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In our previous studies with the evaluation of traces of p-order replacement operators calculated
in finite-dimensional, antisymmetric, and spin-adapted K-electron spaces (p ( N), we described a
technique for the calculation of those expressions based on the reduction of the operator order [A.
Torre, L. Lain, and J. Millan, Phys. Rev. A O'7, 923 (1993)].Now, we report a general formula which,
condensing all the reduction steps, leads to the direct evaluation of those traces. Some examples for
illuminating the usefulness of that formula are reported.

PACS number(s): 31.15.—p, 31.10.+z

I. INTR.ODU CTION The spin-adapted traces of a p-RO are defined as [1]

II. THE EVALUATION OF S,-ADAPTED
TRACES OF p-RO'S

The spin-free p-RO's are [10]
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where b+ (bs„„)are the usual creation (annihilation)
fermion operators; o.q, . . . , op are the spin coordinates
and i q, . . . , ip, j~, . . . , jp, . . . are the K one-electron or-
bital functions of an orthonormal basis set.

In a previous paper [1] we described a technique
to evaluate traces of p-order replacexnent operators (p-
RO s), calculated over finite-dimensional, antisymmetric,
and spin-adapted N-electron spaces (p ( N). The pro-
cedure is based on a progressive reduction in the order of
the p-RO's so that, in the final step, those operators are
reduced to the unity one. Using the foundations of that
technique, this report derives a general formula that di-
rectly calculates the numerical values of this kind of trace
for any p-RO, avoiding all the intermediate reduction
steps. This achievement complements and improves the
previous approaches to the calculation of spin-adapted
traces of p-RO's [1—4] and, since the derived formula can
easily be programmed, it renders feasible the task of eval-
uating these tools with a computer.

There are several areas in physics where the calculation
of this kind of trace is needed and, consequently, where
the application of the formula we present here is useful.
In particular, we must mention the determination of mo-
ments of spectral density distributions, which are used in
statistical theories of nuclear and atomic spectra [5—7], as
well as some computational approaches to many-electron
theories [8,9]. In the next section, a brief summary of the
concepts and the arguments for deriving the computing
formula are described. Section III shows some examples
of calculation of S -adapted traces of p-RO's, according
to the structure of those operators. That leads to the
evaluation of the corresponding spin-adapted traces [1].
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where D(S) are the Slater determinants (the K-electron
eigenfunctions of the S, operator), which can be con-
structed with the K orbital functions of the basis set,
having N =

2 + S n-spin orbitals and Np ——
2

—S
P-spin orbitals. Similarly, the D(S + 1) determinants
are composed of N =

2 + S + 1 o.-spin orbitals
and Np =

2
—S —1 P-spin orbitals. Consequently,N

PD(&&(D(S)~ E ' ~D(S))~ ~ is the S,-adapted trace
of the RO E"' ",corresponding to the eigenvalue S~ =
S.

Formula (3) implies that the calculation of a spin-
adapted trace of a given p-RO is carried out through
a difFerence of S -adapted traces of that operator. The
main object of this report is to express the value of

D(S)
(4)

through a general formula which can be used for compu-
tational purposes. Obviously, the evaluation of formula

where A are the ¹lectron eigenfunctions of the (S2, S,)
operators, constructed with K orbitals, corresponding to
a spin quantum number S. The value of expression (2) is
independent of the S quantum number, so it has been
omitted [1].

The most suitable calculation of expression (2) is car-
ried out through the relation [1]
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(4) provides the calculation of the spin-adapted traces of
p-RO's given in formula (2).

As mentioned above, the Slater determinants in sum
(4) are composed of N =

2 + S n-spin orbitals and

Np =
z

—S P-spin orbitals. Hence, the problem to
consider is the determination of the number of Slater de-
terminants in that sum that contain all the spin-orbitals
that are included in the creation operators (and in the
annihilation ones) of any of the terms derived from the
expansion of the p-RO, given in Eq. (1). The number of
these determinants depends on the structure of the p-RO
and each of them contributes to the sum (4) as (—1)",
where v is the number of transpositions needed to pass
from the set (iq, . . . , i„) to the (jq, . . . ,j„) one Ob.vi-

ously, both sets must be composed of the same orbitals
[otherwise trace (4) will be zero], although they can be
ordered in different ways.

In dealing with the p-RO's, it is convenient to classify
the indices in the creation and annihilation sets into di-
agonal indices (identical indices occupying the same po-
sition in both sets) and blocks of indices, that is, sub-
sets of creation indices (iA, , . . . , i~) and annihilation ones

(jg, . . . , j~) both containing identical indices but in di8'er-
ent positions (otherwise they would be diagonal indices).
The expansion of fermion operators expressed by formula
(1) shows that indices occupying the same position in
the creator and annihilator sets have identical spin co-
ordinates. Consequently, the diagonal indices have the
same spin (n or P) in the creation and in the annihila-
tion sets, in all terms of the p-RO expansion. Since the
expansion (1) is closed on both sides by the same Slater
determinant, the creation and annihilation indices that
constitute a block must have also identical spin coordi-
nates; otherwise their contribution to sum (4) will be
zero. Blocks and diagonal indices provide a structure for
the p-RO's, which will be represented by graphs.

If there is no repetition of indices in the creation set
(and in the annihilation one) the p-RO is represented by
only one graph. However, when the creation and annihi-
lation sets have nondiagonal repeated indices, there are
different ways to set up blocks of indices with the same
spin. Each of these ways corresponds to some terms of
expansion (4) and is represented by a graph. Due to the
Pauli principle, a determined index can be repeated only
once in the creation and annihilation sets. Consequently,
a p-RO with g nondiagonal repeated indices will be able
to be represented by 20 graphs (2~ ways of relating g
pairs of creation indices to g pairs of annihilation ones).
In order to clarify this aspect, let us consider the 5-RO

E2ygy2 &
where 1, 2, 3, . . . mean different orbitals. This

5-RO can be represented by the graphs

and

where the lines link identical indices with the same spin.
Obviously, the last graph must be neglected since it has
repeated indices in the same block.

A quantitative description of each graph arising &om a
determined p-RO is given by the parameters m (the num-
ber of blocks in the graph), 6; [the number of creation (or
annihilation) indices in the block i], r;d (the number of
indices in the block i that are also present in the diagonal
part of the p-RO), r~ (the number of repeated indices in
the diagonal part of the p-RO), q (the number of diago-
nal indices without any repetition), x; = 1 when the spin
coordinate of the block i is P and x; = 0 when it is n,
c' = 1 for the blocks i and j when i 8 j g 8 and c' = 0
otherwise, and v [the number of transpositions required
to pass from the ordered set (iq, . . . , iz) to the (jq, . . . , js,)
one].

For each graph corresponding to a determined p-RO,
the number of Slater determinants that contribute with a
nonzero value to sum (4) is obtained through the appro-
priate distributions of all the blocks and diagonal indices
to the a and P parts of the determinants. For given val-
ues of the parameters x~, . . . , x, which characterize the
corresponding blocks as n or P, and assigning P spin to
t & q 6xed diagonal indices without any repetition, the
number of possibilities B(t,xq, . . . , x ) to construct the
P-part of that kind of determinants is expressed in terms
of the resultant binomial coeKcient, as follows

and, similarly, the number of possibilities A(t, xq, . . . , x ), for the n-part is

( K —P,.[(1—x,)|;+ x;r,,] —r„, —q + t
A(t, x„.. . , x ) =! ~ !

q —, + S —g,.[(l —x;)|;+x;r;~] —r~ —q+ ty
'

Consequently, the sum for all the possible values of the parameters x~, . . . , x, and all the possible ways to distribute
the q diagonal indices without any repetition, [g& 0 (~) ], as well as the (2"~) ways to distribute the r~ pairs of diagonal
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repeated indices to the n and P parts of the determinants, calculate the contribution of a determined graph of the
p-RO to the value of trace (4), so that one finally finds

(—1)"2"' ) . . .) (1 —b, , c',.) ) ~
iA(t, xi, . . . , x )B(t,xi, . . . , x ),

t=o E)

where the factor Q,.& . (1—h, ,c*) excludes determinants
having blocks with common indices and the same spin.

The task of determining the graphs corresponding to a
given p-RO, and the values of their parameters m, b', c2
r;g, rg, q, and v, as well as the exclusion of the graphs
having repeated indices in the same block, can be easily
programmed for a computer. Hence, the sum of formula
(7) for all the possible graphs leads to the direct computa-
tion of the S -adapted traces and, consequently, accord-
ing to formula (3), to the calculation of the spin-adapted
trace of any p-RO.

In conclusion, this report describes a formula that al-
lows the direct calculation of the spin-adapted traces of
any p-RO as a function of the parameters N, S, and K
which characterize the model space. In this way, we go
beyond the previous treatments which require classi6ca-
tion of the p-RO, then removal of the repeated indices,
and, finally, earring out several reduction steps [1,4]. The
procedure described here avoids all these stages so that it
generalizes and simpli6es the calculation of those traces.
Some exaxnples are considered in the next section.

III. EXAMPLES

As a Grst example, we will show the calculation of the
S~-adapted trace of the 6-RO, E2$3$$4p for the case of
S = 0, N = 8 electrons, and K = 10 orbitals.

This 6-RO has g = 1 nondiagonal repeated indices so
that it has two graphs according to the following relation-
ships between the creation and the annihilation indices.

(a) Graph 1, block 1: i i ——j2 ——1, i 2
——ji ——2; block

2: i3 ——j4 ——2, i4 ——j3 ——3, diagonal indices: i5 ——j5 ——1,
i6= j6=4.

(b) Graph 2, block 1: ii ——j2 ——1, i2 j4 ——2, ——
i3 ——jz ——2, i4 ——j3 ——3 diagonal indices: i5 ——j5 ——1,

= j6 ——4.
Starting with the first graph, we have

2 3 1
~ ~

which is characterized by the parameters m = 2, bq ——2,
b2 ——2, c2 = 1, r~q ——1, r2q ——0, q = 1, ~q ——0, ~ = 2.
The application of formula (7) for S, = S = 0, 2 +S = 4,

2
—S = 4, and K = 10 leads to the value 154.
The second graph is as follows

1 2

Since as it has a block with repeated indices, it must
be neglected so that it does not contribute to the value
of that S,-adapted trace.

I et us consider a second example, related to the 5-RO
E2f334 for S, = 2, K = 7 electrons, and, again, K = 10

orbitals. Since this 5-RO has no nondiagonal repeated in-
dices (g = 0) it will be represented by one unique graph,
that is block 1: iq ——j2 ——1, i2 ——jq ——2; diagonal in-
dices: i3 ——j3 ——3, i4 ——j4 ——3, i5 ——j5 ——4.

This graph is defined by the parameters m = 1, bq
——2,

rq~ ——0, q = 1, r~ ——1, v = l.
Hence, forS, =S= 2, q +S=4, 2

—S=3, and
K = 10, formula (7) leads to the value —240.
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