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Reshaping, path uncertainty, and superluminal traveling
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It is shown that when the wave packet of a photon passes through a region where more than one path mode
can be chosen, the interference between these modes of the probability waves of the photon causes a reshaping
process of the wave packet. In some conditions this reshaping gives rise to an apparent superluminal traveling,
as observed by Steinberg, Kwiat, and Chiao [Phys. Rev. Lett. 71, 708 (1993)].The present model also leads to
some predictions that can be tested experimentally.
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Tunneling is a peculiar phenomena that can be understood
only in quantum mechanics. As early as the 1930s, MacColl
[1]pointed out that tunneling was characterized not only by
a tunneling rate, but also by a tunneling time that the particle
spent in the barrier. Since then many approaches to the tun-

neling time have been presented. Most of them imply that
particles may move faster in barriers than in free space, but
the physical nature of this high-speed traveling is not clear
[2,3]. Recently Steinberg, Kwiat, and Chiao [4] demon-
strated an excellent experiment that directly measured the
time for a single photon tunneling across a barrier. Their
experiment indicated an apparently superluminal transport in
a bamer. They suggested [4,5] that the reshaping of the wave
packet was responsible for this superluminal phenomenon,
but they left an open question of why the reshaping should
occur.

It should be noted that the barrier used in the Steinberg-
Kwiat-Chiao (SKC) experiment was obviously different
from the conventional one (for example, the square potential
barrier) where the tunneling photons have pure imaginary
components of the wave vector. In the SKC experiment, the
tunnel barrier was a multilayer dielectric mirror that actually
formed a one-dimensional photon crystal with a "photonic
band gap" [6].The tunneling process in this photon crystal is
an analog of the Zener tunneling [7] in solid-state physics.
The wave vector of a photon in the gap region is k
= 2G+ia, where both G and ~ are real and G is a
reciprocal-lattice vector. Since G is a nonzero real number, k
is a complex quantity. In what follows we will show that
when the wave packet of a photon travels in a path-uncertain
region, the interference between different path modes of the
probability wave of the photon causes a reshaping process of
the wave packet. The picture not only can explain the SKC
results, but also leads to some predictions that can be tested
experimentally.

The starting point of the present discussion is that when a
photon beam travels across a region where many paths can
be chosen, the output is a superposition of the waves along
all the path modes, whether the incident beam is composed
of a large number of photons or only of a single photon.
Suppose the time-dependent incident wave function at initial
point xb is yp(t). The output wave function at the final point
x, would be

tp(t) = g TAtpp(t r;), —

where
I rI, I

is the probability that the photon takes the ith
path and r; the corresponding traveling time. From Eq. (1)
we see that y(t) does not have a one-to-one time correspon-
dence with the incident wave function. Rather y(t) depends
on the distribution of clap(t

—r, ) in the time axis. Assuming
that the incident beam is a wave packet with a Gaussian
shape, the center of which is at point xb when t=0,

tpp(t) =fp(t) exp(icot) =A exp ——— exp(itot),
2 i Bt)

where co is the frequency centroid, A the normalizing factor,
and St the width of the wave packet (Bt~)27r/kc) Combin. -

ing Eqs. (1) and (2), we have

q&(t) =g rI/p(t r;)exP( —icor;)ex—P(icot)

1 /t r;)'—
=A r/, exp —— exp( —itor;)exp(itot). (3)

2~ at/

tp(t) = r/ fp(t r, )exp( —ivor, )—exp(i tot)

+ r/2fp(t r2) exp( —itor2) exp(i—cot), (4)

where ri and r2 (suppose r2) ri) are, respectively, the trav-
eling times of a photon in the two paths. If there is a phase
difference of m between the phases of the probability waves
from the two paths, the amplitude of q(t) can be written as

fT(t) = IfTi(t) fT2(t)l. (5)

where

fTi(t) I @i lfp(t ri)— —(6)

In order to give a deep insight into the physics, yet with-
out losing the generality of the results, we discuss a simple
case in which there are only two paths connecting the two
points xb and x, . The wave function at the end point x,
would be
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FIG. 2. Schematic diagram of a Mach-Zehnder-like interferom-
eter. M& and M2 are beam splitters. M3 and M4 are total reflection
mirrors. Here the difference between L and 5 is greatly exagger-
ated. In practice, it is smaller than the coherent lengths of the prob-
ability waves.

FIG. 1. Probability amplitudes fr(t) (thick solid curve), f (tr )r

(thin solid curve), and fr2(t) (dashed curve) as a function of the
time t for the waves amving at the final point x, for

I r/2/r/, I

=
3

and (r2 —r, )/( J28t)=0'.3. The vertical dotted line indicates the
arrived time of the gravity center of the wave packet fr.

fT2(t) =
I »lfo(t r2)

ffr(t)t dt

ff (t)dt

Because of the interference, only part of the photons can
arrive at x, , so the average time ~ only applies for this part
and not for all the photons that start from xb. It is easy to
prove that

I »I
if

I r/, I&I g, l,
I

I&exp—
91 28't

J

I oil+~ +2~ +i if
I

r/i I
&

I »I
I

&exp
921 28t

~&-«v-~ 72 otherwise. (9)

are the transmitted amplitudes with only one path open, Then
the average traveling time for those photons arriving at x,
from xb can be obtained by

ing part of the wave packet has larger transmission probabil-
ity than the trailing part. In other words, if a photon starts
early, it traverses more easily the path-uncertainty region
than it does if it starts late. This is a simple example of the
reshaping and the superluminal traveling. From this we can
see how the reshaping and the superluminal traveling occur.

The idea can be realized by a Mach-Zehnder-like interfer-
ometer. As shown in Fig. 2, first a photon wave is split by
M1 into two components that travel along either the shorter
path S or the longer path L and later are recombined by
M2 into two waves, one of which travels toward the detector.
For a traveling photon, there are two paths from the source to
the detector. When a photon is detected by the detector, we
cannot determine which path it travels along. The path dif-
ference between the longer and the shorter path is chosen to
satisfy the condition that the corresponding phase difference
is vr. In this case, all three cases in Eq. (9) can be demon-
strated easily when we regulate

I r/t /gsl by changing the
refiectances of M, and M2, where r/tl and

I r/sl are, re-
spectively, the probabilities for a photon to take the longer
and the shorter path. Obviously, the first case in Eq. (9) im-
plies a superluminal traveling from the source to the detector.

Now we consider a one-dimensional optical tunneling
barrier made of alternative layers with refractive indexes
nH~nL (Fig. 3). Every interface serves as a scattering center
that divides the wave packet into a rejected one and a trans-
mitted one. Their wave functions are, respectively, propor-
tional to the amplitude reflectance coefficient R and the

Therefore, in some particular conditions, the transmitted
photons arrive before (or after) those traveled along any one
definite path. Figure 1 shows a typical example of the first
case given in the first of Eqs. (9). The leading part (for ex-
ample, at time t„)of the transmitted packet (f7) is very
similar to the leading part of the transmitted wave from the
first path (fr, ) . This means that the interference can be ne-
glected for this part and the transmitted photon is, with very
large probability, from the first path. At time ts, fr is much
smaller than fr, . In this case, the interference plays an im-
portant role and we cannot deduce which path the photon has
passed through. In other words, the path uncertainty becomes
larger. At time tc, fr2 is comparable with fr, and fr is
approximately equal to zero. In this case, the interference
nearly completely holds back the transmission. From time
tz to t~, the interference plays a more and more important
role in holding back the transmission so that the transmission
probability becomes smaller and smaller. Therefore, the lead-

I

I

I

I

I

I

I

I

I

7LH 7L+ 7LH

FIG. 3. Multilayer film geometry. Both regions I and III are free
space. Region II is the multilayer film. The vertical solid lines in-
dicate the interfaces.
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transmission coefficient T. Taking the thickness of every
layer to be one-fourth of the photon wave length in the me-
dia, the time traveling from one interface to the adjacent
should be the same, independently of the velocity difference
between different layers. Let 7.0 denote this time. Then the
total time for the wave packet traveling across the multilayer
from a to b without any reflection is to=mro, where m is
the number of layers of the barrier. The refIections of the
wave packet at the interfaces create varieties of path modes.
However, all these modes have their traveling time longer

than to. Furthermore, it is easy to show that 7-; should take
one of the values

&;=to+2nro, n=1,2,3, . . . . (10)

Taking into account Eq. (3) and the fact that the phase of an

optical wave shifts ~ when it is rejected at interface from
the lower refractive index side, we get the transmitted wave
function at point b (suppose the centroid of the packet is at
point a when t = 0)

tp(r) =& g g (kt, k2)T + t+'R ~( —1) t ~exp(input —imvr/2)e xp
——

k),k2=0 2 Bt

1 ~ t to 2k&ro —2k2%0
=Aexp(input —im7r!2) g (' (kt tk2)exp ——

k), k2=0 2 Bt

f itp(t)~ t dr

(r)
~

2dt dlc =
+tunnel dlc (12)

where g (kt tkz) is the number of path modes corresponding
to refiections of 2k2 times and transmissions of m+2k&+ 1

times at the interfaces. From (11) the contributions of differ-
ent modes are weighted by a time-dependent exponent. So it
is natural to expect that the mixing of these modes should
result in some reshaping of the wave packet at the barrier
output.

An apparent superluminal velocity can be demonstrated
by comparing the time lag of the wave-packet centroid
across the barrier with the time lag of the wave-packet trav-
eling the same distance in free space. The centroid of the
wave packet can be represented either by its peak [8], by the
peak of its Gaussian fit curve [4], or by its gravity center [9].
We find that, in the case 6't&&dlc, the wave packet keeps its
original Gaussian distribution after the tunneling process and
the centroids given by all three methods coincide. Using the
third method, an apparent superluminal velocity is obtained
when

Here let us discuss the SKC experiment [4]. In this case
m=11, nH=2. 22, and nI =1.41. The photon frequency
~= cl702 nm. Taking 8't = 20 fs, we find that At = —2.16 fs.
The value is not far from that observed experimentally
(3 t= —1.47~0.21 fs) [4]. One should not be surprised by
the deviation of the two values, considering the experimental
errors in Ref. [4) and that the parameters used in our calcu-
lation may not be quite consistent with the practical case of
the experiment. In Ref. [4] it was claimed that the peak of the
undistorted (but attenuated) single-photon wave packet ap-
pears on the far side of a tunnel barrier earlier than it would
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takes a negative value. Here ~,„„„,&
is a function of the thick-

ness d of the barrier. A typical result is illustrated in Fig. 4
for nH=2. 22, n1= 1.41, and St=86.3(2vrlkc). In Fig. 4,
when m increases in intervals of 2, we can find that ~,„„„,j

first increases rapidly and becomes almost independent later
as m is large enough. It is very clear that the apparent tun-

neling velocity Ut„„„,t ( = dl rt„„„,t) increases with an increase
of d and the apparent superluminal traveling is reached when
m is larger than a definite number. The obvious difference
between odd and even multilayers shows that the boundary
of the barrier plays an important role in the tunneling pro-
cess. The apparent tunneling velocity, however, should reach
a maximum and slow down again when the thickness of the
multilayer film is comparable with or larger than the wave
packet, but in the latter case the packet form would be quite
distorted and would have more than one peak.
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FIG. 4. Apparent tunneling time ~,„„„,&
as a function of the thick-

ness d of the barrier for n H
= 2.22, n L

= 1.41, and
Br = 86.3(2m/kc). The solid line shows the traveling time for light
speed c. Those dots show ~,

„„„„

for m = 1,2,3, . . . and can be clas-
sifted into two groups: (i) m is an odd number. In this case, apparent
superluminal tunneling is reached when m~5 and 7;„„„,&

tends to-
ward 0.62 as m increases. (ii) m is an even number. In this case,
apparent superluminal tunneling is reached when m ~ 10 and

r,„„„,&
tends toward 1.28 as m increases.
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if it were to propagate ai c. However, from our discussion,
the single-photon wave packet is "undistorted" only in the
sense that it keeps about the same form (say, a Gaussian
distribution). The existence of the exponents in Eq. (11)
clearly shows that the interference effect is not symmetrical
about the peak of the incident wave packet, which has been
illustrated in Fig. 1, and should result in a shift of the peak in
the process of tunneling. This shift contributes an excess
speed to the motion of the wave-packet centroid and there-
fore is the cause for this type of apparent superluminal trav-
eling.

In the SKC experiment, the leading part of a wave packet
more possibly passes through a path-uncertain region than
the other part, so the average start time of those transmitted
photons is earlier than that of all incident photons. The trav-
eling time through the region cannot be obtained by compar-
ing a transmitted reshaped packet with an incident un-

reshaped packet. Therefore the very short tunneling time
measured by Steinberg, Kwiat, and Chiao is not really the
time the transmitted photons spend in the Zener barrier re-
gion. The real tunneling time would be longer than the SKC
measured tunneling time. In Steinberg, Kwiat, and Chiao s

paper [4], they showed that their measured tunneling time is
consistent with the phase time [1—3,8]. This is not surprising.

Their measured tunneling time is practically obtained by
comparing the two peaks of the incident and the transmitted
wave packets and this measuring method gives the phase
time. However, the phase time is not the time a transmitted
photon spends in the barrier region [2].

In fact, path uncertainty exists in a variety of traveling
besides Zener tunneling and traveling in Mach-Zehnder-like
interferometers. As long as there is nonhomogeneity in the
traveling region, those traveling photons would be scattered
by the nonhomogeneity. If there are two or more scattering
bodies at different positions interacting with traveling pho-
tons and the scattering waves from these scattering bodies
are coherent, the traveling path would be uncertain. This un-

certainty in some conditions give rise to a superluminal trav-
eling.

The present picture is somewhat phenomenological in the
sense that it has not touched the question of how the inter-
ference should occur in a single-photon process. However, in
addition to the explanation of the SKC result, the applicabil-
ity of the model can be verified by further experiments. For
example, we offer the following two predictions: (i) the su-

perluminal phenomenon in Mach-Zehnder-like interferom-
eters and (ii) the dependence of the apparent transmitted pho-
ton speed on the number of layers in optical Zener tunneling.
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