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The geometric phase is defined for any arbitrary quantum evolution using a "reference section" of the

bundle covering the curve in the projective Hilbert space. A canonical one-form is defined whose line integral

gives the desired geometric phase. It is manifestly gauge, phase, and reparametrization invariant for all quan-

tum evolutions. A simple proof of the vanishing nature of the geometric phase along the geodesic is given.
Also, an elementary proof of the nonadditive nature of the geometric phase is given. In the limit of cyclic
evolution of a pure quantum state, this phase reduces to the Aharonov and Anandan phase, precisely. It is
observed that in addition to the geometric phase, other geometric structures exist, such as the "length" and
"distance" during any arbitrary quantum evolution. The relations among all of these geometric quantities are

pointed out. Finally, two simple examples are studied to illustrate the ideas introduced in this paper.

PACS number(s): 03.65.8z

I. INTRODUCTION

The search for admissible geometric structures during a
cyclic evolution of a quantum system arose after Berry's [1]
discovery of a nontrivial phase factor in adiabatic, cyclic,
and parametric variations of a quantal system. Here, by geo-
metric structures (in brief), we mean those that do not de-
pend either on the details of the time dependence of the
parameters by whose use the evolution curve is parametrized
or on the phases of the wave function, and are independent
of the detailed dynamics fixed by the particular Hamiltonian
(but reAect the properties of the infinite number of possible
Hamiltonians). Berry's phase is one of such nature. A nice
interpretation was given by Simon [2] in terms of a natural
Hermitian connection, as the parallel transport holonomy in a
Hermitian line bundle. Aharonov and Anandan (AA) [3]
showed the existence of a geometric phase irrespective of the
adiabatic, cyclic variations of the parameters of the Hamil-
tonian. The AA phase was understood as the holonomy trans-

formation for parallel transporting around a closed curve C
in M, with respect to the natural connection given by the
inner product in M [4].Anandan has interpreted this phase
as the "area" of any surface spanned by C with respect to
the natural symplectic structure in,W determined by the inner
product in M The pres.ent author [5] has given an interpre-
tation of the AA phase as an integral of the contracted length
of the curve traced by the single-valued vector during a cy-
clic evolution of the quantum system. Giving up the cyclicity
condition, Samuel and Bhandari (SB) [6] were able to extract
the geometric phase even for nonunitary evolutions of the
Schrodinger type governed by a non-Hermitian Hamiltonian.
However, the geometric phase of SB is an indirect definition
since it rests on implicitly closing the initial and the final
points of the open path by a geodesic. If the end points of the
open path are not closed, the SB phase is not manifestly
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gauge invariant. Recently, Sudarshan, Anandan, and Govin-
darajan [7] obtained a geometric phase for an arbitrary in-

finitesimal triangle in the projective Hilbert space M~ using
group-theoretic techniques. Aitchison and Wanelik [8] have
redefined the SB phase in a nondynamical way. Recently, the
noncyclic, nonunitary and non-Schrodinger geometric phase
was derived by the present author by introducing the elemen-
tary ideas of paths and their lengths in the projective Hilbert
space only [9].Mukunda and Simon [10]have given a kine-
matic approach to the theory of geometric phases in general.
For details on the subject of the geometric phase and its
various applications, one is advised to see Ref. [11].(How-
ever, the recent developments in the area of geometric phases
are not discussed there. )

The present paper aims at studying some geometric as-
pects (such as the geometric phase, "distance, " and
"length" ) of the noncyclic evolutions of quantum systems.
This paper is organized as follows. In Sec. II, we briefly spell
out the meaning of the noncyclic evolution and review the
existing definition of the geometric phase for Schrodinger
evolutions. In Sec. III, we set up the geometrical skeleton to
define the geometric phase for the noncyclic evolution of the
Schrodinger type. We define a "reference section" of the
bundle covering the curve in the projective Hilbert space;/
and obtain a connection one-form whose line integral gives
the desired geometric phase. Various properties of the geo-
metric phase are pointed out. It is shown that the geometric
phase is not only phase invariant, but also gauge invariant.
Its nonadditive nature is explicitly proven. Also, it is proven
that the geometric phase vanishes along a geodesic. In Sec.
IV, we introduce other geometric structures such as the
length and distance for all quantum evolutions. We provide a
topological reason for the appearance of the geometric phase
based on an inequality between the length and the distance.
In Sec. V, we calculate the geometric phase for a two-level
atom and harmonic oscillator state, which is initially pre-
pared in a coherent state. In the last section, we generalize
the geometric phase for the nonunitary and non-Schrodinger
evolutions, and the conclusion follows.

1050-2947/95/52(4)/2576(9)/$06. 00 52 2576 1995 The American Physical Society



52 GEOMETRIC ASPECTS OF NONCYCLIC QUANTUM EVOLUTIONS 2577

II. NONCYCLIC GEOMETRIC PHASE
DURING A SCHRODINGER EVOLUTION

Let (V) be a set of vectors in ~~=C"+' and ('q('/llWll)
be a set of vectors of norm one in M. The state of a quantum
system is determined by a ray of the Hilbert space ~. The
set of rays of~ is called the projective Hilbert space M~. The
projection map II:M~~,W is a principal fiber bundle
.M(H~, U(1),II), with structure group U(1). This can be
seen by considering the action of the multiplicative group
C* of nonzero complex numbers on the space C"+' —(0)
given by the equivalence relation (zi, z2, . . . ,z„+i) &:
=(zik, z2X, . . . ,z„+ik), Vk c C*. This is a free action and
the orbit space in the space ~ of complex lines in the
Hilbert space ~=C"+'. Thus, we get the principal bundle
C*—+C"+' —(0)~C~i '=M~, in which the projection map as-
sociates with each (n+ 1)-tuple (zi, z2, . . . , z„+i) the point
in K~7-" with the homogeneouS coordinates
(zi, z2, . . . , z„+i). Thus, a quantum state at a given instant
of time is represented by a point in M and the evolution of
the system is given by a curve I in ~, which projects to a
curve I = II(I ) in A~~ .

First, we consider the unitary Schrodinger evolution of a
quantum system and exhibit how to separate out the geomet-
ric phase for an open path in M~, without explicitly closing
the initial and the final points by a geodesic. In the subse-
quent section, we will sketch how to generalize our expres-
sion for nonunitary and non-Schrodinger evolutions of a
quantal system. Let l'I'(t)) ~M be the state vector of a
quantum system and it evolves according to the Schrodinger
equation

C,.„,=4,=[C],'=arg(% (0)lq (t)).

Equivalently, we can express the total phase as

(3)

tlm(%, lq )~
[C)]0= arctan (3a)

where ('I('(0)l'(p'(t)) =Re(% Dl+') +i Im('Pal'P). The total
phase is insensitive to any changes in the modulus of the
inner product ('I (0) l

qt(t) ), namely, l(%'(0)
l

'P (t) ) l
=R

(say). Thus, we can say that the total phase is R invariant.
For any arbitrary quantum evolution, the geometric phase

is the difference between the total phase and the dynamical
phase (where the dynamical phase is given by the time inte-
gral of the expectation value of the Hamiltonian). Mukunda
and Simon have expressed the geometric phase as [10]

[(I),]', =[(I)]',+(I/fi) ( P(t)lH(t)l P(t))dt.
3o

(4)

Here all we require is that the initial state and the final
state should not be orthogonal. If ('P(0)l+(t)) is real and
positive, then the quantum system does not acquire any
phase during an evolution from time t=O to t (say). This is
the well known Pancharatnam connection. It should be
stressed that the phase difference given by (2) is true, in
general, irrespective of closing the initial and the final points;
it is the total phase [9,12] acquired by a quantum system
during an arbitrary quantum evolution between [O,t].
(Here after we will not mention that the evolution is from
time t = 0 to t. ) Thus, the total phase is given by

ih, —
l
P(t))=H(t)l% (t)),

(9 (0)lq (t))
l(~(0) lq ( )) I

(2)

where H(t) is the Hamiltonian of the system. Contrary to the
case of a cyclic evolution, in the case of noncyclic evolution
we can not, in general, factor out the total phase from the
initial-state vector, i.e., l'P(t))Aexp(i(I))l%'(0)), during an
evolution from t=a to t. The projection of the open curve
I:t~l'P(t)) is II(I ) =I and it lies in.%. The curve I, in
general, is an open path and a nonzero distance is maintained
between the points II (l 'P (0))) and II (l 'Ij'(t) )). In
terms of the minimum-normed distance function [5], the cy-
clic evolutions are those for which D ('P(0), 'P(t))
= [2—2 l((I)'(0) l%'(t) ) l] = 0 and (strictly) noncyclic evolu-
tions are those for which D('P(0), 'P(t)))0. In the case of
noncyclic evolution, the open path I is lifted to M~, then the
initial and the final points correspond to two different rays.
(Whereas for cyclic evolution, the initial and final points
belong to the same ray. ) To compare the phases of the state
vectors belonging to two different rays, we use the Pan-
charatnam [12] connection. While dealing with the interfer-
ence of light, Pancharatnam came up with a brilliant idea that
is simple and physically motivated. If the system evolves
from an initial state l'PD) = l'P(0)) to a final state
l'I') = l'I)'(t)), the relative phase difference between them is
given by

But then, the calculation of the geometric phase from the
above expression (4) requires the knowledge of the Hamil-
tonian of the quantum system. We intend to given an expres-
sion that will be independent of the detail dynamics of the
system and bring out its full geometric nature by showing its
dependence uniquely only on the image of the curve I in the
projective Hilbert space M. To provide such an expression,
we consider the following geometrical setups.

III. REFERENCE SECTION
AND THE NONCYCLIC GEOMETRIC PHASE

and

8'

+)l»P': = —„+(~)).&)i»~ I(+(~) I
~(~)«~) = 0

(6)

I et II:M~M be a principal bundle with structure group
U(1) and T(q, &M be the tangent space to M at point l'Ij'), and
TM= U~@,) T~ +)M is the tangent bundle. Let I:t~

l
q(t)t) be

a smooth curve mapping the closed interval [O,t]CR into
M and (d/dt) l%"(t)) is the tangent vector to the curve I at
point l%'(t)). Now any tangent vector (d/dt)l%'(t)) can be
decomposed [13—15] uniquely into a sum of vertical and
horizontal components lying in V~@,)M and H~+)W~, where

D D
V)~q, )M: = —0'(r) e T)»M (I~ —V(t)) =0 (5)
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(4'(t) id%"(t)/dt) = 0.

Then l'Il'(t)) is said to undergo parallel transport with respect
to this connection [3,4, 14]. It can be seen that if l'It(t))
undergoes the time evolution according to (1), with a Hamil-
tonian H(t), along a curve I then

l+(t))=exp (i/&) (+(t')lH(t')l+(t'))«' l+(t))Jo

obeys (7). In terms of the horizontal vector l%"(t)), the geo-
metric phase factor would be given by

I(+(0)I+(t)) I

(9)

Note that in the case of a cyclic evolution, (9) reduces to
exp(i[@g]o)=exp[ip(C)]=(%"(0)l'II'(T)), where p(C) is the
AA phase, which is nothing but the holonomy transformation
for parallel transporting the vector around a closed loop.
(This is because l'It(T)) = exp[iP(C)]l'If(0)) for cyclic evo-
lutions of quantum systems. ) Therefore, Eq. (9) can be re-
garded as the generalized holonomy transformation law for
parallel transporting the vector along an open path in M~.

If we lift an open path in W to W~, there may be many
open curves in M. But there exists one special curve, which
is traced out by a "reference state. " This reference state is
defined with respect to the initial state vector l'P(0)) and
with the help of this we will soon define the geometric phase
for noncyclic evolutions of quantum systems. Furthermore,
in Sec. IV, we will see that the geometric phase arises be-
cause of a fundamental inequality between the length of the
horizontal curve and the length of the above-mentioned spe-
cial, but nonhorizontal curve.

To define this curve, we consider a "reference section"
lyo(t)) of the bundle covering p(t) =II(l%'(t))). This is a
map s:.%~M such that the image of each point p(t) e &lies
in the fiber II(p) over p, i.e., Ilos = id„. We define the new

Thus, a curve is called vertical if the projection of the point
l%'(t) ) in M~ is constant, and the tangent to a vertical curve is
called a vertical vector. A horizontal vector is one that is
perpendicular to the fiber at that point. The set of horizontal
vectors at a given point in M is called the horizontal space at
that point. To obtain the geometric phase, it is necessary to
define a connection. A connection [13] in a principal bundle
U(1)—+M~W is a smooth assignment to each point l'Il')
e M of a subspace H~q, &M of T~q,&W such that (i) T~q,

&

K
=&~q&MH~q&-K for all 1%') eM, and (ii) 8, (H~q, &~
=H, ~q,&~ for all c ~ U(1), l'It) c K with c*c=1, where
8', (l%')) =c l'P) denotes the induced action of the phase c on
~c

With the help of the above-mentioned connection, we can
now describe the parallel transport of a vector in a principal
bundle. Consider the horizontal lift of the open curve
I in W as a curve I:[0,t]~W, which is horizontal
(i.e. , vert[1 ]=0), and such that II(I ) = I (t) for all time and

is, in general, open in M. Let I:t~ l'Ij'(t)) be the horizontal
lift of the curve I, such that

"reference section" (with respect to the initial point) as a
mapping of the state curve 1 through the section s and is
given by

(+(t)I+(0))
Ixo( ))= l(~(,)l~(0))ll ( )) (10)

i(g, (t)
l
go(t))dt= i(*(t,O) (t,O)dt+ (I/—A)

x(+(t)lH(t)l+(t))dt. (11)

On integrating both sides and realizing that the first term on
the right-hand side is the total phase, i.e.,

1't

i/*(t', 0), (t', 0)dt' = [4]',= arg(%(0) l
Ij (t))

&0

Here the subscript 0 in ly(t)) means that it is always
defined with respect to the initial state l'P(0)). [If we denote
the initial state as l%"(t i)), then there will be a subscript t, in

y(t)), i.e., the "reference section" will be denoted as

g, (t)).] The "reference section" lgo(t)) defined above is a
"local section" in the fiber bundle M (i.e., s: U CW~.2Z,
where U is an open neighborhood of M~ and has the follow-
ing properties.

(i) sII(l%'(0))) = l'P(0) ) =
l go(0)). This means that the

mapping s sends II(l%'(0))) ~ &to l%"(0)). The initial vec-
tor l%'(0)) and the initial reference section lyo(0)) begin at
the same point in the same ray.

(ii) II(lgo(t))) = II(l'Ij'(t))) for all time during the evolu-
tion. This means that the curves I „(t) and I (t) project to the
same open curve.

(iii) (yo(0) lgo(t)) is real and positive for all time during
the evolution of the quantum system. This means that at any
later time t, the evolving "reference section" lyo(t)) re-
mains always in phase with the initial "reference section"
lgo(0)), in accordance with the Pancharatnam condition.

Among all the properties mentioned above, only (ii) will
be satisfied by all local "sections. " From the mathematical
definition of the local section, there is no requirement for a
local section to satisfy either condition (i) or (iii). However,
what we have defined is not just a local section, but rather a
local reference section. Thus, our careful insight into the
problem has led us to define the above reference section with
extra conditions (i) and (iii). Here, we emphasize that those
reference sections, that satisfy all three conditions can only
be used to define the geometric phase for noncyclic evolu-
tions; subsequently, we will see that the condition (iii) en-
sures the gauge invariance of the geometric phase.

This "reference section" of the bundle covering the curve
I in W will be used to define the geometric phase for any
arbitrary quantum evolution. In this sense, Eq. (10) is an
important step in this paper. Now it is easy to see that the
following equation is obtained on differentiating (10) and
upon sandwiching with lgo(t)):
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(in fact, this is another important step in our derivation), we
have the desired expression for the geometric phase during
an arbitrary quantum evolution as

on the fibers [14,15]. Under this gauge transformation, the
connection one-form co (X) transforms as

tp ()i.)~co„'(k)= ~p (X)—B„ri()i).

(13)

[Hereafter we do not put explicitly the limits of the integra-
tions. Unless otherwise stated, it is understood that the inte-
grations are from an initial point II(I%'p)) to a final point
«I+)).]

The geometric phase defined above has the following
properties. It is independent of the choice of the phase of the
state I'Ir(t)) of the quantum system. Because under a phase
transformation I'If(t)) —+e' t'il%'(t)), however, the reference
section Ixo(t)) undergoes a global phase transformation by
some fixed amount, i.e., lxo(t))~e' t ilxp(t)) and hence
the geometric phase remains the same. It is also reparametri-
zation invariant, i.e., by changing the parameter from t to
t' with dtldt'&0, the geometric phase remains unaltered
and hence it is a property of only the unparametrized path

1 in H~. In addition to this, the real geometric phase is inde-
pendent of the particular Hamiltonian used to evolve the
quantum system along a given curve I in M; rather, it de-

pends uniquely only on the curve I in M. In Sec. IV, we will
discuss some other geometric structures during a noncyclic
evolution, which will respect the above-mentioned properties
also. Therefore, we can say that these properties constitute
the set of properties that characterize the geometric nature of
some structures associated with any arbitrary quantum evo-
lution.

We can also express (13) as an integral over a connection
one-form as

[4g]p=i (xp()~. )IB lxp()i. )d)% ~= p~ ()~.)dx~

cp(k),Jr

where 8 =8/BX~ and P 's are coordinates in the projective
Hilbert space W. 1" is a curve in the projective Hilbert space
connecting the initial point II(l'qj'o)) and the final point
II(l'Ir)). Here, to~()t) = i(xp(k) I B~xp()i.)) is the connection
form whose line integral gives the geometric phase. It is to
be noted that this line integral cannot be converted to a sur-

face integral using a Stoke's theorem (since, in general, we
do not have a closed path in the projective Hilbert space).
However, if we join the end points of the evolution curve by
the shortest geodesic, then we can convert the line integral to
a surface integral.

Next, we show that the geometric phase for noncyclic
evolution is manifestly gauge invariant. In fiber bundle lan-

guage [13], a gauge transformation is a mapping from one

local section (s:U CW—+~~ to another (s': U CM~~~,
which results from the intersection of two different coordi-
nate neighborhoods in the projective space M~~ . Another
choice of the local section means we change

I xp(t) )
~lxp(t) '), where Ixo(t) ') = e'~t'ilxp(t)) and the change in
the section is given by the structure group U(1), which acts

The local section Ixp(t)) maps an open path I in M~ into
an open path I 0 in M in such a way that the initial and final
points of the path I p are in phase. [Recall the Pancharatnam
condition, i.e., (xp(0) Ixp(t) is real and positive. ] The above-
mentioned gauge transformation gives a different open path
I o t~'. lxo(t)') in K In order for Ixo(t)') to be a local
reference section, we require the Pancharatnam condition
[namely, (xo(0)lxp(t) ') is real and positive] to be satisfied

on the path I o . This gives the relation on the gauge function

rt(t) as rt(t) = rt(0)+27m, since the phase angle is only
invariant mod 2m. [For cyclic evolution, we would require
rt(T) = i7(0) + 2 em, where n is an integer. ] Under this gauge
transformation, the geometric phase transforms as

.(xo(t) I xo(t))dr t' (x'(t)
I xo(t) '))«

Jr 3r

(xo(t) lxo(t))« —
I: v(t) —v(0)]Jr (16)

Using the condition on the gauge function, we have

i (xp(t)lxp(t)')dt=i (xp(t)lxp(t))dt, mod 27r.
Jr Jr

(16a)

This shows that it is manifestly gauge invariant. Here, we
need a little elaboration on the gauge-transformation proper-
ties of the geometric phase. The proof of invariance of the
geometric phase under gauge transformations is based on
choosing special local reference sections, which satisfy the
"in-phase" condition, namely, the inner product

(xp(0)lxp(t)) is real and positive. one may argue that
there may be many local reference sections that do not
satisfy the above-mentioned condition. Hence, the gauge-
transformation properties we present in this paper are for a
restricted set of gauge transformations in the sense that the
transformed reference section should also satisfy the reality
and positivity condition. In my view, this is not a restriction
but rather a criterion for chosing a reference section so as to
be able to define the geometric phase for an open path during
an arbitrary quantum evolution. If this condition is not satis-
fied by a reference section, then we cannot define a connec-
tion form whose line integral will give the correct geometric
phase. Those reference sections that do not satisfy the con-
dition (iii) will not be compatible with the Pancharatnam
connection and the geometric phase defined using them will
not be the gauge-invariant one.

The importance of our definition is that the geometric
phase (13) has its own existence and physical meaning even
if we do not close the end points explicitly by a geodesic. In
fact, in our formulation we do not have to close the end
points by a geodesic because along the geodesic the geomet-
ric phase defined in (13) is identically zero. To prove this in

the simplest way, we use the geodesic equation and its solu-
tion. Geodesics in, A~ can be defined as those curves for
which the "energy" of the horizontal curve is stationary. The
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energy of a curve is an important concept in studying the
geometry of quantum evolutions, which we have introduce in
a recent paper [17]. (For further details on this concept we
advise the readers to see Ref. [17].) We define the energy
associated with the horizontal curve as the number

lx2(t)) =e P~ ' 'll P(t)), (21)

where iI~p(t, ti) = arg('P(t, )l'P(t)) and C p(t, t2)
= arg(sP(t2)

I
W(t)). Now, the geometric phase [4g] i can be

expressed as

[E(P)]'o=ft (4'(t') W(t'))dt'. (17) [4 g], = [0 g], + i (xi(t) lxi(t))dt.
31

(22)

If we carry out a variational calculation, we obtain the geo-
desic equation [10,17] that is satisfied by the horizontal vec-
tor IW(t))

d2

d , l4'(t)) + [VP(t)]'IP(t)) = 0, (18)

where V„(t) is the speed of transportation of the state vector
in K and is given by V„(t)= AE(t)IA, Here, A. E(t) is the
uncertainty in the energy of the system. For simplicity, we
assume that b, E(t) is independent of time. Then, the solution
to the geodesic equation (18) is

sin(V„t)
lsP(t)) =cos(V„t) I4'(0))+ " I4'(0)).

P

Suppose we have an evolution of the quantum system from
time t=O to t (say) along the geodesic. Then along this
special path the reference section

I xo(t)) is given by

(P(t) I
P(t) )

I(+(t) I+(0))I

(20)

Since ('P(t)l'P(0)) is real [from (19)], we have Ixo(t))
= I'P(t)). Therefore, the geometric phase along the geodesic
vanishes identically. (Here, we use the fact that
('P(t) IW(t)}=0.) This is the simplest and most direct proof
of the vanishing nature of the geometric phase along a geo-
desic.

The expression (13) is an integral of a nonlocal integrand
and provides a closed-from expression for the geometric
phase during an arbitrary quantum evolution. The dynamical
phase is a locally additive functional of I whereas the geo-
metric phase is a nonlocal and nonadditive functional of I .
To see the nonadditive nature of the geometric phase (13)
clearly, let us consider the evolution of a quantum system
from point II(l'P(t, ))) to a point II(l'P(t2) }),and then from
II(I'P(t2))) to II(I'P(t3))). We will prove that the geometric
phase acquired by the system during an evolution from a
point II(l'P(ti))) to a point II(l'P(t3))) is not equal to the
sum of the geometric phases acquired by the system during
the evolution from point II(I'P(ti))) to II(I'P(t2))), and
II(l'P(t2))) to II(I'P(t3))). The geometric phase acquired
by the system during the evolution from time t& to t2 is given
by [@g]i=if,Xi(t)IXi(t))dt, from t2 to t3 is given by
[~'g]2=if', (X2(t)IX2(t))dt, and from time ti to t3 is given
by [+g]', = i f', (xi(t) Ixi(t))dt. The reference sections
Ixi(t)) and Ix2(t)) are defined through

On using (21), (22) can be expressed as

f3
[~',]i= [@,]i + [+,]'— [d~'„(t, t ) —dC'„(t, t )]

32

[+g]excess= g~

= —arg[(P(ti) I+(t2))(+(t2) I+(t3))

x(% (t, ) I
P (23)

In the above expression, the left-hand side contains only
the excess geometric phase, whereas the right-hand side con-
tains only the excess total phase, implying that the excess
dynamical phase is identically zero. This clearly shows the
additive nature of the dynamical phase and brings the full
nonadditive nature of the geometric phase.

We can see that the geometric phase (13) will reduce to
the adiabatic Berry phase and the nonadiabatic AA phase in
the appropriate limit. For example, in the case of cyclic evo-
lution of quantum systems during an interval [O,T], the state
vector I'P(t)) satisfies

I
W(T)) = exp(i@)l'P(0)), 4' ~ IR being

the total phase. The reference section Ixo(t)) during cyclic
evolution satisfies Ixo(T)) = Ixo(0)), i.e., it is single valued.

(Compare this with the state lsP(t)), which was used to de-
fine the AA phase. ) Therefore, the geometric phase during a
cyclic evaluation of a quantum system is given by

[~' ]o=i (xo(t)lxo(t))dt=t' '& (xoldxo).
&0

(24)

We will show that this phase will be same as that of the
AA phase, p(C). Recall that the section I%"(t)) defined by
AA [3] is given by I'P(t)) = exp[ —if(t)]l'P(t)), where f(t) is
any smooth function satisfying f(T) —f(0) =4', and ~Ii is
the total phase. The AA section I'qt(t)) is single valued, i.e.,

I'P(T)) = I'P(0)). Taking out the dynamical phase from 4,
the geometric phase for cyclic evolution is given by

Therefore, the excess geometric phase is

I +,].....,.=[4,]', -([+,]', +[+,1,')

@P(t3 tl) [@P(t3 t2) @(t2 ti)]
= arg(P(ti) I+(t3))—[arg(P(t2)

I
P(t3))

+ arg(P(t3)IP(tl))]

This also can be related to the three-point Bargmann invari-
ant [10] as follows:

and

lxi(t))=e ' ""'IP(t)) T
P(C)=i (P(t)l'P(t))dt=i && ('P(t)ld'P(t)). (25)

0 dc



52 GEOMETRIC ASPECTS OF NONCYCLIC QUANTUM EVOLUTIONS 258i

ttIo) (+(t)I+(0))
I(+( ) I+(0))I

(26)

Using our definition (24), the cyclic geometric phase is given
by

Now our reference section
I go(t)) and the AA section

I%"(t)) are related by

l(4'(t))Io= (4'(t) I%'(t) '"dt, (29)

where Iyo(t)) is the velocity vector in W of the curve
t~ Igp(t)) at time t along the path of evolution of

I go(t))
(relative to the initial point).

Next, let t~I'qt(t)) be a curve I'(t) during an arbitrary
evolution of a quantum system. Then the total length of the
differentiable curve I from a point I'P(0)) to a point

I%'(t)) is a number defined as

[@' ]o =' (xo(t) Ixo(t))dt
Jo

t r l (4 (t) I ~(0)) ~

& o t, I(+(t)14(o))I J
d'

~ (+(t) I+'(0)
x + t ( It(t)

I
It(t))dt

t, I(+(t) I+(0))Ii

['T
= arg (9 (0) I

P(T))+ i (4'(t) IW(t))dt. (27)
30

Therefore, [4& ),= ifo('P(t) I'P(t))dt= P(C), which is

nothing but the AA phase. In providing this we have used the

single valuedness of the AA section I'Ij'(t)). The geometric
phase [4~]o is obviously invariant under phase and gauge
transformations. For the detail transformation properties of
the AA phase, readers are advised to see the papers of Bohm,
Boya, and Kendrick [14,15] and of Kendrick [16].

IV. OTHER GEOMETRIC STRUCTURES
IN NONCYCLIC EVOLUTIONS

In this section we look for other admissible geometric
structures such as the length and distance during any arbi-
trary evolution of quantum systems. Also, we sought for a
topogolical reason for the origin of the geometric phase. The
basic geometric structures in dictating the topology of a
manifold are the "length element" and the "distance ele-
ment. " We will bring out an inequality between the length
and distance and argue that the geometric phase arises be-
cause of a fundamental inequality between them. Consider
the curves I p .'[O, t]~M and I:[O,t]~ A traced out by the

reference section Iyp(t)) and the horizontal curve II (t)),
respectively. It is well known that the inner product in ~
induces a metric in &~ [5] and the presence of a metric allows
the definition of the length of a differentiable curve in M~.

Let t~I go(t)) be a curve I p(t) during an arbitrary evo-
lution of a quantum system. Then the total length of the
differentiable curve I p from a point Iyo(0)) to a point

Iyp(t)) is a number defined as

l(4'(t))Io = [( P(t) I P(t)) —(i( P(t)I% (t)))']'"dt

3,E(t)d tie. (30)

Moreover, they are distinct geometric objects. It can be seen
from the fact that the length of the curve l(gp(t)) is greater
than the length of the curve l('P(t)). To see this explicitly,
we evaluate the square of the infinitesimal length of the
curve l (yo (t) ) as follows:

dl (xo(t)) =(io(t) Ixo(t))dt'

where I'Ij'(t)) is the velocity vector in .Y~' of the curve
t~ I'P(t)) at time t along the path of evolution of I'P(t)).

We can verify that the above two lengths defined through
(28) and (29) are also geometric structures associated with
any quantum evolution. The integrals (28) and (29) exist in
the interval [O,t], since the integrand is continuous and the
numbers calculated on using them are real. The above two
lengths have an important property of reparametrization in-

variance, i.e., all curves deduced from I o/j. by a change of
parameter t to t' with dtldt')0, the length of the curves
remain unaltered. Hence, the length of the curves are inde-
pendent of the parametrization of their image set, are prop-
erties of the geometrical curves, and are t invariant. Also,
they are invariant under the phase transformation, i.e., when

I%'(t))~e' t'~I'P(t)), l(go(t)), and l('Ij'(t)) remain the
same. In addition to this, the lengths are independent of the
particular Hamiltonian used to evolve the quantum system

along a given path V in M.
Apart from sharing the geometric properties, the two

lengths are basically different. The length l(gp(t)) is nonad-
ditive in nature, because if we have an evolution (say) from
time t& to t2 and then from t2 to t3, the length of the curve
between t& to t3 is not equal to the sum of the lengths be-
tween t& to t2 and t2 to t3. This length has an analogous
property to that of the geometric phase, namely, it is nonin-

tegrable in nature. The other length l(%'(t)) is, in fact, equal

to the total distance traveled by the state vector I'I~(t)) along

a given curve I in the projective Hilbert space M~ as mea-
sured by the Fubini-Study metric [18—20,5]. The projective
Hilbert space, N admits a natural metric structure (namely,
the Fubini-Study metric) and the total distance is equal to the
time integral of the uncertainty in the energy of the system
during an arbitrary evolution, i.e.,

(28) (t,O)
'

(t,O) + 2 (t,O) $(t,O)
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x(+(t)I It(t))+(tI (t)I'It(t)) . (31)
M~=M, (C) is the real two-dimensional sphere S . The state
vector at any time t is given by

On using the following expressions,
I

"p ( t) ) = sin( 0/2) exp( i p) exp( —i est t) I
+ )

+ cos( 8/2) exp(i tot)
I

—), (35)

d(* d(
d, (t 0) d, (t o) = [t (xo(t) Ixo(t)) —i(p(t) I

p(t) )]',

d, (t,0)((t,0) =(p(t)I p(t)) —(xo(t)lxo(t)).

where 0 and hatt are related to the physical parameters of the
two-level system. The basis vectors I+) and

I

—
) are or-

thogonal vectors that span the Hilbert space lL . During a
noncyclic evolution, the state vector traces an arc over a cone
with polar angle 9 and azimuthal angle y= 2cot. %e assume
that 0 is constant during this spin evolution and y only
changes with time. The reference section Ixo(t)) is given by

we have

dl (xo(t)) —dl (I(tt))= '[i(xo(t)Ixo(t))dt] (32)

t))=e i tan ftanmt cos~&[sin(g/2)e'@e '"'I+)

+ cos( 0/2) e' 'I —)]. (36)

Since i(xo(t)Ixo(t)) is real, we have

It is easy to see that this reference section satisfies all the
properties mentioned in Sec. III. Using this we can calculate
the noncyclic geometric phase [tIis]o for a two-level atom as

d i'(xo(t) )~di'(0(t) ). (33) [tlag]=tan '(tancot cos8) —cot cos0. (37)

This is what we have mentioned above. Equation (33)
says that (infinitesimally) the length of the nonhorizontal
curve I 0 is greater than the length of the horizontal curve
I —a fundamental feature of the quantum evolution and be-
cause of this fundamental inequality between the length and
the distance the geometric phase arises. Equation (32) con-
tains much more information about the geometric phase than
that of the expression (13). For the special case of a cyclic
quantum evolution, an expression similar to that of (29) was
derived and explored in greater detail by the present author
[5].For quantum evolutions during an infinitesimal time in-
terval /t t, Eq. (32) can be put in a form

This is an evolving geometric phase and it varies nonlin-
early with time in contrast to the dynamical phase, which
varies linearly with time. The correct measurement of such
noncyclic geometric phases for spin--,' particles (neutrons)
has been proposed by Wagh and Rakhecha [21].We can also
see that for a cyclic quantum evolution, the above geometric
phase reduces to [tI&g]o =P(C) = m(1 —cos9), which is noth-

ing but the AA phase for a fictitious spin--, particle and gives
the usual half the solid angle law for the geometric phase.

%e illustrate the preceding ideas in another simple ex-
ample, namely, a one-dimensional harmonic oscillator (HO).
Here, the state vector of the HO belongs to an infinite-
dimensional Hilbert space. The Hamiltonian of the HO in
one dimension is

Bl (xo) —Bl ("lj') = BCt (34)
H=P l2m+ 2kX (38)

where Bl = (dl/dt)/t. t, etc. Equation (34) has a beautiful geo-
metric meaning. Locally it says that when we move from one
fiber to another, which are infinitesimal nearby, then the in-
finitesimal changes in reference sectional curve, horizontal
curve, and the geometric phase can be represented by the
sides of a right triangle. So (34) states the Pythagorean theo-
rem for the length, distance, and phase in an infinitesimal
neighborhood of a fiber bundle. Similar reasoning was also
pointed out in the case of a cyclic quantum evolution [23].

and the state vector at any time t~ 0, is given by

Isp(t))= g e ' 'f"+" lC„In),

where the expansion coefficients C„'s depend on the choice
of the initial state IsIt(0)). We consider the initial state
I'It'(0)) to be in a coherent state, then I'Il'(t)) is given by

V. TWO EXAMPLES

In this section we illustrate the ideas introduced in this
paper in some simple examples. Consider the following
simple, yet nontrivial example that is of a two-level atom
(which is isomorphic to a spin--, particle interacting with
magnetic field). Here, the Hilbert space .gg= C and

n=~

IsIr(t)) —e
—ltl t2 g e t~t&n+ i/2&I„)—

n=o Ot
(40)

where g is a complex number. The reference section

I xo(t) ), which is normalized, is in phase with the initial state
and projects to the same open curve I" in M~~, is given by
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lx (t)) =exp lzl /2+~' tan
o [(zz)"/n! ]sin(n+ —,') cot

o [(zz)"/n!]cos(n+ 2)o)t—

co n
—i autumn+ I/2)

I )
z

n=O
(41)

Once Ixo(t)) is known, we can calculate the evolving geo-
metric phase as

(44) and (45) reduces to (2) and the second term in (4),
respectively. Now we would obviously write the expression
for the geometric phase as

[4g]() = tan

+ ~t(zz+ —,').

(zz)"
n=o t

Sin 0+ 2 COt
nt

(«)'
cos(n+ ,') cot-

nt

(42)

W(0} 9'(t)
II+(0) II II +(t) II

P(t) d P(t)
I
I+(~) I I

«
I I

+(~) II )
(46)

For cyclic evolutions, we have the well known result for the
geometric phase, which is given by

[4,],= P(C) = 2~zz. (43)

This is nothing but the area in-phase space enclosed by the
phase space trajectory.

But this is not the end. We would like to present a com-
pact formula for the geometric phase as that of Eq. (13). In
order to do this, we follow the prescription given in the ear-
lier pages of our paper by defining a reference section of the
bundle covering II(l'P(t))) and the final expression for the
geometric phase is given by

VI. GENERALIZATION AND CONCLUSION

xo(t) d xo(t)
I I xo(t) II « II xo(t) I I

(47)

P(0) W(t)
'P 0 9't

cos( ///2)
(44)

where 0/2 is the Bargmann angle between the initial and
final points in FA on to which I'P(0)) and I'Ij'(t)) project via
the projection map H:,W~W. The dynamical phase could
be defined from the elementary idea of the smoothness of the
curve I and is given by

rt (t) d W(t)

I
I+(&)

I I

« Il +(&) II )
(45)

We can easily be convinced that for the case of the unitary
and norm-one Schrodinger evolution of a quantum system

The purpose of the last section is to discuss briefly how to
generalize the formula (13) to the case of nonunitary and
non-Schrodinger (in fact any type of quantum evolution,
meaning, without presupposing anything concerning the
form of the equation of motion [8]) quantum evolutions.

Consider a smooth curve t~I'P(t)), i.e., I:[O,t]~M
along which II'P(t)ll varies with time (here, t could be any
other continuous parameter and need not be necessarily iden-

tified with time) and, consequently, ('P(t)I%'(t)) is no more
purely imaginary. Facilitating the idea of the inner product in~ and using the notion of smoothness of the curve, we can
define the total phase and the dynamical phase, without any
recourse to the evolution equation. Thus, the total phase fac-
tor is given by

To the best of our knowledge, this is the most general
formula for the geometric phase that has been derived for the
first time [22]. We can easily check that (47) reduces to (13)
for unitary and norm-one Schrodinger evolutions. Our geo-
metric phase enjoys the following properties. It is manifestly
gauge invariant not only under U(1) action but also under a
general transformation of the type I%"(t) )~ I

'I)'(t ') )
=Z(t)I%'(t)), where Z(t) is an arbitrary smooth complex
function and Z(t) e (:* with

I
Z(t)

I
4 1. Also under phase

transformation,
I xo(t))/I I xo(t) I I

transforms by a global
phase factor and hence the geometric phase remains invari-
ant. This property of the reference section entails that the
geometric phase is a property of the projection of I'I'(t)) in

rather than of I%'(t)) itself. It is also reparametrization
invariant and is a property of the geometrical curve, defined
by the equivalence classes of parametrized paths. Last but
not least, it is too independent of the detail dynamics of the
evolution of the state vector.

Here, also, we can argue as how the geometric phase
arises in the context of nonunitary non-Schrodinger evolu-
tions based on the inequality between the length of the curve
and the distance. But we skip the proof because similar steps
as that of the earlier one would convince the readers that this
1S SO.

To conclude this paper, we present a closed-form expres-
sion for the geometric phase in the case of noncyclic but
Schrodinger quantum evolution. A canonical one-form is de-
fined whose line integral gives the geometric phase. The geo-
metric phase is shown to be invariant under phase and gauge
transformations. The nonadditive and vanishing nature
(along a geodesic) of the geometric phase is explicitly
shown. For cyclic evolutions, we prove that it reduces to the
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AA phase. Then we generalize it to the case of noncyclic and
non-Schrodinger evolutions (in fact, for all arbitrary quan-
tum evolutions). Other geometric structures such as the
length and distance are defined for all evolutions of the quan-
tum systems. The geometric phase, length, and distance are
found to be related. Infinitesimally they satisfy a Pythagor-

ean theorem. This nonlocal phase arises because of a funda-
mental inequality between the length and the distance func-
tion. The geometric phase is calculated in two simple
examples and the issue is clarified. Thus, this paper provides
a complete treatment of the noncyclic geometric phase, dis-
tance, and length for all evolutions of quantum systems.
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