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A so far most generalized Jaynes-Cummings (JC) model, which includes not only various ordinary JC
models but also a special model describing spin-orbit interaction, is investigated from an algebraic point of
view. We find that an alternative representation of su(2) algebra arises naturally from the system. This structure
plays an essential role in the generalized system. As one result, the system behaves like a spin-% system moving
in a magnetic field. So it is rather easy to obtain the energy levels, eigenstates, and the time evolution operator,
or any other quantities of physical interest. Two special cases are considered. Finally, a possible generalization

to the three-level system is discussed.

PACS number(s): 03.65.Fd, 02.20.—a, 11.30.Na, 42.50.—p

L. INTRODUCTION

Among the models describing the interaction between
light and matter, the Jaynes-Cummings model (JCM) [1]
seems to be ideal. It is simple enough to be exactly solved
on the one hand and complicated enough to exhibit many
fascinating quantum features on the other hand. These
pure quantum effects include quantum collapse and revi-
val of atomic inversion [2] and squeezing of the radiation
field [3].

Recently superstructures, fraction revivals, and optical
Schrodinger-cat states have been found in the JCM [4]. Also,
this model can be tested experimentally, i.e., with the one-
atom maser [5].

As a result many efforts have been made in order to
generalize this model keeping these three advantages. In
1982 Singh discussed systematically some density-dependent
and multiphoton interaction models [6]. The time evolution
operators were given. In 1984 Sukumer and Buck studied
the above models by using algebraic operator methods [7].
More recently, the JCM has been adopted with a Kerr non-
linearity [8], where the authors discovered classic beat phe-
nomena under some suitable conditions. Later on, it was
found by many authors that when the ordinary creation and
annihilation operators in the JCM’s were replaced by the
g-deformed partners [9], namely, the g-deformed JCM’s,
these models can still be exactly solved ([10,11] and the
references listed there). These systems also exhibit similar
quantum features.

Naturally we tend to think that there must exist a funda-
mental structure that all these models have in common. In
1993 Bonatsos et al. after analyzing the methods involved in
solving these systems, wrote in their paper [10]: “The simi-
larities among the algebraic manipulations used in all the
variations of the JC model suggest that there must be a uni-
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fied formulation of the calculations and that all the forms of
the model could be reformulated in a unified manner.” They
presented a unified formulation based on a generalized de-
formed oscillator algebra. All the models mentioned above
can be included properly in their formulation. This is a great
step, but we will see that this is not the last step, because a
particular su(2) structure hidden in the system has not been
revealed yet. This structure is a representation of su(2) alge-
bra which can be constructed by combining the generalized
deformed oscillator algebra with the Pauli matrices. We shall
point out that it is this structure that makes all the JCM’s
akin. Surprisingly, a spin-orbit interaction can be included in
our formulation too.

The purpose of this paper is to reveal this su(2) struc-
ture of JCM’s. In Sec. II we generalize the quantized cavity
field [12] based on slightly more generalized oscillator
algebra than that of [10] and give the Hamiltonian of the
generalized JCM. Additionally, an analysis of the energy
levels of the system is given there. In Sec. III we construct
a representation of su(2) algebra based on the generalized
algebra and the Pauli matrices. The Hamiltonian is then
simplified to an interaction between a spin-i system and
an external magnetic field. The evolution operator, the
energy levels, and the eigenstates are given. In Sec. IV,
we consider two special cases including a spin-orbit interac-
tion. Finally there are some discussions and conclusions
in Sec. V.

II. GENERALIZED JCM

Before presenting the Hamiltonian of the generalized
JCM, we shall introduce the generalization of the quantized
cavity field. To describe a quantized field, we need to know
at least two things. One is the strength of the field or the
number of its quanta. It can be described by a so-called num-
ber operator, say A, which is Hermitian. The other thing we
must know is how to change this number. For a generalized
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cavity field, the processes of the changing are represented by
creation and destruction operators A . , which satisfy the fol-
lowing relations:

A0A1=Ai(A0im), (1)

where m is a nonzero real number. We can see that A,
increase the number of quanta by m and A _ decrease it by
m. It can be expected that A A _, representing a process in
which we first destroy m quanta and then create m quanta, is
a function of the number operator only: A ;A _= x(Ayp).
Since AT =A | the function X is real, and we shall see later
that the zero points of this function determine the spectra of
the number operator. For the process where m quanta are
created before they are destroyed, in order to be consistent
with Eq. (1), we have A_A = x(A,+m). We recapitulate
the requirements for these operators:

[Ag.Ac]=%xmA .,

AA_=x(Ay),
A_A,=x(Ay+m), ()
Al =A_,
Ab=A,,

where m is a nonzero real constant and y(A,) is a well-
defined real function of A,. These three operators
{Ay,A; ,A_} form a generalized deformed oscillator algebra
[10].

An atom with two energy levels can be most conveniently
described by the well-known Pauli matrices o

0 1 0 —i 1 0
=\ o) TN o) %Tlo 1)

They have the following properties: 0,0;= §;;+i€;;, 0y,
where i,j,k=x,y,z. We denote the eigenstates of o, as |T)
and ||), corresponding to eigenvalues 1 and —1, respectively.

Finally we define raising and lowering operators as

Ui:%(o-xiio-y)’ (3)

which change the atom from one energy level to the other.

Using these definitions, we can now construct a Hamil-
tonian for a two-level atom interacting with a generalized
cavity field as

H=r(Ay)t+s(Ag)o,tA_o,+A,0_, @)

where r(Ag) and s(A) are well-defined real functions of
Ay . The first term is the energy function of the cavity field,
which is certainly a function of the number operator. The
second term characterizes the energy of the two-level atom.
Usually s(Ag) is a constant function of the number Ay. The
interactions are given by the last two terms, which are related
to the following two processes. First, the atom absorbs m
quanta of the field and jumps from the lower energy level to
the upper one. Secondly, the atom jumps from the upper
energy level to the lower one and emits m quanta of the field.
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This Hamiltonian has almost the same form as that of
[10], but here we have the coupling constant, which does not
need to be real, included in the operators A .. . We shall see in
Sec. IV that more models are included in this Hamiltonian.

As in the ordinary JC model, there exists a constant op-
erator

1+o,
A =A0 +m ) s (5)
which commutes with H. In fact, it commutes with both
Ajo_andA_o, :

[A,Az0.]=0.
Because of the projecting property of the operator o, o_,
for an arbitrary function of A, f(A), we have the following

decomposition:

1+0'2 6
2 ®

1— o)
) =f(A)— 2+ f(Ag+m)

For an arbitrary function of Ay, for example, F(A,), we
have the following identity:

1-o, 1+o,

F(A)=F(8)—5—+F(A=m)— ™

The Hamiltonian can consequently be divided into two
parts H=H,+ H; by using Eq. (7). One part of it is a func-
tion of A only, Hy=w(A), where w(A) is the so-called
“field energy function”

r(A—m)+r(A) N s(A—m)—s(A)

w(A)= > >

(®)

The other part has the following form: H;=48(A)o,
+A,o,+A_o_, in which 8§(A) is the so-called “‘detuning
function”

s(A—m)+s(A) N r(A—m)—r(A)

84)=—— = ©)

Since the eigenvalues of H, are determined only by the
constant operator A, whose eigenvalues depend on those of
Ay and o, , we shall give a brief discussion of the eigenstates
and eigenvalues of A, assuming m>0. The situation m <0
can be treated in a similar manner.

The eigenstates of A are denoted by |n) with eigenvalues
n taking values from n to n; with a step width m. In all the
JCM’s investigated so far the number operator has no upper
limit. In Sec. IV we shall give an example with an upper
limit. We know from the definition Eq. (5) that the eigenval-
ues of A run from ng to n;+m, increasing also with step
width m. The eigenstates corresponding to the eigenvalues n
(#n¢,n;+m) can be both [n—m,T) and |n,|), which are
degenerate. In fact, the operator A has an SU(2) symmetry
group, which will be discussed in the next section.
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Among all the eigenvalues of A, there are only the two
zero points of the function x(n). All the others satisfy
x(n)>0. In fact, if n is an eigenvalue of A, then we have
x(n)=(n|A A _|n)=0. So n is a zero point ofx(n) if and
only if A_|n)=0. When m>0 and A _ is similar to the or-
dinary annihilation operator, we can see that among all the
eigenvalues of A, there is only one zero point of the function
x(n), namely, n,. For a similar reason, we obtain
x(n;+m)=0 because A ,|n;)=0. Thus the two zero points
of the function x(n) which are also the eigenvalues of A are
n;+m. The eigenstates corresponding to them are |ng,])
and |n,,T1), respectively.

These two states are also the eigenstates of the total Ham-
iltonian H, Eq. (4). Because (A_o,+A .o )|n;,T)=0,
and (A_o,+A,0_)|ny,|)=0, we have

H|ng,|)=[w(ng)— 8(no)llng., 1), (10)
Hln ,=[o(n+m)+ 8(n;+m)]n,,1). 11)

As a result, we now have to concentrate only on the subspace
in which x(A)#0.

When m<0, the eigenvalues of A take values from
no+m to n;, and the corresponding states are |ng,1) and
|n;,l), which are still eigenstates of the total Hamiltonian.

III. SUQ2) STRUCTURE

In the previous section, we have mentioned that in the
subspace in which n, the eigenvalues of A, satisfy x(n)
#0, there is an SU(2) symmetry of A. Now we shall con-
struct this symmetry group. Taking into account the commu-
tativities of A and A; 0., we can define three operators as
_ below:

1
21—5—)(——\/—(—5)—(A_0'++A+0'_), (12)

i
Ez—m(fhlf——fl—tﬂr), (13)
Ss3=30,. (14)

It is easy to see that all these operators commute with A.
From the definition of the generalized algebra [Eq. (2)] and
Eq. (6), we find that A . satisfy the following commutation
and anticommutation rules:

[A_oy ,Aro_]=x(A)oy,, (15)
{A o, A 0 }=x(A). (16)

By using the above properties it is straightforward to obtain
the following commutation and anticommutation rules:

[2,-,2]-]=ie,-jk2k, (]7)
{zi’zj}: %51‘1‘, (18)

where i,j,k=1,2,3. These two rules can be combined:
(22)(2%))=6;;+i€;(2%)), (19)

which are exactly the properties that Pauli matrices have. So
these three operators 2, form a representation of su(2) alge-
bra and the corresponding group is the symmetry group of A.
That is, if |n,]) is an eigenstate corres- ponding to n, then
the state exp(i6-3)|n,]), where 6=(86,,6,,6;), is also an
eigenstate with the same eigenvalue.

By using this representation of su(2) algebra, we cannot
rewrite the Hamiltonian H; as follows:

H,=B-3, (20)

where B= 2(Vx(A),0,8(A)) can be regarded as an effective
magnetic field. We rewrite it as 20 5(sin6, ,0,cos6,), where
the so-called Rabbi frequency is Qp

=8%(A)+ x(A) and
S(A) Vx(4A)

Q—A , sm0A= QA (21)

COsfhp=
This form of the Hamiltonian H; expresses exactly an
interaction between a spin-3 system represented by S and an
effective magnetic field B. As a result, all the methods and
results for that interaction can be used directly here. This
equivalence is supported experimentally by Ref. [13], in
which the authors use an unpolarized neutron moving in a
classical magnetic field to simulate the results of the JCM.
The evolution operator of the system has the following
form:

U(t)=e = iteMy. | (22)
where

U;=e "Hi=cos(Qt)+i sin(Q t)B—.E (23)
A A QA .

l

In the investigation of the properties of the JCM, the most
important quantity is the time dependence of the quantum
inversion or the expectation value of o, . So in the following

we specify the rule that the operators 3, obey. We suppose

that the operator at =0 is S in Heisenberg’s picture, at time
t, the operator becomes

S(n)=U)I[U()]T'=8(1)%, (24)

where the evolution S(¢) is

1—cos?6,(1—cos2Q 1) cosO,sin2Qpt  cosOpsinf(1 —cos2 1)
S(t)= —C0SOASin2Qpt c0s2Qpt Sin@psin2 QAT . (25)
sin0xcos0,(1 —cos2Qat)  —sinfxsin2 QT 1 —sin?O(1 —cos2Q 1)
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As a result we obtain the time dependence of 3,5:
S4(t) =cos8,sinf (1 —c0s201)2 | —sinf,sin(20 1) 3,
+[1—sin?0,(1—cos2Qx1)125. (26)
If we assume that the system is in the following state ini-

tially:

jm= 2

npsnsnj

(Waln, T)+v,ln, L)),

the quantum inversion is then

(mlo(n]m)=(mlo|m)—2 >

ngsn<n;

$inf, +,,8in ), 4 ¢

X(P,sinQ),, . . t+Q,cosQ), ;,.t), 27
where
P,=(w,?=1vpsml?)sinb, i,

* *
- (vn+mwn+vn+mwn )C050n+m ’

Qn:i(v:zk+mwn_vn+mw;tk)' (28)

To obtain the energy levels and the eigenstates, we diag-
onalize the Hamiltonian H; through the following transfor-
mation:

U=exp(i0AEz). (29)
Then the total Hamiltonian is transformed to
H' =UHU'=w(A)+20,3;. (30)

The eigenstates of H' are obviously |n—m,T) corresponding
to the energy level E, . and |n,|) corresponding to the en-
ergy E, _ where

E,:=w(n)*xQ,. 31

These are of course the energy levels of H too.

The eigenstates of H can be obtained by applying the
transformation U on the eigenstates of H'. For energy
E, . and E, _ the eigenstates are

|n,+)=U"\n—m,T)=cos; 0,|n—m,T)—sinz 8,|n,|),
(32)

|n,—Y=U"|n,|)=sing 0,|n—m,T)+cosz 6,|n,1), (33)
where ng<n<n;+m.

IV. SPECIAL CASES

In this section we turn to two special models. For the first
examples we consider a generalized JCM which is called the
density-dependent multiphoton JCM ([6,10] and the refer-
ences listed there). The Hamiltonian reads

H=wa'a+w 0.+ gp(N)a™o_+g*o,a*p(N), (34)

where g is a coupling constant, which may be a complex
number. When k=1 and p(N)=1, it becomes the original
Jaynes-Cummings model.

Obviously this model is based on the generalized oscilla-
tor algebra generated by {N,p(N)a'™*,a*p(N)}, where
N=a"a and [a,a’]=1 are the ordinary number operator and
the commutation rule of the normal creation and annihilation
operators. p(N) is an arbitrary function of N. Comparing
with the Hamiltonian Eq. (4), we obtain the following corre-
spondences:

Ay—>N,
A —gp(N)a', (35)
A_w>g*akp(N).

In this case we have m=k>0, and

N!
X(N)=Ig|2p2(N)(—N—_—k)~!.

The constant operator becomes

1+o
2

Z

A=N+k

Its eigenvalue has the form ny+ jk, where ng is a nonnega-
tive integer smaller than k& and j=0,1,... . Since
r(N)=wN and s(N)=w;, the energy function is

w(A)=w(A-3k),
and the detuning function is

In this model there is no upper limit of the number operator,
so |ng,]) is the only nongenerate eigenstate of A. This state
is also the eigenstate of the Hamiltonian Eq. (34) which is
related to the energy level w;. The other eigenvalues and
eigenstates can be obtained by using the formulas of the
previous section.

The second example comes from the interaction between
a hydrogenlike atom and an external magnetic field [14]. The
total Hamiltonian is

2

P .
H=5—+V.(r)+H,, H=aL S+p(L+25,), (36)

where the spin operator S differs from the Pauli matrix by a

factor 3 and the operators {L,,L,,L,} generate algebra so

(3):

[Li’Lj]:ieijkLk' (37)
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The coupling constant a depends on the central potential
V.(r) only and 8 depends only on the strength of the exter-
nal magnetic field. Here we concentrate on the interaction
H, only.

The first term of H, is a spin-orbit interaction and the
second term is an interaction of a magnetic field with the
angular momentum. To obtain the eigenvalue of the system,
there are commonly two approximations. One is the Zeeman
approximation, when the magnetic field is so weak that the
second term can be regarded as a perturbation. The other one
is the Paschen-Back limit: the magnetic field is so intense
that the first term can be treated as a perturbation. In the
following we shall see that this model is just a special case of
our generalized JCM. As a result, we can give the quantities
of physical interest exactly.

Denoting L. =L,*iL,, we rewrite the interaction as fol-
lows:

H,=BL,+(3aL,+B)o,++a(L_o,+L,o_). (38)

Comparing with the Hamiltonian Eq. (4), we find the follow-
ing correspondence:

AOHLZ’
A_—zal,, (39)
A_—1t al_.
In this case we have m=1 and
a? )
X(L)=—7 (L2~ L(L.~ D],

where L2=L§+L§+L§=l(l+ 1), and here
r(L;)=BL,, (40)
s(L)=%aL,+p. 41)
The energy function and detuning function are

w(A)=BA-H-F, AD)=ta(A-D+is  @2)

The Rabi frequency is

Q= (B)/4+a?4(l+ 1) 2+ LaB(A—1).  (43)

So the energy levels are
1 (24
Ey+=BA-3)= 7 =0y, (44)

Here we have come to a situation different from the first
one: the eigenvalues of operator Ay=L, are bounded be-
tween —/ and I/, because of the conditions x(L,)=0 and
x(L,+1)=0. Since the constant operator is now the total
momentum of the system plus a constant 3,

1+o, .
A=L,+ =L +S,+5 (45)

z 2 z Z 2

its eigenvalue n consequently runs from —1[ to [+1.
When n=—1 and n=1[+1, the eigenstates of the Hamil-
tonian H, are |—1,]) and |I,71), respectively. For the other
values of n, the eigenstates are expressed in Egs. (32) and
(33).

We now suppose that the orbital angular momentum of
the system is 3 and the external magnetic field is zero, that is,
B=0. Here it is a case that two spin-} systems interact with
one another by the Hamiltonian Eq. (36). Initially, we as-
sume that the system is in the state

[my=3(=)+e+NUT)+I1) . (46)

We can determine the phase difference of the orthogonal
states | —) and |+), by simply measuring the quantum in-
version. In fact, by using Eq. (28) we have

(m|o,(t)|m)=3siny sinat, 47)

in which the amplitude of the oscillation with time is just the
sine of the phase difference .

V. CONCLUSIONS AND DISCUSSIONS

We have unified all the JCM’s based on a fundamental
SU(2) structure. After the revealing of this structure, the
Hamiltonian of the system is simplified to an interaction of a
spin-3 system and an effective static magnetic field. This is
the reason why various kinds of JCM’s can be exactly
solved. Quite unexpectedly, a model of spin and orbit inter-
action is also included in our formulation.

In addition, it has the following two consequences. First,
our generalized Hamiltonian can be generalized to a time-
dependent interaction. For example, since the spin-3 system
in rotational magnetic fields has been thoroughly studied,
when the coupling constant depends on time according to a
proper function making the effective magnetic fields rotate
with time, the system remains to be solved. Second, since
when the two-level atom interacts with a generalized quan-
tized cavity field an SU(2) structure can be extracted, we
expect to find an SU(3) structure behind the interaction be-
tween a three-level system and a cavity field. It will be dis-
cussed in a forthcoming presentation.
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