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Geometric phases in two-photon interference experiments
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Photon pairs produced by type-I and type-II parametric down-conversion are passed through a Michelson
interferometer. Two quarter-wave plates in one arm of the interferometer allow variation of the polarization
state of the photons. We investigate experimentally the geometric phase or Pancharatnam phase acquired by
single photons and photon pairs dependent on the solid angle that is subtended by the circuit that represents the
varying state of polarization on the Poincaré sphere. It is found that the geometric phase acquired by the pair
depends on the initial polarization state of the two photons. If both photons are in equal states of linear
polarization, we observe a doubling of the geometric phase compared to single photons; in the case of
orthogonal states of linear polarization, the geometric phase is completely canceled. Our results show the role
of Pancharatnam’s phase in nonclassical two-photon interference phenomena and the interplay between the
geometric phase and the dynamical phase in these phenomena.

PACS number(s): 03.65.Bz, 42.50.Dv

L. INTRODUCTION

Starting from Berry’s studies of the quantal phase factors
accompanying adiabatic changes [1], a lot of work has been
done to observe this geometric phase change in the state of a
quantum system whose environmental parameters are slowly
changed. Geometric phases appear in various physical sys-
tems (for a review, see, e.g., [2]). In optics, the attention has
been drawn to a much earlier paper by Pancharatnam [3]. In
his paper Pancharatnam discusses the phase shift that takes
place in light fields if one changes the state of polarization.
Pancharatnam’s phase can be regarded as the manifestation
of Berry’s phase in polarization optics. This important con-
nection has been widely discussed (see. e.g., [4]). Since it
offers the possibility of rather simple experimental ap-
proaches, geometric phases in optics have been subject to
several experimental and theoretical investigations.

Until now, geometric phases in optics have only been ob-
served in experiments with classical light fields [5-10] and
with single photons [11,12]. In both cases a classical, as well
as a quantum treatment predict the same geometric phase
shift, since the phase is measured via the mutual coherence
function [6]. As shown by Klyshko [13], a light field with n
identically polarized photons per mode is expected to acquire
n times the phase of a one-photon field, which equals # times
the phase of a classical field. For arbitrary polarized photons
this equivalence between the geometric phase of a quantum
multiphoton field and of a classical field is no longer valid.

Regarding pairs of identically polarized photons, one ex-
pects a doubling of the geometric phase compared to single-
photon experiments. In our experiments this particular geo-
metric phase is measured by making a photon pair interfere
with itself inside a Michelson interferometer [ 14]. Hence, the
geometric phase introduced by a suitable arrangement of
quarter-wave plates in one arm of the interferometer shows
up as a shift of the two-photon interference pattern. In addi-
tion we demonstrate that, depending on the relative orienta-
tion of the vectors representing the states of polarization of
the photons of a pair, a cancellation of the geometric phase is
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also possible. Furthermore, our results will give some insight
into the interplay between the geometric phase and the dy-
namical phase in two-photon interference phenomena.

II. EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 1. The photon
pairs are generated in a beta barium borate (BBO) crystal by
down-conversion of the blue light (A =458 nm) from an Ar-
gon laser, which provides an optical output power of about
100 mW. Using an intracavity etalon, we reduce the band-
width of the laser light to 54 MHz and achieve a coherence
length of about 5 m. Only photon pairs emitted colinear with
the laser beam are selected by the aperture A. The central
wavelength of the two-photon light is 916 nm, and its spec-
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FIG. 1. Outline of the experimental setups for the zero path
difference (M 1) and the large-path-difference (dashed lines, M1’)
case.
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FIG. 2. Representation of the polarization transformations intro-
duced by the quarter-wave plates on the Poincar€ sphere. Two cir-
cuits for horizontally (solid lines with arrows, starting from point A)
and vertically polarized light (dashed lines with arrows starting
from point A') are shown.

tral bandwidth is restricted by the interference filter (IF) to
10 nm. By alternatively using two BBO crystals cut for
type-I and type-II phase matching, we are able to prepare the
photons of a pair in either the same state of polarization (type
I) or in orthogonal states of polarization (type II). These pairs
traverse the Michelson interferometer consisting of the
beamsplitter (BS), which exhibits nearly equal reflection and
transmission coefficients for all states of polarization, and the
two silver-mirrors M1 and M2.

After the emergent light has passed the aperture A, the
photon pairs are split by the second beamsplitter BS, and are
then directed to the photon counting avalanche diodes D1,
D2 (RCA SPCM-200). In case of type I phase matching
BS, is a standard 50/50 beamsplitter. Therefore only one half
of the arriving pairs are split. In case of type II phase match-
ing this beamsplitter is replaced by a polarizing beamsplitter
BS,(pol). Now, all of the photon pairs are split and detector
D1 registers only vertically polarized photons, whereas de-
tector D2 registers the horizontally polarized part of the
pairs.

The geometric phases are introduced the same way as in
previous experiments based on laser-light or single photons
[7,6,11] by the help of two quarter-wave plates placed in one
arm of the interferometer. The action of these mica plates on
the initially horizontally (vertically) polarized light can be
conveniently represented by circuits on the Poincaré sphere,
as sketched in Fig. 2. The fast axis of the first quarter-wave
plate makes a fixed angle of +45° with respect to the hori-
zontal axis. Thus, the polarization states are changed from
linear (horizontal or vertical), represented by the points A
(A') on the Poincaré sphere, to right (left) circular, repre-
sented by the points B (B'). The first passage through the
second, the rotatable quarter-wave plate \/4(rot) changes the
circular polarization back to a linear polarization state C
(C'). The resulting polarization vector makes an angle ¢
with respect to the initial vector, where 135°+ ¢ is the ori-
entation of the second quarter-wave plate with respect to the
horizontal axis. The projection on the Poincaré sphere gives

J. BRENDEL, W. DULTZ, AND W. MARTIENSSEN 52

an azimuthal angle from A to C (A’ to C") of © =2 ¢. After
reflection at mirror M2, the rotatable retardation plate turns
the linear polarization into left (right) circular polarization D
(D"). The fixed plate then restores the initial states of polar-
ization.

Hence, for both of the initial linear states of polarization
we have a cyclic evolution along the paths ABCDA and
A'B'C'D'A’, respectively. The solid angle subtended by
these circuits, as indicated by the shaded regions, is
Q= =*4¢, where the sign depends on the sense of descrip-
tion. The Pancharatnam phase associated with the circuits is
6,= 30Q=*2¢, where =1 is the spin of the photons.

III. CALCULATION OF THE TWO-PHOTON
TRANSMISSION FUNCTIONS

We now turn to the questions, in which way does the
two-photon transmission probability P,, in a Michelson in-
terferometer depend on the geometric phase &,, and how
does the geometric phase interact with the dynamical phase.
For that we regard the probability amplitudes associated with
the different processes that lead to a transmission of the pho-
ton pair through the interferometer. We first assume that the
interferometer is adjusted to path differences that are much
smaller than the coherence length of the light, allowing (clas-
sical) second-order interferences of the transmitted beams.
The dynamical phases introduced by the path difference be-
tween the interfering light fields are symbolized by &, and
6; for the signal and the idler beam, respectively. The geo-
metric phases associated with the circuits on the Poincaré
sphere are symbolized by &,, and &,;, correspondingly.
Summing up the probability amplitudes for the four possible
ways the pairs can choose to pass the interferometer [15,16],
we obtain, using a single-mode approximation,

Poa(8,.61.8p.8,) =P 12(1+ €70 20 4104 000

+ei(6s+5p.r+5i+5pi))l2. (1)

The values of the Pancharatnam phase for the signal and
the idler photons only depend on their initial states of linear
polarization. Assuming equal polarization (type-I phase
matching), we can simplify Eq. (1) by setting

8ps=0,i=0,, 06,=6;=9. )
The second constraint arises from the assumption of fre-
quency degeneracy.

Under these conditions, Eq. (1) yields the two-photon
transmission probability

Py(8,8,)=4r**[1+cos(5+ 8,)]°. (3)

The probability (3) equals the square of the transmission
probability expected for single photons P, , and it is propor-
tional to the square of the classical intensity of the light field:
Po,= P23 ~12. This result is not surprising when we consider
the measurement of intensity correlations or the joint trans-
mission probability of independent photons.

As shown above, the signs of the Pancharatnam phase for

orthogonally polarized photons are opposite (8,,=—9,;
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= &,). Therefore the probability amplitudes for the transmis-
sion of pairs creaied by degenerate type-II phase matching
add up to

PL(6, 8,) =4r**[1+cos(5+ 8,)+cos(6—4,)+ 1cos(26)
+3c08(25,)]

=4r**[1+cos(5+ 6,)][1+cos(5—5,)]. (4)

Again, the joint transmission probability is given by the
product of the probabilities for the single signal and idler
photons.

In both cases discussed above, we could not discriminate
between the different photon pair transmission processes
through the interferometer. There are two processes where
we may picture the photon pairs as being split when entering
the interferometer. For these processes the geometric phase is
brought in for the single photons passing the arm which con-
tains the quarter wave plates. Therefore, in order to investi-
gate the geometric phase shift arising from the passage of a
photon pair through the quarter wave plates, these single
photon processes have to be excluded from registration. As
we have demonstrated in previous publications [14,17], this
can be done experimentally by increasing the path-difference
Ax between the interferometer arms. That way, the split pho-
tons reach the output with a relative time delay of Ax/c. If
this delay exceeds the maximum time difference accepted for
coincidence detection, these processes will not be registered
as coincidences and the interference of the photon-pair with
itself can be observed alone.

In contrast to classical (second-order) interference this
fourth-order interference is still possible even if the path dif-
ference exceeds the coherence length of the two-photon light
by far. The maximum path difference allowing interference is
only restricted by the coherence length of the pump laser.
Keeping the path difference far below the coherence length
of the laser, phase fluctuations due to incoherence can be
neglected and the interference can again be described by a
simplifying single-mode treatment. Adding the probability
amplitudes as above, now for the two remaining processes
alone, yields

Py(8,,8)=|r (1 4ottt 2. (5)

For parallelly polarized photons (degenerate type-I phase-
matching) the constraints (2) are valid and Eq. (5) leads to

Pyy(8,8,)=2r*"[1+cos(26+26,)]. (6)

For orthogonally polarized photons (degenerate type-II
phase-matching) Eq. (5) leads to

Pyy(8,8,)=2r**[1+cos(25)]. 7

According to Egs. (6) and (7) we expect interferograms
that correspond to a doubling of the dynamical phase and
exhibit visibilities of 1. This nonclassical property of two-
photon interference has already been demonstrated in several
previous experiments [14,18,19]. The above calculations
now also take into account the role of the geometric phase
d, and its interplay with the dynamical phase 8. Equation (6)
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verifies the predicted doubling in case of parallelly polarized
photons. For orthogonally polarized photons the geometric
phase is canceled due to the opposite handedness of the re-
lated circuits on the Poincaré sphere.

IV. EXPERIMENTAL PROCEDURES AND RESULTS
A. Experiments at small path differences

Using the experimental setup shown in Fig. 1, we have
carried out several experiments to demonstrate the above
predicted special properties of the geometric phase in two-
photon interference. To begin with, the interferometer is ad-
justed close to the white light position, i.e., the path differ-
ence is kept far below the coherence length of the detected
light. We record the counts of the single detectors D1 and
D2, as well as their coincidences in dependence on the geo-
metric phase introduced by the quarter-wave plates and on
the dynamical phase associated with the optical path-
difference Ax. The counts are registered and stored by
personal-computer-based  multichannel  counters.  The
quarter-wave plate N/4(rot) is rotated in steps of the angle
¢ of 3.6° using a stepping motor that is synchronized with
the channel advanced of the counters. The dynamical phase
is varied by shifting mirror M2 stepwise simultaneously by a
piezo translation stage.

Figure 3 shows the single-photon [3(a)] and two-photon
[3(b)] interferograms obtained for photon pairs generated by
degenerate type I phase matching (both photons are horizon-
tally polarized). The plotted counts have been integrated dur-
ing time intervals of 2 s for each single detector and during 4
s for the coincidences. To simplify the presentation only the
counts of detector D1 are displayed in Fig. 3(a). Detector
D2 delivers almost identical interferograms.

The left interferograms in Figs. 3(a) and 3(b) have been
recorded keeping mirror M2 at a fixed position, while the
quarter-wave plate makes one full counterclockwise turn
(looked at from the beamsplitter BS;). This rotation intro-
duces a maximum geometric phase shift of 2, as indicated
by the lower x axis. In the next step we change the dynami-
cal phase simultaneously with the geometric phase by shift-
ing mirror M2 in such a way that the arm length BS;-MS
increases in steps of 15.1 nm, as indicated by the upper x
axis. This displacement corresponds to an increase of the
path difference Ax by an amount of 30.2 nm, or to an in-
crease of the dynamical phase 8 by 11.87°. At the same time
the quarter-wave plate is rotated with each step by an angle
of 3.6°.

We now obtain interferograms as shown in the middle
and, with the sense of rotation reversed (clockwise), on the
right. The fully drawn curves are fits to the data by the func-
tions fi(¢,8)=al[l+ Vycos(Rep+6+d)] for the single
counts and by f»(¢,8)=Bf (¢, 8)? for the coincidences, re-
spectively [see Eq. (3), assuming §,=2¢]. Here, @ and B
are scaling parameters and the initial phase &, has been set to
— /2 by an appropriate choice of the presented data range.
Good fits are obtained using visibility factors V,, of 0.86 for
the interferograms on the left and in the middle and of 0.88
for those on the right.

Figure 4 shows equivalent interferograms, recorded after
the experimental setup has been changed to the type-II
down-conversion configuration. The quarter-wave plate is
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FIG. 3. Measured second-order (a) and fourth-order (b) interferograms using type-I phase matching. The interferograms in the first
column show the geometric phase introduced by rotating the quarter-wave plate alone; for those in the second and third column a dynamical
phase shift has been added by shifting mirror M2 simultaneously. The third column differs from the second by a reversed direction of
rotation. The rotation angle ¢ of the quarter-wave plate N/4(rot) is represented by the lower x axis, and the path difference Ax that is

introduced by shifting mirror M2 by the upper x axis.

again rotated counterclockwise by steps of 3.6°, while the
path length is increased by steps of 30.2 nm. The counts of
detector D1, which now registers only the vertically polar-
ized photons, are represented by circles; the counts of detec-
tor D2, which registers the horizontally polarized photons,
are represented by filled triangles. The single-photon data are
again fitted by functions f;,f;, (fully drawn lines) as above
with visibility factors of V;=0.86. Due to the orthogonal
polarization states these functions now differ by opposite
signs for the geometric part of the phase [see Eq. (4)]. The
lower graph displays the simultaneously recorded coinci-
dences. The fully drawn line is again a fit to the data by the
product of the single-photon functions Bff;.

B. Experiments at large path differences

In the following section we present the results obtained
after increasing the distance BS;-M'1 from 100 to 250 mm.
The photons passing this arm now suffer a delay of 1 ns
compared to those in the other arm. Reducing the width of
the coincidence window to 0.5 ns we detect only photon
pairs that traverse the interferometer without being split. The
geometric phases gained by those pairs which pass the
quarter-wave plates are shown in Figs. 5 and 6. Care has

been taken to keep the dynamical phase constant by a stable
experimental setup and a constant room temperature.

Figures 5 and 6 are plots of the coincidences obtained
when the quarter-wave plate is turned clockwise by 360° in
steps of 1.8°. The counts are integrated over 10 s at each
position of the stepping motor. The interferogram shown in
Fig. 5 has been recorded using type-I phase matching. The
fully drawn line is a fit to the experimental data by the func-
tion f(@)=a[l+ Vycos(4p+&)] [see Eq. (6)]. A least-
mean-square fit yields a visibility of V;=0.78. The single
detectors exhibit constant count rates of 18 and 13 kHz, re-
spectively.

The results shown in Fig. 6 have been recorded after
changing the experiment to the type II down-conversion
setup. The fully drawn line is a fit to the data by the function
f(@)=const [see Eq. (7)]. The count rates of the single de-
tectors are again constant (5, 4 kHz). To ensure that the ob-
served vanishing of the interference is not caused by a mis-
alignment of the apparatus, we have performed a similar
measurement, now introducing a dynamical phase by scan-
ning mirror M2. This measurement revealed interferences
with a visibility of about 0.78.

Due to the low rate of dark counts (=50 s~ ') and the
small coincidence windows (2, 0.5 ns) no correction of all
presented data has been made for dark counts or accidental
coincidences.
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FIG. 4. Measured second-order (above) and fourth-order (be-
low) interferograms presented as in Fig. 3, now using type-1I phase
matching. The dynamical and Pancharatnam’s phase have been al-
tered simultaneously.

V. DISCUSSION AND CONCLUSIONS

Our results presented above show the specific properties
of the geometric phase in two characteristic cases of two-
photon interference. First, in case of an interferometer ad-
justed to a path difference far below the coherence length of
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FIG. 5. Fourth-order interferences in the large-path-difference
interferometer showing Pancharatnam’s phase dependency on the
rotation angle ¢ of the second quarter-wave plate \/4(rot). The
photons of the pairs are parallelly polarized (type-I phase match-
ing).
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FIG. 6. Fourth-order interferences in the large-path-difference
interferometer, as in Fig. 5, showing Pancharatnam’s phase where
the photons of the pairs are orthogonally polarized (type-II phase
matching).

the light, second-order (single-photon) interferences are still
observed. For these interferences the roles of the dynamical
phase and the geometric phase are equivalent; they simply
add. In this case the observed fourth-order (two-photon) in-
terferograms are given by the product of the single-photon
interferograms, as shown in Figs. 3 and 4. There is a simple
explication for this behavior if we assume that the photons of
each pair pass the interferometer independently. The assump-
tion of independence seems to be in contrast to the fact that
the photons are initially prepared in a quantum state consist-
ing of two photons that are highly correlated in energy and
time. Regarding Eqs. (1)—(4) we find that the interference of
the quantum-mechanical probability amplitudes here yields
the same result as expected for independent photons. This
implies that the role of the geometric phase can also be un-
derstood classically if we consider the phase shift in a corre-
sponding measurement of intensity correlations. Similar re-
sults have previously been found in experiments dealing with
the dynamical phase [15].

These results also explain why, regarding parallelly polar-
ized photons, we cannot distinguish between a dynamical
phase introduced by altering the path difference and a geo-
metric phase introduced by the quarter-wave plates. Only if
we prepare the photons in different states of polarization
(type-II phase matching), a difference between these phases
becomes obvious. Then the polarization dependence of the
geometric phase leads to a significant change of the correla-
tion interferograms when tuning the dynamical phase or the
geometric phase, alternatively. In this case, the phases are no
longer additive [see Eq. (4)], since we find opposite signs of
the geometric phase for the orthogonal polarization states.
This property opens up the possibility of introducing an ar-
bitrary phase difference between photons belonging to or-
thogonal polarization states by choosing an appropriate ori-
entation of the quarter-wave plate \/4(rot).

In contrast to the experiments discussed above the second
series of our experiments allows the observation of the geo-
metric phase for a photon pair alone. Now, the single-photon
processes are excluded from detection by using large-path-
difference interferometers and a time-resolved coincidence
detection scheme. A consequence of the remaining quantum
two-photon interference is that the photon pair transmission
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probability is no longer given by the product of the single-
photon probabilities. This result reveals the entanglement of
the two-photon state generated by parametric down conver-
sion. Once again, like in several previous experiments, en-
tanglement turns out to be the fundamental basis for the
demonstration of local and nonlocal quantum correlations.
(For a more detailed discussion of the two-photon entangle-
ment, see, e.g., [20,21]).

As shown in Fig. 5, the recorded correlation interferogram
exhibits half the period, as expected from a classical light
field. This result implies that the photon pairs gain twice the
geometric phase of single photons, or that the pairs seem to
behave like single particles possessing a doubled spin of
o=2. We find an easy explication of this behavior by taking
into account that each of the photons of a pair passing the
quarter-wave plates acquires a geometric phase of &, [see
Eq. (5)]. Here again an equivalence to similar experiments
based on the dynamical phase [14] becomes obvious. Since
the dynamical phase is also gained twice by the photon pair,
the two-photon interferograms are equivalent to those ex-
pected for single photons of doubled energy.

The geometric phase depends, as shown above, on the
polarization state of the photons, whereas the dynamical
phase is given by the path difference alone. Therefore the
equivalence between tuning the interferometer via the dy-
namical phase or the geometric phase will not be valid when
passing photons of different polarization states through the
interferometer. As an extreme, orthogonally polarized pho-
tons acquire geometric phases of opposite signs. If we con-
sider a photon pair composed of two orthogonally polarized
photons as one quasiparticle, then this two photon is not
influenced by the geometric phase at all; it behaves like one
particle with total spin o=0. This property is demonstrated

J. BRENDEL, W. DULTZ, AND W. MARTIENSSEN 52

by the vanishing of the interference, as shown in Fig. 6.

The fact that the orthogonally polarized single photons of
the pairs actually acquire a geometric phase can be demon-
strated by sending each of them in one of two separated,
identical interferometers. This setup allows the observation
of nonlocal two-photon interferences and has previously
been used to demonstrate violation of Bell’s inequality for
energy and time [17,22]. The work presented here shows that
also in quantum single- and two-photon interference experi-
ments the tuning of the interferometers can be carried out
using geometric phases. Provided that the dynamical phases
are kept constant, this method offers several advantages.
First, the phase tuning can simply be accomplished by rotat-
ing a wave plate, and thus definite reproducible settings of
the phase differences are easily possible. Due to the wave-
length independence of the geometric phase, these settings
can, in principle, also be established for broadband light
fields. These properties offer applications in tests of Bell’s
inequality and in quantum cryptography schemes.

Our results cannot solve the frequently discussed question
of whether geometric phases in optics have a quantum or a
classical origin [23]. The answer depends on the individual
approach to the problem. But we have demonstrated
quantum-optical two-photon interferences based on the geo-
metric phase. It becomes evident that geometric phases in
nonclassical interference phenomena play an important role,
just like they do in classical interference, and that practical
applications are straightforward.
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