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Stability of systems of three arbitrary charges: General properties
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The stability of systems consisting of a negative charge —ql and two positive charges q~ and q3 is dis-
cussed as a function of the values of the charges q; and of the constituent masses m;. We give general re-
sults and list some open questions of interest, which hopefully will stimulate further investigations.
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I. INTRODUCTION

Recently, several authors have reviewed the problem of
the stability of systems made of three unit charges, say
Q, =k( —1, +1,+1) [1—4]. This includes some well-
known cases such as the ionized hydrogen molecule Hz+
(e pp), the hydrogen ion H (pe e ), or the positroni-
um ion (e+e e ), which are stable, and the positron-
hydrogen system (e pe+ ) which is unbound. The ques-
tion is for which constituent masses m,. the system
remains stable against dissociation into an atom and an
isolated charge.

A natural extension consists of allowing the charges Q;
to vary, i.e., considering a system with

Q;=+( —q„q2, q3), q; &0,

and studying the stability domain as a function of the
variables q;. The practical applications are limited, at
first sight. However, there are systems in nature like the
proton, a particle, and electron for which one can ask the
question of stability (in this particular case the answer is
negative according to Chen and Spruch [5]). We hope,
however, to understand more deeply the mechanisms by
which coHective binding sometimes becomes more favor-
able than splitting into small clusters.

In the course of our investigations, we have soon
checked our expectation that this problem is extremely
complicated. The system is governed by four parameters,
two mass ratios and two charge ratios, and in most. cases
deciding the stability would require performing an accu-
rate numerical calculation. We would like to stress that
here we restrict ourselves to the problem of strict stabili-
ty, i.e., stability of the ground state. For some systems,
like proton —muon —a-particle, one can speak of "quasi-
stability" of certain excited states according to the termi-
nology of Gershtein and Ponomarev [6], i.e., stability in
the limit where the masses of the nuclei become very
large.

II. RESULTS FOR UNIT CHARGES

In Ref. [1], we studied the properties of the stability
domain for the case of three unit charges, i.e., q; =1 in

A3 A2

FIG. 1. Domain of possible inverse masses o.; submitted to
a; =1.

Our paper will therefore not display many concrete re-
sults. It will instead focus on selected open questions.
Hopefully this will stimulate further developments on the
rigorous properties of the stability domain, and perhaps
some new numerical investigations.

The paper is organized as follows. In Sec. II, we brieAy
summarize the results obtained for unit charges q,. =1.
The simple properties of the stability domain for arbi-
trary charges are explained in Sec. III. In Sec. IV, we
discuss the case where the positive charges are infinitely
massive.

In Sec. V, we consider the case of nearly symmetric
systems, with equal masses mz=m3, and neighboring
charges qz —-q3. The possible shapes of the stability
domain in the plane of inverse masses are presented in
Sec. VI, while in Sec. VII we display the complementary
slices of the domain: the stability as a function of the
charges, for given masses. In the conclusions (Sec. VIII),
we stress some of the most challenging open questions.

In a forthcoming paper [7], we shall study in more de-
tail some critical cases which require specific develop-
ments, for instance, the case of small q3.
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A q, qua=1, etc. , and a1+az+a3=1, or a, +a&=1, etc., at
our convenience.

B. Thresholds

A3 Ap

FIG. 2. Schematic shape of the stability domain in the case
of equal charges q; = 1.

To be stable, a three-body system should lie below its
lowest dissociation threshold, which corresponds to the
more negative of the (1,2} and (1,3) binding energies. The
separation between the two possible thresholds is given
by

(~1++2} (qlq2) (+1++3) (qlq3) (4)

a, =l, (2)

our notation. A comprehensive review with many refer-
ences is given in [4].

We first stressed that the inverse masses a; = 1/m; are
better variables than the masses m; themselves to account
for the regularities of the binding energy when one
changes the constituents without modifying the potential.
Using the scaling properties of the Coulomb interaction,
we can impose, without loss of generality,

or, using (2),

q2(1 —u2)=q3(1 —a3) .

This is a straight line, hereafter referred to as ( T), passing
through A 1, the symmetric of the upper vertex A, with
respect to the lower side of the triangle, as seen in Fig. 3.
Without loss of generality, one can assume qz ~q3 so
that a& ~ a3 at the threshold separation, which is thus
slanted toward the right, as shown in Fig. 3.

so that all possible cases can be represented by the interi-
or of an equilateral triangle, as shown in Fig. 1. The a;
are the barycentric coordinates in this plot.

The stability region is displayed in Fig. 2. It consists of
a rather narrow band around the symmetry axis az=a3
where like charges have the same mass. The shape of the
frontier results from the three basic properties.

(i) Each instability region is star shaped with respect to
the vertex of the triangle which it includes. This means
that a straight line issuing from Az in Fig. 2 will cross at
most once the stability frontier between Az and the verti-
cal axis.

(ii) Each instability region is convex, i.e., if two points
belong to the domain the whole segment connecting the
two points belongs to the domain.

(iii) Every symmetric configuration (m2 =m 3 ) is stable.
The proof of (iii) was given by Hill [8]. The proof of (i)

and (ii} essentially relies on the binding energy being an
increasing and concave function of each a, , as explained
in Ref. [1].

III. GENERAL RESULTS
ON THREE-CHARGE SYSTEMS

C. Star shaye of the instability domains

The star-shape property mentioned for unit charges
remains valid for q, %1. It can be phrased as follows: a
straight line issuing from Az or A3 enters at most once
the stability region until it reaches either the border of
the triangle or the threshold separation (T).

D. Convexity

The property of each instability region being convex
also remains as the charges are no longer unity. The
proofs given in Ref. [1] for the star shape and convexity
properties are easily seen not to depend on q, = 1.

E. Antisaturation

If q3 & q1, every point on the right of the threshold sep-
aration corresponds to a stable configuration. If, further-
more, q3 q& & q1, every configuration is stable.

The proof easily results from the star-shape property.
I.et us, for instance, assume q3 & q, . For a, =a3=0, i.e.,
for infinitely massive particles 1 and 3, we have a point-
like (1,3} atom with a residual negative charge, which at-

Using the definition (1) of the charges, we write the
three-body Hamiltonian as

a).
p;+

2 rg3

qlq2 q193

13
(3)

with r,j —
~ r; rj ~. It has the fol—lowing properties.

A. Scaling

We already mentioned the elementary scaling proper-
ties of the Coulomb interacti. on. A simultaneous change
a;~aa; and q,-~qq, of all inverse Inasses and charges
results in a change E—+q a E and r~q ar of typical
energies and distances. We thus can fix q, = 1, or

A3 I /
I

I

I

I /

I/
I/

A'
1

Ap

FIG. 3. Separation between the [(1,2) —3] and [(1,3)—2]
thresh olds.
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tracts a particle 2 with mass a2 '=1. Thus the point A2
belongs to the stability domain. Hence every point on the
right of (T) is stable. The same holds on the left side if
q2 &qi.

F. Dependence on the charges A3 A2

If qi changes, the threshold separation (T) does not
move. One can rescale all charges so that q&q2 and q&q3,
i.e., the threshold energies, remain constant, whereas

q2q3 changes in the opposite direction. Thus increasing

q, improves stability, and decreasing q, deteriorates it.
Consider now an increase of q2, starting from a situa-

tion at the left of ( T), where (1,2} is the lowest threshold.
The line (T) becomes more slanted, so we stay in the
same sector. A rescaling can make q, q2 constant, i.e.,
the threshold energy constant. In the three-body Hamil-
toni~n, the repulsion q2q3 also remains constant, while
the attraction q, q3 decreases. We thus have less binding,
and the parts of the frontier which lie at the left of (T)
move toward the right-hand side.

Similarly, a decrease of qz improves stability at the
right of ( T), with, however, the warning that ( T) itself
now moves to the left, so if one starts too close to ( T) one
might end in the sector where (1,3) is the lowest thresh-
old.

Another case deals with a change q2 q2+5q2, when
one starts from a point at the right of (T). If qz in-
creases, ( T) becomes more slanted toward the right, but
we assume that 5q2 is small enough so that (1,3) remains
the lowest threshold. The corresponding threshold ener-

gy is constant. If we write the three-body Hamiltonian as

FIG. 4. Change of stability frontier as q2 increases.

So far, we have used only qualitative arguments associ-
ated with the sign of the charges. One can also use the
property of the lowest energy E being a concave function
of each q;q, since these strengths enter the Hamiltonian
linearly. One can also combine scaling with convexity, to
improve convexity constraints [9]: —( E)' —is a con-
cave function of each q,-q .

IV. THE BORN-OPPENHEIMER LIMIT

Let us consider in this section the case where the
masses of the positive charges are infinite, i.e., a, =1 and
(x2 cx 3 0, corresponding to the vertex 3

&
of the trian-

gle. One can fix qi =1 and scan the plane (q2, q3) to see
where the system is stable. It is sufhcient to calculate the
ground-state energy eo(R) of the first particle as a func-
tion of the separation R = r23 between the positive
charges. Then one should look whether or not the
effective potential

~2

2m2
"

23

q& V,s.(R ) =eo(R ) +
R

(9)

necessarily
remains above the threshold energy —q2/2. Solving the
two-center Hamiltonian

q& q3
~2
Pi
2

q2

T3
(10)

for a point inside the stability domain with wave function
%', otherwise 0 cannot become smaller than h&3. This
means that the first-order correction

F23

"
el

has a sign opposite to that of 5q2. If q2 increases, stabili-
ty is improved, and if q2 decreases, it is deteriorated.

A similar study can be done with q3 changing at fixed

q, and q2. An increase (decrease) of q3 deteriorates (im-
proves) binding at the right of ( T), and the reverse is true
at the left of (T).

To summarize, we have a simple monotonic behavior
of the stability frontier in the triangular plot as the q;
vary. Changing q& makes the domain wider or narrower.
A change in q2 or in q3 modifies the slope of the line (T)
separating the thresholds, and the move of the frontier, if
any, takes place in the same direction as (T). An exam-
ple is schematically pictured in Fig. 4.

to compute eo(R} is a standard problem [10] (up to a
scale factor, it depends only on the ratio qz/q3 ).

A detailed study has been performed recently by
Hogreve [11]. Our investigations confirm his results, and
supplement them, as we shall see, by an analysis of the
behavior near q3~0. The stability domain is shown in
Fig. 5. Let us repeat that our definition of "stability" is
kept as the one used in the finite-mass case, namely, that

q2

FIG. 5. Domain of stability in the Born-Oppenheimer limit
where the like-sign charges q2 and q3 have infinite masses.
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the ground-state energy of the three-body system is lower
than that of either of the two possible two-body systems.

The stability domain includes the square
(qz ( l, q3 (1), due to the antisaturation property men-
tioned in Sec. III. It extends mostly along the symmetry
axis q2=q3, with an extreme peak near q =q3-—1.24
( l.236 67, according to Hogreve [11]).

A higher value q2=q3 ——1.44 is sometimes quoted. It
corresponds to the limit for metastability. For q2=q3
and 1.24&q, &1.44, the effective potential has a local
minimum in which the heavy particles are trapped, but
this minimum lies above the dissociation threshold.

When q3 is small, one can use perturbation theory to
show that the frontier behaves as

q3
q2

—1=18
( —lnq3 )

and thus starts vertically, as pictured in Fig. 5.
The proof is the following. At zeroth order in q3, we

have a (1,2) atom, with energy —
q& /2 and wave function

9q3
5E2 =—

4R'q4,

If one rewrites (16) as

(19)

qz F(R)
e8'

2 R
(20)

9q3
(qz —1)+(1+R )exp( —2R ) — =0,

4R

27q3—(2R +1)exp( —2R)+ =0 .
4R

(21)

Disregarding the spurious small-R solution due to ap-
proximation (19), we see that the second equation of (21)
shows that R is, indeed, very large, R —~lnq3 i/2. A sim-

ple elimination leads to the desired result (11).

the stability frontier corresponds to F (R ) =0 and
F'(R ) =0, which in the limit qz ~1 and q3 ~0 reads

1 u(r)~ '"q,'"exp( q, r)=— (12)
V. STABILITY OF NEARLY SYMMETRIC SYSTEMS

with r =r
l
—rz, and r = ir i. At first order, the charge q3,

located at r 3
= r2+R, has an energy

In Ref. [1], we considered the case of unit charges.
Many accurate calculations exist for symmetric systems,
with inverse masses proportional to a„a&=(1—a, )/2,
and a3=a2. If their binding energy is written as

5E, =q3 (13) E«l) =[1+g(al)]En (22)

The expectation value is computed using the above wave
function, with the well-known result

()=—f u (r)dr+ f dr .2 u (r)
R o R T

Thus

(14)

( )(—f u (r)dr= —,
R o R

and 5E,.
& q3(qz —1)/R is positive if qz & 1. Thus the sta-

bility frontier ends at (qz = 1,q3 =0).
To make more precise the behavior of the frontier near

the end point, we push the perturbative expansion up to
second order, and write the effective potential between
the heavy charges as

g(al)5& — (1+a, ) .
3 1+g al

(23)

The width 6, defined in Fig. 2, is the maximal allowed
value for 2iaz —a3~ /&3.

The proof is very simple [1]. The threshold of the sys-
tem (a„az,a3) is exactly known, and its energy is bound-
ed by rewriting

CX2+ CX3 CX2+ CX3

(al, ap, a3)=H al,

CX2 CX3

(24)

where g(al) denotes the fraction of binding below the
threshold, one can set a lower limit to the extension of
the stability domain for a given al [1],

V,s(q~, q3, R ) = — +5El +5Ei,
2

with an explicit computation of 5E, of Eq. (13) as

qz f (q~R)
5E1=q3

(16)

(17)

This ensures that

Q2+ Q3 Q2+ Q3
E(al a2 a3) —E al

2
' 2

(25)

where the form factor is

f (x)= 1 —(1+x)exp( —x) . (18)

We now assume, and will shortly check, that if there is
any binding for small q3 it occurs at large separation R.
Then the second-order effect is calculated in the approxi-
mation of a constant electric field q3/R acting on the
atom. The Stark effect is well known and reads

$2+$3 $2+$3
E(s„s~,s3) E s„

2 ' 2
(26)

since the antisymmetric term in (24) necessarily lowers
the ground state, a simple consequence of the variational
principle.

The same reasoning can be applied to the strengths
1 q2q3 $2 q3q1 and $3 q lq2' For a given sym-

metric mass distribution (az=a3), one has
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A1

A3 A2

q2& 1 q2=1 q2 )

FIG. 6. For charges q& =1, q2 = 1.02, and q3 =0.98, the sta-
bility domain extends at least from 3 & to the median axis of the
triangle.

q2 = 1.09 1.1 &q2&1 24 q2 ) 1.24

If, for instance, FIG. 7. Shape of the stability region for q, =1 and increasing
values of the equal charges q& =q3.

sI=1, s2=1 —x, s3=1+x, (27)

stability is guaranteed at least for

(1+x) ~ 1+g . (28)

One can solve (27) for the charges, rescale to q, = 1, and
then say that (28) means stability for configurations cor-
responding to parameters

1 —a 1 —aI 1

i
1 1q;= 1,'1 —x'1+x

(29)

When a& varies, the minimum of g is between 4% and
5%. Then, if x ~0.02, we are sure that the symmetry
axis of the triangle entirely belongs to the stability
domain, as shown in Fig. 6.

VI. STABILITY DOMAIN FOR GIVEN CHARGES

We have a variety of scenarios for the stability region
in the triangle of normalized inverse masses. We first fix

q, =1, and consider the case of equal charges q2=q3.
For q2 & 1, every configuration is stable.

For qz =1,we have the central band of Fig. 2. There is
a sudden change as q2 becomes 1, when one compares in
the stability plot the three-body energy E' ' with the
two-body energy E' ', but this does not contradict the
property of E' ' and E' ' being both continuous.

As qz further increases, the band becomes narrower,
and then presumably breaks slightly below the center of
the triangle. Indeed, for q2 =1, the relative excess energy
g (a&) of Eq. (22) is maximal for aI = 1(H2+ with

m~ = ~ ), but is not minimal for a, =0. Near a, =0, H
becomes less stable as the proton mass becomes finite, as
seen from existing accurate calculations [12]. The
minimum of g(a&) occurs around a, =0.2 (see, for in-
stance, the plot in Fig. 2 of Ref. [1]), intermediate be-
tween Ps and H . We thus expect the breaking as q2
increases to take place near this aI ——0.2.

For values of q2 just above this breaking, two islands of
stability remain, one in the Born-Oppenheimer region A I
(H2+), and another at the middle of AzA3 (H ). This is
illustrated in Fig. 7.

q3&q2&1 q3 & q2 = 1

q3 not too small

q3 &q2 ——1

q3 small
q3 &1 &q2

q3/q2 not too small

q3&1 &q2

q3 /q2 small

FICx. 8. Shape of the stability region for ql =1 and various
values of the positive charges q3 & q&.

As shown by Baker et al. [13], stability is lost for H
near qz=q3=1. 0975, while the study of Hogreve [11]
and the results of Sec. IV show that H2+ survives up to
q2=q3 =1.24. From these results it is easy to see by con-
cavity considerations that stability is completely lost for

q3 & 1 .24 for all masses. The fact that the stability
region splits into two separate domains for q2

——1.09 fol-
lows from the work of Pekeris [14] on recoil corrections
in Ze e

Let us now turn to the case where q3 &q2. The ratio
qz/q3 uniquely determines the slope of (T), the line
separating the thresholds, according to Eq. (5). Some ex-
amples are given in Fig. 8, and commented upon below.

For q3 & q2 & 1, every configuration is stable. For
q3 & qz = 1, one should observe a sudden change, as some
configurations near A 3 become unstable.

The picture is qualitatively similar for q3 & 1 & q2, with
stability at the right-hand side of ( T), and by continuity
somewhat at the left of (T). If, for instance, q3=0.95
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and q2=1.05, corresponding to the lower middle case,
the stability domain includes the Born-Oppenheimer
point A&, while for, say, q3=0. 5 and q2=1.2, roughly
the situation of the lower right case, we are restricted to a
limited area near A2. This will be studied into more de-
tail in Ref. [14].

For q3 = 1 & q2, we observe another sudden change:
some configurations near 2 2 become unstable. For
1&q3 &q2 the stability region includes at most a band
around (T), which can break into two or three islands,
and eventually disappear. For a moderate ratio qz/q3,
we have a deformed version of the situation depicted for
q2 =q3 in Fig. 7. The situation becomes more delicate for
large values of qz/q3. . here, one does not expect any sta-
bility, except perhaps for q3 very close to 1. A study of
the large-qz /q3 limit will be given in [7].

VII. STABILITY DOMAIN FOR GIVEN MASSES

a) m2 —m3 b) 1.1m2 & m3)

c)

FIG. 9. Shape of the stability region in the (q2, q3) plane for
q&

= 1 and various values of the masses.

We now consider the stability domain for given masses
in the (qz, q3) plane. In this section the concavity of

Ewith —respect to qz for fixed q3 and to q3 for
fixed q2 is essential. From it we can prove that the two
arcs forming the border are intersected only once by hor-
izontal or vertical lines. The normalization is again
q i

= 1 in this section. We note that the square
(qz & l, q3 & 1) always corresponds to stability. The non-
trivial question is thus to find some extension outside this
square. In the case where m2 =m3 = Oo, shown in Fig. 4,
we have seen that this extension essentially consists of a
spike along the symmetry axis.

Consider first equal but finite masses m2=m3. For
very small q3, and qz &1, the system is unstable. The
frontier actually departs from the square (qz & l, q3 & 1)
at some finite value of q3, as shown in Fig. 9(a). There is
an extremum on the symmetry axis q2=q3 below the
value q2=1.24 obtained for infinite masses. If, indeed,
we look at the limit m2=m3~ ~, we can approximate
the Born-Oppenheimer potential by a harmonic-oscillator

well near its minimum, resulting in a binding energy of
the type

E"'=a+, a&0.8
Qmz

Thus E' ' varies quite sharply, while the threshold energy
E' ' is a smooth function of m2. Stability becomes hard-
er when m2 is finite.

Let us now assume an asymmetric m2 &m, . In the
(qz, q3) plot, the separation (T) between the thresholds is
also a straight line, given by Eq. (5).

Consider first the case where the masses are such that
we have stability for unit charges. The picture in the
(qz, q3) plot is then qualitatively similar to the previous
ones. An illustration is given in Fig. 9(b). Stability is en-
sured in the square (qz & l, q3 & 1) and in the triangle lim-
ited by q3 = 1 and ( T), and extends somehow outside.

We can finally imagine a larger asymmetry between mz
and m3, so that the point q2 =q3 =1 does not correspond
to stability. (T) can now be extremely slanted. This
means stability for q& =1, q3 ——1, and very large qz. This
is illustrated in Fig. 9(c).

VIII. OUTLOOK

In this paper, we have sketched the possible shapes of
the stability domain for various values of the masses and
charges. The main lesson is the following. We always
obtain stability when the like-sign charges q2 and q3 are
smaller than q&, whatever masses are involved. If, say,
only q3 &q&, we have a rather obvious stability when
both masses m, and m 3 are relatively heavy, so that (1,3)
acts as a localized attractive center for particle 2; more
precisely, q3 & q, implies stability at least as long as (1,3)
remains the lowest threshold. It is much less obvious
that one can obtain stability with both q2 ~ q, and

q 3
~ q „and indeed this usually does not lead to a stable

compound. The remarkable exceptions correspond to sit-
uations where the thresholds energies are nearly equal.
This is seen as a band around the threshold separation
( T) in the triangular plot of inverse masses at fixed
charges, or as a spike along (T) in the (qz, q3) plot at
fixed masses and fixed q, = 1.

In other words, there are only two ways for a three-
charge system to be stable: the trivial way (qz & 1 and/or
q3 & 1 ), corresponding to an obvious excess of attraction;
otherwise the two threshold energies being nearly equal.
In this case the wave function contains a coherent super-
position of [1-2]-3 and [1-3]-2 cluster structures. This
mechanism is well known in few-body physics. In partic-
ular, experts in variational calculations are aware that the
nearest thresholds should be introduced in the trial wave
function, and that competing thresholds tend to generate
attraction.

The present work could be extended in several direc-
tions. I et us list a few of these.

(i) The behavior of the frontier near end points could
be further elaborated.

(ii) Many variational methods have been developed for
such Coulomb systems. They could be applied to esti-
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mate quantitatively the location of the frontier, with a
high accuracy.

(iii) One would like to know the envelope of the stabili-
ty curves in the (q2, q3 ) plane when one varies the masses.
There is, in the (qz, q3) plane, a domain where the three-
body system is unstable for all masses. At present, very
little is known about this domain.

(iv) A similar study could be done with other poten-
tials. For instance, with power-law potentials V ~ r,~, we
have similar scaling laws and virial relations as for the
P= —1 case considered here, and thus the same number
of variables in the stability plots. The convexity argu-
ments developed in [1] and in the present paper hold in
fact for any potential that does not depend on the masses.

(v) Generalization to four particles seems technically
difficult, but rather tempting. One could guess one would
again obtain stability in two cases: an obvious excess of
attraction, i.e., gq;q &0 (i' ), and also a conspiration

of thresholds, i.e., with an appropriate numbering

(q, q4)'+
Q ) +CX3 CX2+ 0!4

(qlq4) (q2q3)+
CX ) +CX4 CX2+ Q3
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(vi) One could then look whether the stability condi-
tions are likely to be fulfilled in other systems. For in-
stance, it is an open problem in hadron physics whether
or not stable multiquark systems exist [15].
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