly bound v)0 states even less bound (al-
though in Sec. V we will include an estimate of the statistical
weight of these states in the partition function of the bound
atom).

K'+Z. m —, (3 1) B. Perturbation Hamiltonian formalism

where E is the energy of a bound electron in the fixed
Coulomb potential of an infinitely massive positive charge.
The last term in Eq. (3.1) for m ~ 1 represents Landau energy
excitations for the proton, but m is merely the orbital quan-
tum number for the electron wave function and measures the
relative g angular momentum J,= —m. Thus there is no
separate quantum number for the proton in this formulation.
The "coupling" between the electron quantum number m

and the proton Landau excitation mb/M in Eq. (3.1) results
from the conservation of total pseudomomentum. The term
F. has the form (e.g. , [1,8])

For sufficiently small K~, we can use standard perturba-
tion theory to calculate the correction of energy F due to
H' given by Eq. (2.12) (see also [19,22,23]). Let Ki be
along the Y axis; then the r-dependent part of H' is
K~bx/M. We consider only n=0 and v=0, so the exact
eigenstates of Ho+H' are superpositions of the Ho eigen-
states with m=0, 1,2, . . . . The only nonzero matrix ele-
ments of x are of the form

(3.6)

F. = —0.16A l l =ln
2m+ 1

(3 2)

and the energy differences of adjacent Ho eigenstates are
approximately given by

p ~ b m'~ '
F. = —0.16A ln

m, l2m+I p,
(3 3)

However, this is a small correction (of order m, /m„), and
will be neglected hereafter.

where A is a coefficient which varies slowly with b and m

(e.g. , A = 1.01—1.3 for m = 0 —5 when Bi@= 1, and
A = 1.02 —1.04 for m = 0 —5 when B,z= 10) . In most formu-
las below, we replace A by unity; the numerical values can
be found in [8,11].The atom has a cigarlike shape, with size
—p [cf. Eq. (2.4)] perpendicular to the field and L,-/
along the field direction. Note that the correction due to the
reduced mass p, could be easily incorporated by a simple
scaling:

where l = lo ——lnb and the factor 0.32 is an approximation to
a slowly varying function of m and b. We first consider the
ground state m=0. Using H' =K~bx/M+K~/(2M) and Eq.
(3.6) we note that perturbation theory is justified if K~ is
much smaller than a "perturbation limit" K~„defined as

K~p —
i(2

—b 1+ =b' 1+
I

(3.8)

where $-2.8 is a slowly varying function of b (e g. ,
/=2 —3 for B,2=0.1 —10 ). For K~~Ki„, the energy

kz i to be added to Sz i in Eq. (3.1) is given by second-order
perturbation theory (plus a diagonal term) as
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2M Mgg'i 2M~
' (3.9)

where M~ is the effective mass for the "transverse motion"
of the atom,

Mi =M 1+ =M 1+
bert t/

' (3.10)

Thus the effective mass M~ increases with increasing b.
Similar calculations for the I&0 states yield
) = K~/(2M' ), with

[19,10].We again focus only on the Landau ground state for
the electron (n = 0), but in principle we must include all m
values (with proton Landau excitation energy mb/M) and
mixing between these states. We consider first the approxi-
mation where we omit mixing, i.e., we use the diagonal ma-
trix element of ~r'+Rid~ ' for a fixed m value, and restrict
ourselves to p = 0, It.,= 0, and (2m+ 1) (& b, so that

p = (2m+ 1)/b(& 1. We can estimate the size L, of the atom
along the z axis and the energy c~ for two different regimes
of the values of Rz.

(i) For Rx~L, ~ I (but not necessarily Rx(p ) and
with L, as a variational parameter, we have

M b m+1'
M.- M b/M+016l'-016l'. ,

1 1 L, mb
m L2 L

n 2+R2
z ~ ~m+ SC

(3.14)

m

b/M+0. 16 l', —0.16 l' (3.1 1)

A convenient (but approximate) expression for the effective
mass M~ is given by

where the first term is the kinetic energy along the z axis and
the second term is the potential energy of the electron. The
logarithmic factor in Eq. (3.14) comes from an integration
over the cigar-shaped electron cloud in the displaced Cou-
lomb potential —

I/~ r'+ Rx~. Minimizing cY with respect to
L, , we obtain

b
M, =M+( (2m+1) —, (3.12) 1 )

' i 1 i' mb
L,— ln 2 2, F —— ln 2 2 + . (3.15)

P +Rltj ( P +RItl
where ( is of the same order of magnitude as g, but differ-
ent (by a factor of a few) for different m states. The impor-
tant feature in Eqs. (3.11) and (3.12) is that the effective
mass is larger for the higher-I state.

The quadratic form of the effective "transverse kinetic
energy" in Eq. (3.9) is valid only when it is much less than
the perturbation limit, reached when E~ =E~ . Using Eq.
(3.8) and the approximation in Eq. (3.10), this kinetic energy
limit becomes

IC~„ l I ML& l b, „,t&1+ =1.7 1+ ! (a.u.). (3.13)

For b(&b, „;, (even if b)) 1) this limit is large compared with
1 a.u. , so that the quadratic perturbation energy (or transverse
kinetic energy) in Eq. (3.9) is valid for the most important
(low energy) states. Moreover, from Eq. (3.10) the effective
mass is close to the actual proton mass M. For superstrong
fields, b))b, „;t, on the other hand, the effective mass (for
I i (&It.i &) is much larger than M and the perturbation for-
malism already breaks down when the transverse kinetic en-

ergy is only of order 1 a.u.
At least for B~)B,„;,, we have to consider values of K~

large enough so that the perturbation treatment for the for-
malism in Eqs. (2.10)—(2.12) is unsuitable. For any magnetic
field strength there are still eigenstates for arbitrarily large
values of K&, but the transformed Hamiltonian in Eqs.
(2.13) and (2.14) is now more suitable for calculating the
energy.

C. "Displaced center" formalism

As mentioned above, Eq. (2.14) gives an alternative for-
mulation for the Hamiltonian where K~/(2M) does not ap-

pear explicitly, but the displacement of the electron-proton
guiding centers does with Rir= K~ /b (in atomic units)

The mixing between different m states is unimportant when
b)&b„;, . This can be seen from the order of magnitude es-
timate of the off-diagonal matrix element between I=0 and
m=1 states:

1 Rg r' R~p
0 i, 1 —0,3 1 — „2 2 l, (3.16)

as compared with 5 h —(l+ b/M) -l(1+b/b, „;,). For b.
~b,.„;, the mixing is non-negligible, especially when
Rx- p(&1; some results are given in Ref. [10]. When
b&)b„;, , the mixing can be neglected for all R&.

(ii) For Rx~1, the Coulomb logarithm in Eq. (3.14)
disappears, and we have (for m = 0)

1 1

L (L+R )' (3.17)

In the limit of Rz&~1, minimization of 8'0 with respect to
L, yields

Lz Rz +R (3.18)

1
2 f (z) + ~ (z.Rsc)f (z) = &ttf (z).2p dz

(3.19)

Thus, for K~~b, the atom is very weakly bound (~c 0~~ 1). The limiting scaling relations in Eq. (3.18) have been
identified in [9,10].

We can calculate the energy eigenvalue more accurately.
Substituting tb(r') = W (r~)f (z) into HP(r') = 8'@(r')
with H given by Eq. (2.14), and averaging over the trans-
verse direction, we obtain a one-dimensional Schrodinger
equation,
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1 I I I
l

I I i I

l
I I

K~„-b" [cf. Eq. (3.8)]. Thus, for Ki (&b', Eq. (3.22)
should be consistent with Eq. (3.9). Indeed, when R»(&p,
Eq. (3.22) reduces to

K, l
go(K, , Ki)= —0.16 l +0.32 C —Ki. (3.23)

~ —10 The dependence on K~ is again quadratic, and the corre-
sponding effective transverse mass is M~ =b/(2A Cl)
=2b/l = gb/l, in agreement with Eq. (3.10).

The m&0 states can be similarly calculated using Eqs.
(3.19)—(3.21). Some numerical results are again shown in

Fig. 1. The energy can be expressed approximately as

I I I I I I I f I I I I

0.05
R, (a.u. )

0. 1

FIG. 1. Numerical results for the energies of hydrogen atom in

the m =0 state (solid lines) and m= 1 state (dotted lines) as a func-
tion of R», obtained by solving Eq. (3.19).The upper curves are for

B,2=10, and the lower curves for BI2= 100.

where the averaged potential is given by

1
v (z,R,) = —(w.(r,')ll, +R llw. (r,')&. (3.20)

The function V (z,R») can be evaluated using an integral
representation (e.g. , [11])

V (z, R») = —= dqexp ———q —„
p~o I, 2 p)

2)
X Jo(qR»lp)L 2 j

(3.21)

K' ( 1
&o(K, ,K~) = —0.16 ln 2 2, (3.22)p'+ CR

where Jo is the Bessel function of zeroth order and L is the
Laguerre polynormial of order m [34]. We solve for F by
integrating Eq. (3.19) numerically from z = ~ to z = 0 subject
to the boundary conditions df/dz =0 at z =0 and f~0 as
z~~. The energy eigenvalue F,„as a function of Rz is
shown in Fig. 1 for B&2= 10 and 100. Similar numerical re-
sults have also been obtained in Ref. [10].For R»~1, we
can fit the energy to a form similar to Eq. (3.15). The total
energy of the m = 0 state is then given by

K, b t 18' (K, ,Ki)= +m ——0.16 ln ,'„,+ C.R',
~

(3.24)

From the numerical results we again obtain C —1.
Comparison with the numerical results of Potekhin [10],

who included the mixing of different m states, indicates that
Eqs. (3.22) and (3.24) are accurate to within —30% in the
relevant regime of K~(~b) when b~b, „;,. The agree-
ment becomes better as b increases. For smaller b, however,
the perturbative results of Sec. III B should be adequate (see
Sec. III D).

Finally, if we consider a sufficiently strong magnetic field
so that not only b/M l~(or b~b, „;,) but also b/M
~l is satisfied, then Eq. (3.24) implies that all the m)0
states are unbound, as has already been noted in Ref. [19].
However, this does not mean that there is no other bound
state except a single nondegenerate m=0 state. Indeed, Eq.
(3.22) indicates that there are many states for which the guid-
ing centers of proton and electron are separated by a small

Rz, and these states have similar energies compared to the
ground state (m=0, K~ =0). In the pseudomomentum
scheme discussed here, these states occupy a continuum

K~ space. As we shall see in Sec. IV, these closely packed
energy levels can be made discrete if we use a different set of
eigenstates.

D. General fitting formulas

Consider for the moment the cases with K~&( b, i.e.,
Rz&(1, but with no other restrictions on K~ or b. In Secs.
III B and III C, we have obtained reasonably accurate
ground-state (m =0) energy of a hydrogen atom in two lim-
iting regimes: (i) for B(&B,„;,, where Eqs,. (3.9) and (3.10)
are applicable up to adequately large values of Ki, and (ii)
for B&)B,„;,, where the energy is given by Eq. (3.22). We
write the total ground-state energy in the form

and the atomic size L,—1/lln(p + CR»)l. Equation (3.22)
reduces to Eq. (3.2) for K~ =0. From the numerical results
we find C=0.8. For Rz~ 1, the binding energy of the atom
is much smaller, and Eq. (3.22) should be replaced by the
order of magnitude relation (3.18), while the actual numeri-
cal values of the energies are not important in practice (see
Sec. V).

In the B&&B,„;, regime, the maximum value K~„ for the
perturbation treatment of Sec. IIIB to be valid becomes

K
8'o(K, ,Ki) = —0.16 l + Ei(Ki), (3.25)

and want to find a general fitting formula for the transverse
kinetic energy E~(K~) with K~(&b, but K~/b" =R»/p
otherwise arbitrary. %'ith the inequality Rz((1, the second
term in Eq. (3.22) can be approximated by
—0.16 l + 0.32 l ln(1+CR»/p ). We propose the following
fitting formula:
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K,'l
Ei (K~)= ln 1+ ', r=0.64 gK~„, (3.26)r('

cS (K, ,Ki)= +m ——0.16 l +Ei (K~), (3.27)

where

where M~ is given by Eq. (3.10). Recall that the parameter
/=2 —3 for Biz=0.1 —10, and a typical number to use is
(=2.8. This formula reduces to Eq. (3.9) when K~(&K~„
and to the above approximation of Eq. (3.22) when
B&)B,„;,. We expect Eq. (3.26) to be accurate to within

30% for K~(&b. In the regime b&)b, „;,and b(&K~(&b (i.e.,
p(&Rx(& I ), Eq. (3.26) reduces to E~ =3.1 ln (K /b) (a.u. )
&)3 (a.u. ), which is large compared with the thermal energy
(temperature) T for the astrophysical applications of interest.
For evaluating the integral over E~ extending from zero to
infinity in the atomic partition function (Sec. V), we shall
advocate using Eq. (3.26) for all K~, even though this ex-
pression tends to infinity, whereas the correct expression
should approach the finite limit 0.16 I for E~))b. The dif-
ference is appreciable only where E~&)T (so that the Boltz-
man factor e &' is very small) and our prescription
amounts to "cutting off" the integral, i.e., omitting the states
with R&))1 from the integral. This omission is advanta-

geous, since these states should be treated together with the
ionized states, and both turn out to be unimportant (Sec. V).

Our fitting formulas for the energies of the m)0 states
are less accurate. In the small-K~ limit, the E~-dependent
term in Eq. (3.24) reduces to the quadratic form

K~/(2M~ ), with the effective mass given by Eq. (3.12).
Similar to Eqs. (3.25) and (3.26) we fit 8' to the analytical
form:

meaning. Nevertheless, one can ask two questions about the
transverse pseudomomentum: (i) Is there an upper limit to
K~ beyond which there is no bound state? (ii) When a bound
state exists, what is the value of V~ =Bc~/BK~, the analog to
the classical center-of-mass transverse velocity of the atom?
From our discussion in this section, we have seen that there
exist bound states for all values of B and K~, although the
states with large K~ are very weakly bound. From Eq. (3.26),
we have

(3.29)

[Note that for K~ &) b, Eq. (3.18) should be used and we have
V~-b/K~ instead. ] Clearly, in general V~ is smaller than its
field-free counterpart: V~=K~/M~ (so that the effective
mass description is valid) only for K~(K~„, and M~=M
(classical behavior) only for b(&b, „,, As Ki —&~, the
center-of-mass velocity approaches zero. For a given mag-
netic field strength, the maxirnurn V~ is given by

1/2 Kip
V~ma = 2~J J

(3.30)

which occurs when K~ = ~" -K~ . For b~b„;, , the
states with K~)E~~ have not only small velocity but also
large electron-proton separation Rz)) p. Nevertheless,
these states are quite distinct from an electron-proton pair
with separation Rz in fully ionized hydrogen, because the
relative z coordinate satisfies a bound-state wave function
(localized, although with large scale length and small bind-

ing energy). The partition function for these states is smaller
than that for the ionized component, because the sum over
the relative momentum in the z direction, k, , is absent.

( K,'l
E~ (K~)= ln 1+J m I

IV. ALTERNATIVE APPROACH
TO THE TWO-BODY PROBLEM

2MI=0.64 g (2m+1)b 1+, (3.28)2m+1 b

so that E~o=E~, ro= r. Although ( can vary by a factor
of a few for different values of B and m, Eq. (3.28) has the
correct approximate functional dependence for a wide range
of B ands, .

As noted in the Introduction, one cannot construct a wave
packet to mimic the classical behavior of a moving atom
when both electron and proton are confined to the ground
Landau level. Therefore, when B&)B „t))BO, the notion of
"motion across the magnetic field" does not have a unique

A slightly more general fitting formula which closely resembles

Eq. (3.22) is given by

E b
K()(K, , K~) = —0.16 ln.

with I =1+Ml/((b) = r/(0 64(M~) This exp.ression c. an be ap-

plied to E~ b and gives the correct limiting result for K~
)&b, but it is not convenient to use in practice. For the applications
discussed in Sec. V, Eqs. (3.25) and (3.26) are adequate.

The basic states used in Sec. III for the electron-proton
two-body problem are explicit eigenstates of the transverse
pseudomomentum K~ . For K~ =0, this formulation has the
advantages that the electron's orbital number I is a good
quantum number, the wave function can be related to that for
a fixed positive charge, and the energy is given explicitly by
Eq. (3.1). The K~ =0 states with different values of m are
orthogonal to each other and could be used to satisfy the
Pauli principle for the electrons in a hydrogen molecule
[8,11] or a multielectron atom [30]. The last term
mb/M=m(b/b, „,,)ln b,„;, in Eq. (3.1) is unimportant when
b(&b, „;,, but it is very large when b&)b, „;, (and m~ 1).The
simplest wave function for the H2 ground state in this for-
mulation would use one m=0 and one m= 1 electron [8],
and the energy would include the positive term
(b/b„;, )lnb, „;,. One therefore might conclude that H2 has a
positive energy relative to two H atoms when b) b,„;,. In a
future paper [11]we will show that this is not the case. In a
molecule, only the total pseudomomentum is conserved, not
that for individual atoms. Thus for b)b„;, one would have
to perform an integral over E~ of individual atoms to form a
molecular eigenstate (a similar situation exists for multielec-
tron atoms). To our knowledge this complicated task has not
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yet been carried out. We propose here an alternative set of
basic states which are not eigenstates of the pseudomomen-
tum. This formulation is more complex for a single H atom,
but can be generalized more easily to the molecule. More-
over, this formulation makes the definition of eigenstates
clearer (unlike the pseudomomentum approach, where m is a

good quantum number only for K~ = 0), and therefore offers
an intuitive understanding of the degeneracy of states.

Let r&, r2 be the position vectors of electron and proton in
a H atom. We introduce coordinates Z=(m, zi+m„z2)/M
and z=z& —z2, but stick to r» and r2~. In this mixed co-
ordinate system, the Hamiltonian for the electron-proton pair
becomes H= Ho+ V, with (cf. footnote 1):

'P' '(z ii.r2i) =2 &,(rii) &',+,(r2i)f' ' (z)
m~

(4 6)

The equations for the functions f's are then given by

1 d )

d, 2
f™'(z) —2 G ' .(z)f, ' (z) = ~ 'f', '(z),

m&m& m

1

m) =0,1,2, . . . , (4.7)

levels, n
&
=n2=0. The energy eigenstate with a fixed z an-

gular momentum J,=m, =m2 —
m& can be constructed as

K, p, 1
Ho=- + + g (p,~

—e,A;),2' 2)x j=e p 2m '
(4 1) where

where A;= A(r;) =BX r;~/2, and the interaction potential is

t
z2+ (r r )2]1/2 (4.2)

1

, ~IIV ,
'(&i )IV ( 2 ))

We set K, =O without loss of generality.
Consider the transverse part of the wave function for a

bound state. The Landau wave functions of the electron and
proton form a complete set,

IV. . .(&ii) IV.* (r2i) n), n2, m], m2=0, 1,2, . . .
(4.3)

[ni, n2 specify the Landau excitations, mi, m2 are the orbital
quantum numbers as in Eqs. (2.3) and (2.4)]. In general, an
eigenstate of H can be constructed as

'p(z. rii .r2i ) =
n ),m), n2, m2

(4.4)

J,= —(I,—n, )+(m2 —n2). (4.5)

where we have restricted ourselves to z wave functions with-
out a node (v=0). Substituting Eq. (4.4) into the Schro-
dinger equation (Ho+ V)'P= Ã%' and using the orthogonal
relations for the functions W to average over the transverse
direction, we obtain a set of coupled differential equations
from which the functions f(z) 's and the eigenvalue Ã can be
calculated, at least in principle.

This set of equations is greatly simplified as a result of the
conservation of total z angular momentum J, . From Eq.
(2.6), we have

t b/23.8m~i( —0.16 A ln
C I/+ 1 t

(4.9)

with C' =0.9—1.1 (depending on the values of m, ), and A is
a coefficient close to unity [as in Eq. (3.2)]. This expression
is equivalent to Eq. (3.22), with m, p playing the role of
Rx, but here I, is an integer. The form in Eq. (4.9) is ex-
pected since m, =m2 —mj measures the difference between
the distances to the origin of the guiding center of the elec-
tron and that of the proton. Although the m, ~1 state is not
an exact K~ eigenstate, in a qualitative sense the separation
between electron and proton increases with increasing m, .
Thus we expect

(4 8)

The set of equations (4.7) and (4.8) essentially forms a
differential-integral equation system (the sum over m i can be
considered as an integration). Some mathematical formulas

(m, )for evaluating the function G, (z) in Eq. (4.8) are given in
m~m1

the Appendix.
Since the states with different m, are orthogonal, we can

use the variational principle for each value of m, separately
to find a rigorous upper bound to W"'t~. To this end, we
choose as a simple trial wave function the first term in Eq.
(4.6), i.e., we include only Ii=0, m2=m, . Equation (4.7)
then reduces to a single differential equation, which is
straightforward to solve numerically. For m, =O —4, we find
that the upper bound can be written in the form

Indeed, since the basis function W„(r,i ) W„* (r2~)n)m) 2 2

~e ' ml "I 0~+' m2 "2 ~2, while the interaction potential V
depends only on ( 8i —82), we readily see that only the states
with the same J, are coupled.

We shall use the formalism of this section only when
B&)B,„... in which case the Landau energy of the proton is
large compared to the atomic Coulomb energy, so that both
n

&
and n2 become good quantum numbers. For astrophysical

applications we are then interested in the ground Landau

1
G' '(z)-

[z +(C'I,+ 1)p ]" (4.10)

which then naturally leads to the form in Eq. (4.9). The de-
crease from b in Eq. (3.2) to bl2. 3 in Eq. (4.9) arises from
the fact that both the electron and proton wave functions
have finite spread around the same axis (unlike the usual
pseudomomentum approach, where the relative coordinate is
used).
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cracy remains in m&, i.e., for a given m, , the eigenfunction
corresponding to 8 ') is not unique: the eigenstate in Eq.
(4.6) with real f 's is presumably the state where the proton

is centered at the origin; but there must be other states with
the same energy, centered at different positions. We can dem-
onstrate this degeneracy explicitly as follows. A Landau
wave function centered at the origin of the coordinate can be
expanded in terms of wave functions centered at some point
ro=ro~ as

/ r()1)eo
I

o
Wnm(rl. ) —X e In+ m, ,z+m 2 -2

(2/ /

0.95
X e'o "&' W„(ri —ro), (4.11)

~ 0.85
EI

O.s rn, =1 state

where ro —=xo+ iyo = roe' o, Ko is given by ro = —Ko
X BIB [see Eq. (2.2)], I„„,, is the polynomial as de-
fined in [37], and e'o'~ is the gauge factor. We consider
only the ground Landau level n =0, and write

0.75—
W (r~)=e'o "&' g C W (r~ —ro),

m /

(4.12)

0
I

2
1 max

I

4,

/

where C is a (complex) function of m, m', and ro. The
energy eigenstate in Eq. (4.6) can then be written as

FIG. 2. The energy eigenvalue 4 t calculated from Eq. (4.7)
for the m, =0 (upper panel) and m, =1 (lower panel) states. The
ratio c~ t)/Eo, where Fo = —0.16A1 is the ground-state energy as

given by Eq. (3.2), is plotted against mi „,the maximum values

of mI in the sum of Eq. (4.6). The filled triangles are for
Bi2= 100, the open circles for Bi2= 1000, and the filled circles for
Bi2= 5000.

+(mt)(r r ) eiKO (rz& —r2&)/2+ g W (r r )
m/mt

1

/

, (r2J r0)f, ' ' (2) ~ (4»)
I

where we have defined

The actual energy eigenvalue 8 ') can be obtained by
solving iteratively the series of equations in (4.7) using the
standard shooting algorithm [35]. We have carried out the
calculations for the m, =O and m, = 1 states. Our numerical
results are given in Fig. 2 for three different values of field
strength B&2=100, 1000, and 5000. Typically, more than
10 terms in the sum of Eq. (4.6) are needed in order to attain
convergence of the energy to within ~1%. We find that the
ground-state energy eigenvalue 8 ) agrees with the standard
value [Eq. (3.2) with m=0) in the limit of B~aB,„,t This is
expected because the m, =O ground state is also a E~=O
eigenstate (note that Ki I

= —K~2 implies m I
= m2 and

hence m, =O). Also, we see that, as B increases, the upper
bound given by Eq. (4.9) becomes asymptotically closer to
the actual energy 5 t). For general m, , we cannot give a
rigorous lower bound to F. t, but it is approximately given
by Eq. (4.9) with (b/2. 3) replaced by b, so that the fractional
uncertainty decreases as 8 increases. Note that although the
contribution of the of m I

~ 1 terms in Eq. (4.6) to the correct
energy becomes smaller as B increases, the contribution to
the correct wave function is always non-negligible.

It is instructive to consider the degeneracy of an energy
eigenstate. Without the Coulomb interaction between elec-
tron and proton, there is a double Landau degeneracy in

m& and m2. When the Coulomb interaction is included, the
degeneracy in m, = m2 —m

&
is removed, but a single degen-

/f,' ' (~)—=X C 'C ', 'f', '(r.)
1 Vl ]

(4.14)

However, the term inside square brackets in Eq. (4.13) is
/

exactly an energy eigenstate 'P( t)(r, —ro, r2 —ro) with 1,'
=m,' based on the coordinate system centered at ro. Since
the state represented by the left-hand side of Eq. (4.13) has a
definite energy 8 t), while states with different m,

' have
different energies, we must have m,

' = m, in Eq. (4.13).Thus

gr( t)(r r ) iKo (rli —r2J. )I2+( t)(r. r~ r rO)

(4. 15)

where we have added the subscripts i, j to indicate that
there are many states associated with a given m, , i.e., the
states with the same energy 4 ') are not unique. Clearly, the
degeneracy (per unit area) for a given m, is B/(27r), i.e., a
single Landau degeneracy [see the discussion following Eq.
(2 ~)]

The above discussions demonstrate that there is a discrete
set of states with m, = 1,2,3, . . . , all having similar energies
as the ground state (m, =O), and not having any positive
contribution m, b/M in their energies. This has important
consequences for the binding of hydrogen molecules in the
B&)B,„;t regime. In a forthcoming paper [II] we shall use
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one I,=O and m, = 1 atom to construct the wave function
for the Hz ground state, which also does not involve any
Landau excitation of the proton.

where the factor R (MT/2')" results from the free center-
of-mass z motion and ~E(H)

~

= ~Eo~ =0.16 l is the ground-
state binding energy. The partition function Z& associated
with the transverse motion of the atom has the form

V. IONIZATION-RECOMBINATION EQUILIBRIUM

A. Overview
ZJ (2~)'~ o

E~(Ki)
2 ~Ki dK~ exp —,(5.2)

We now consider the ionization-recombination equilib-
rium of hydrogen atoms, e+p~H, given by the generalized
Saha equation in the presence of a strong magnetic field.
Previous treatments of this problem (e.g. , [12—151) either
ignored the coupling between the center-of-mass motion and
the internal atomic structure, or did not have available our
generalized formula for the transverse kinetic energy as a
function of the pseudomomentum K~ .

Let T be the gas temperature in atomic units (about
3.16X 10 K), so that the Boltzmann constant kii is set equal
to unity, and n be the number density (also in a.u.) of pro-
tons (either free or bound) in the gas. We write
V =~R =—1h~g and, &g=~R, so that a "%igner-Seitz
cylinder" of radius and length R„contains one proton on the
average. Some of the partition function integrals can be sim-
plified if the density and temperature satisfy three inequali-
ties: (i) The density is low in the sense that R = (7m ) "s is
much larger than the largest dimension (i.e., the z dimension)

L, I' of-the ground-state atom; (ii) the temperature is
much smaller than the ground-state binding energy

~Eo~ = ~E(H)~=0. 16 l )1; (iii) the Coulomb attraction be-
tween a proton and an electron at typical separation R is of
order R ' we assume T~) R ' so that the "imperfect gas
corrections" are small.

The Saha equation involves the bound-atom partition
function Z(H) compared with the product Z(e)Z(p) of the
two free-particle partition functions. Each of these systems
has six discrete or "nominally continuous" quantum num-
bers. Two of these for the free electron-proton system refer to
the z motion, which can be represented by K, , the center-
of-mass g momentum, and k, , the relative z momentum. For
the bound system (H atom), the K, partition function is iden-
tical, but instead of k, we have the quantum number v. In
both systems the electron Landau excitations have the same
quantum number n and energy nb, so that the n partition
functions are the same. (In practice, b&) T, so we only need
to consider the ground Landau state of the electron and the n

partition function is essentially unity. ) For the bound system,
the remaining three quantum numbers are I and the two
Cartesian components of the transverse pseudomomentum
K~ . For the free electron-proton system the three quantum
numbers are n2, the proton Landau level integer, and the two
transverse parameters ~Ki i~ and ~Ki z~.

B. Bound-state partition function of the H atom

%e first consider only the ground state of the H atom,
with m= v=0. Using Eq. (3.25), the canonical partition
function in the volume V =R Y~ of a Wigner-Seitz cylin-
der can be written as

t
oo

Z~ = KzdK~ exp—
2'TT' J p

T K,'~
ln 1+

M~T
Ag

(5.3)

with

l

M~=M~ 1
2M„T

(5.4)

Thus Z~ is proportional to M~, which is larger than M~ [or
equal to it when r/(2M' T)&)1, so that the effective mass
approximation is valid throughout the regime of interest],
and M~ is larger than the actual mass M. While the trans-
verse motion is "slowed down" in the sense that
BEi (Ki )/0|K' is smaller than the zero-field result, the

K~ 40 states still exist and their statistical weight ~M~ is
actually increased over the zero-field resu1t by the strong
magnetic field.

We now consider the internal partition functions associ-
ated with the v)0 and I)0 excited states, i.e., we write the
total bound-state partition function as

MT '"M'»[E(H)i
Z(H) = Vg exp z,(H)z (H). (5.5)' 2m 2m

where Ei(Ki) is the generalized transverse kinetic energy.
The upper limit Ki „of the integral in Eq. (5.2) is deter-
mined by the condition Rz Rg so that the pressure-ionized
states are excluded in the bound-state partition function. It
thus has the density-dependent form K~ -bR . As dis-
cussed in Sec. III D, Ei is well approximated by Eq. (3.26)
for K~ up to —b. However, for Ki &) b (or RIr&) 1) the cor-
rect expression for E~ is close to 0.16 l (almost indepen-
dent of Ki), whereas the approximate E~ in Eq. (3.26) in-
creases with Ki . At very low density (R~&)1), there are
highly excited states with K~ between b and K~, —bR
whose contribution to Z~ is proportional to
,Kgb n exp( —0.16l /T) . However, these states cover
only a narrow range of binding energies (of order R
((T) and can be neglected compared with the ionized com-
ponents, in view of the inequality 0.16 l ))T. We can
therefore omit these states entirely, but also make only a
small error if we merely replace E~ by the approximation in
Eq. (3.26), which is an overestimate for b(K~(bR
This approximation has the advantage that the extension of
the integral in Eq. (5.2) to infinity is not only finite but also
small. %e therefore get a convenient expression for Z~ by
extending the integration to K~ ~~. We have

MT~ u'
~ ~E(H)[)

Z(H) =Rg exp —Zi, (5.1)
Start with the quantum number v. The internal partition
function relative to the ground state is
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z,(H)=1+exp~ — ' g 2 exp
/~=i l T )

(5.6)

M~b/M T)
m=o M~

Here E, is given by Eqs. (3.4) and (3.5) but can be approxi-
mated by E,= —1/(2 v ), and the factor of 2 comes from the
near-degeneracy of the even and odd states. The sum in Eq.
(5.6) is thus similar to that for a field-free atom except that
the usual weight factor 2p is missing as the atom is one
dimensional. Since ~Eo~

—~E„~&&T for the temperature re-
gime of interest, the individual term in the sum is very sma11,
but the z,(H) would diverge if v „were allowed to become
infinite. As for the high Rydberg states in the field-free H
atom, the divergence is avoided by including only states
which fit inside the Wigner-Seitz cylinder. The size of the
v ~ 1 state is L,—v (a.u.), so we should choose
v „-R" with energy E, = —I/(2Rs), i.e., we omit

max

states with such extended wave functions that they would be
pressure ionized. With this prescription the sum in Eq. (5.6)
becomes finite but density dependent, i.e., it increases as
n " with decreasing n~ . Making use of the inequality
T»R '=2~E, ~, we split the sum into two parts: one ex-

max

tends from v= 1 to vr, where ~E„~=T; the other from vr
to v „(which exceeds vr because of the inequality). The
first part contains only a few terms, each with

~Eo~
—~E„~&T, so they can be neglected (compared with

unity, coming from the v=0 term). The second part repre-
sents the highly excited states and would contribute approxi-
mately 2exp( —~Eo~/T)(mes) ', which could be large for
very small density ng . However, these states should be con-
sidered separately and compared with the ionized compo-
nents: These states have negative energies of order

( —I/Rs), while the ionized components have positive ener-

gies of order T. Because of the inequality T&&R, we ne-
glect these states entirely in the rest of the paper and set
z„(H)=1.

The contribution of the m &0 states to the bound-state
partition function can be considered in the same manner as
that of the m = 0 state discussed before. The internal partition
function associated with the m states is given by

so that Mio=Mi[cf. Eq. (5.4)], and Mi, 7 are given in
Eqs. (3.12) and (3.28). The sum in Eq. (5.7) simplifies in two
extreme regimes of the field strength: for b(&b„;, one may
need to include a number of terms in the sum, but then

M~ is close to M; for b)&b„;, the effective mass M~ is
much larger than M, but since b&%MT one needs to include
only the m =0 ground state, and hence z (H) = 1.

Finally, it is instructive to consider the partition function
based on the alternative scheme discussed in Sec. IV. Using
Eq. (4.9) [and relacing b/2. 3 by b; see the discussion follow-
ing Eq. (4.10)], we see that Z(H) can still be written as Eq.
(5.1), but the transverse partition function Zi is now given
by

f, mQx

exp ——ln(1+ C'm, )2' m =o T

I mf max
dm, (1+C'm, ) "',

7r o
(5.9)

where the factor Agb/2m comes from the Landau degeneracy
of the m, th state, and m, , -R b. Clearly, Eq. (5.9) has the
same form as Eq. (5.3) in the limit of b/M » I, demonstrating
the equivalence of the two energy level schemes of Secs. II
and III and Sec. IV.

( T i 1/2( b
Z(e) =Rs

(2~/
(5.10)

where the factor Rs(T/27r)" represents the free z motion
and the factor Msbl(2m)is the Landa. u degeneracy. For the
free protons (see footnote 1), we have

/MT) i/2( n, b&
Z(p) = Rs~ .Ms g g„exp

( 2~] I 2~ „,=p "'
I MT)

(MT~ '" b
(5.11)

C. Saha equation

The partition function of the free electrons in the ground
Landau level is given by

where

( 2M' T~
M' =Mi

)
(5.8)

bl
X exp ——0.16 I —0.16 I +m —,(5.7)I

where the sum extends over all Landau levels of the proton,
and g„ is the spin degeneracy: g„=1 for n2=0 and

g„=2 for n2&0. Given Z(e), Z(p), and Z(H), the

ionization-recombination equilibrium can be obtained using
the condition p, (e)+ p, (p) =I//, (H) for the chemical poten-
tials. In the density and temperature regimes of interest, with

T(&K~„I(2M' ), we have

The factor (1+e ) in Eq. (5.7) results from the proton spin
term, which is not explicitly included in our calculations (see foot-
note 1). Note that when the proton spin term (but not the abnormal

magnetic moment) is taken into account in Eq. (2.11) or (2.13), the

energy of the mth atomic state is given by Ã =K, /

(2M) —0.16 / +E~ (K~)+mb/M+(I+a, )b/(2M), where the

proton spin o.,= ~ 1 [compare with Eq. (3.27)].

X(H)
n

XpX, s(27rg ( r / l27r/

iE(H) ii
X tanh exp ! z (H),i2MT] T )

(5.12)

where X(H) = n(H) Ins, X„=n~ In, and X,= n, In are the
number density fraction of different species, Mi =M+ gb/I
(with /=2. 8), and z (H) is given by Eq. (5.7). This is the
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generalized Saha equation in the presence of a superstrong
magnetic field. More details on the applications of this result
to neutron star atmospheres will be presented elsewhere [36].

VI. SUMMARY

1 1 d g
7" 2 77

we write Eq. (4.8) as

(Al)

The effects of center-of-mass motion of a neutral hydro-
gen atom in a strong magnetic field are rather intricate,
mainly due to the high degree of degeneracy associated with
the quantum states. Using the usual pseudomomentum
scheme (Secs. II and III), we have obtained approximate so-
lutions for the energy of the atom as a function of the field
strength and conserved pseudomomentum for a wide range
of parameter regimes. In particular, we have considered field
strengths B~B„;,-4X 10' G, when the Landau excitation
energy of the proton is considerable. States with large trans-
verse pseudomomentum have small binding energy and
transverse velocity, but are nevertheless quite distinct from
fully ionized states. We have concentrated on convenient
analytic fitting formulas that give at least a reasonable ap-
proximation over various parameter regimes [see particularly
Eq. (3.26) for the "transverse kinetic energy" ]. Since there
may be neutron star atmospheres with B—10' —10'" G, we
are particularly interested in the cases with B&&B,„;,, where
the proton Landau energy 6~ is very large. By considering
an alternative scheme to the usual pseudomomentum formu-
lation (Sec. IV), we have shown that there are atomic states
with orbital wave functions orthogonal to that of the ground
state, but without any Landau excitation appearing in their
energies.

We have also derived the generalized Saha equation for
the equilibrium between neutral hydrogen atoms and the ion-
ized component. We focused on the cases of astrophysical
interest, where the density is relatively low and the thermal
energy k~T is small compared to the atom's ground-state
binding energy. Although the maximum transverse velocity
of bound atoms is small in strong magnetic fields, the statis-
tical weight due to transverse motion is actually increased by
the strong fields, not decreased (Sec. V). The statistical
weight of highly excited bound states is smaller than that of
the fully ionized component. Our results are important for
determining the physical conditions of magnetic neutron star
atmospheres as well as the soft x-ray (or extreme ultraviolet)
radiation spectra from them. Some of these issues will be
studied in a future paper [36].

Using the general result [37] for the matrix element
(m'le'~"&lm), and integrating over dq, , we obtain (as-
suming m, ~m,' without loss of generality)

I

2! ~2!ml ™&
G ', (z)= dq e

m&m'

(m, +mi)!mi! 'tq ! 'tq !
(m + mi)! mi I m, +m,'( 2 ] m,

'

(A3)

where L„ is the Laguerre polynomial of order n [34]. We

now define constant coefficients g ' (mi, m,') via

t

( m&
—

m&

( 2 (m, + mi)! mi! m, +m',
I 2 J m,

' 2

tml+m]+mt

n=0
g' '(m, , m,')L„(x). (A4)

Using the relation

/ 2

V (z) = dqe-v' —
ql I

jp ~2

1 f x"e
dx

( +z't2)'" (A5)

where the second equality can be used to evaluate the func-
tion V, (z), we obtain

(mt) (mt) 1 f d g'3

G ', (z)=G, ' (z)= ~ q
e'q"

2~ j q

x(m, +mile'~~'" 1m~+m&)(mile 'q& "'lmi)

(A2)
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APPENDIX

In this Appendix, we derive some mathematical formulas

needed to evaluate the function G, (z) defined by Eq.
(mt)

mimi

(4.8). (Here the length scale is in units of the cyclotron radius
p. ) Using the identity

m1+ ml+ mt (z3
G ', (z) = g g„' (m, , m,') V„' (A6)

We calculate the coefficients g ' (m, , m,') using the or-

thogonal relations of Laguerre polynomials. We can identify
two special cases: (i) When m, =0, we have G, (z)(p)

m }ml
=F ~(z) and g„(mi, mi) =e„(m, , mi), where

F. (z) and e„(m, , m
& ) are given in [8]; (ii) when

mt =mt =0, we have Goo' (z) =Do (z) and g
' (0,0)

=d„(0,m, ), where D (z) and d„(m i, m,') are again
I

given in [8].
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