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Using relativistic configuration-interaction wave functions, we have obtained length and velocity f
values for all lower J =2, 3,4 (4d+Ss) levels connected to the z 4d Sp 63, and D3 levels. Our lifetime

results for length and velocity operators are ~('63)=5.16 and 6.S3 ns, respectively, and ~( D3)=4.67
and S.60 ns, respectively. These are in good agreement with the experimental values of 5.8—6.2 and 5.0
ns. As we find for hyperfine structure, the 4d, 4d 5s interactions are important in generating accurate
lifetime and f-value results.

PACS number(s): 32.70.Cs, 31.25.—v, 31.30.Jv

I. INTRODUCTION AND THEORY

Recently, we have begun work on (d+s)" transition-
metal states, using relativistic configuration-interaction
methods to generate hyperfine structure (hfs) for the
J =2 Nb ti states [1], for example. For many states d"
and d'" "s eigenfunctions interact strongly, due to near
degeneracy effects. This was found to have important
consequences for hfs [1,2], and here we investigate just
what the impact on the f values might be. There are
three reasons for choosing to investigate Nb?I lifetimes:
(i) They are important in determining the solar abun-
dance of Nb II: (ii) measurements of its excited-state life-
times have already been made [3,4]; and (iii) we had al-
ready [1] created accurate wave functions for the J=2
states.

When there is near degeneracy of d" and d'" "s
states, it is important that relativistic effects be included
from the start, because they can contribute differentially
[5] up to several tenths of an eV. Some time ago, we
made the decision to implement a fully relativistic many-
body theory, instead of a perturbation-based one. This
distinction begins with the choice of the Hamiltonian-
we use the Dirac-Coulomb (Breit) Hamiltonian rather
than the low-Z Pauli approximation. We feel that this
simplifies the algebra and is valid for all Z. It may not be
quite as competitive for very low-Z species, where relativ-
istic effects are so small that perturbation theory can be
more appropriate. We begin by constructing a zeroth-
order wave function, from a multiconfiguration Dirac-
Fock solution, using Desclaux's program [6]. These are
antisymmetrized eigenstates of J and J„built from rela-
tivistic one-electron functions, i.e., spinors.

We improve this wave function by using first-order
perturbation theory to select its form (configurations,
one-electron symmetries) and the relativistic config-
uration interaction (RCI) to determine its parameters—
configuration coefficients and efFective charges (Z ) for
the extra ("virtual" ) radial functions. The virtuals are
chosen to be relativistic screened hydrogenic functions to
avoid potential problems [7] of variational collapse. With
the choice n = I + 1, a single function can represent up to
90% of the correlation energy associated with a specific

symmetry (a).
The RCI function is thus built by making single and

double excitations from the zeroth-order function. In the
case of near degeneracy, several zeroth-order functions
[e.g., all the (d +s) eigenvectors] may have to be used,
and the process is a multireference one [2,8]. Here the
(d+s) J=2, 3,4 states require a multireference treat-
ment, which is detailed elsewhere [1,8]. From observa-
tion [9] the z 4d 5p G3 and D3 states are fairly well iso-
lated from (4d 5s+4d5s )5p states, and the 4d elec-
trons are mainly coupled to F. The MCDF solution is
96% I' for G3 and 85% F for D3. We thus have used
the six 4d ( F)5p J =3 states as reference functions when
creating the RCI functions [10].

The presence of so many open d electrons, followed by
single and double excitations from closed-core subshells,
gives rise to configurations each having as many as
several thousand vectors. If not controlled, this could
give rise to RCI matrices of order = 10 —too large to be
manageable in this context. To handle this eSciently, we
rotate these functions [11] to maximize the number of
zero interactions with all reference functions, and then
discard all vectors producing these zeros. This reduces
our RCI matrices to order 7000 or less.

Once the wave functions are created, the electric dipole
transition probabilities between levels are obtained using
the formalism outlined earlier [7] which is based on the
work of Grant [12]. We calculate in both the length and
the velocity gauges, using the experimental [9] excitation
energies. These results would be equal, if the 4's were
exact. Since each wave function is calculated indepen-
dently, the wave functions for different states are not
orthornorr. al. We take the nonorthornormality effects
completely into account by using methods given else-
where [7]. Since the Nb i? wave functions are large (see
the next section), calculation times can be significant.
Though we have speeded up our f-value program [13]
=100 times from the original version, calculation times
as long as 2 h per f value were found on a Spare 10.

II. RESULTS AND ANALYSIS

The Nb Ii (4d +Ss) J =2, 3,4 wave functions are the
largest and energetically most accurate. In addition to
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TABLE I. Calculated f values for (d +s)~ J=2, 3,4 to z 4d35p 'G;, 'D; transitions. Only f values
&0.005 are shown. Results obtained using experimental excitation energies. The present "Dirac-
Fock" results are obtained using the renormalized coefBcients of the MCDF vectors occurring in the
RCI calculations. The RCI results are from the present work also.

Transition

a 4d D —+D'
a 4d 5s F2~ D'
a 4d Ss'F —+D'
a 4d35s 5F4~3D'

4d4 3P 3D o

a 4d 5s F3~ D3
a 4d Ss F4~ D3
b 4d F4~ D3
a 4d Ss'F2~'G'

4d 35 5F 560

Velocity

0.054
0.020
0.026
0.052
0.065
0.008
0.038
0.009
0.239
0.065

RCI
Length

0.068
0.027
0.031
0.068
0.069
0.009
0.041
0.009
0.315
0.074

Velocity

0.069
0.028
0.041
0.084
0.045
0.024
0.008
0.008
0.276
0.085

Dirac-Fock
Length

0.081
0.050
0.054
0.113
0.035
0.024
0.006
0.004
0.433
0.099

single and double excitations from the 4d and 5s valence
shells, they include 4p4d, 4p5s pair correlations, as well
as single excitations from 4s and 4p. These excitations
are into previously unoccupied subshells (i.e., virtuals,
denoted u) with l ~4, allowing two to three radial func-
tions for each l. Additional details concerning the
valence and core-valence correlation has been given in
Ref. [1] for the case of Nbll J=2. The "Brillouin"-type
symmetry preserving single excitations are particularly
important in correcting for the variation of the 4p, 4d,
and 5s radial functions with levels. There are also impor-
tant "Pauli exclusion" effects present, associated with the
core pair excitations 4p —+4d +4d Ud, which can differ
as much as a few tenths of an eV from level to level.
These must be included, if accurate results for all the
(d +s)" levels are to be obtained, as is being recognized
[2,14].

The even J=2 levels have an average error of only 450
cm ' for the bottom ten levels, using a CI matrix of or-
der 6559. The J=3 and J=4 levels are less well deter-
mined, with average energy errors of 539 cm ' and 824
cm ' for their lowest six levels, with CI expansion sizes
of 3333 and 3342, respectively. Further details for the
even-parity levels can be found in Refs. [1,8].

For the (4d+5s) 5p states, we have included single
and double excitations from the 4d, 5s, 5p valence elec-
trons and the 4p —+4d +4d Ud Pauli exclusion effects.
As is the case with the even-parity states, the virtual
space has been restricted to l ~ 4. At this stage, the aver-
age energy error was 271 cm ' for the bottom four levels,
which includes the z 63 and the z D3, with matrix of or-
der 2069. We do not include the 4p ~up, uf excitations,

where

6.670X 10'

A, (J;,Jk) gk
(2)

where g =2J + 1 is the statistical weight for the lower (i)
and upper (k) states, A, is in A, and f,k is given in Table I.
Our lifetimes are given in Table II. The RCI results
agree quite well with experiment and with each other
(spread = 10%). The Dirac-Fock velocity results are also
good, but the corresponding length results are poor.

The results in Tables I and II give us the ordering for

nor the 4p 4d pair correlation. These involve a large
number of coeKcients and determinants and to a substan-
tial extent, they energetically cancel. We have performed
an LS analysis [15] of the odd-parity multi-
configurational Dirac-Fock (MCDF) solutions and find
that the G 3 is 95% pure whereas the D 3 is 43% D 3,
42% F3, and 7% D 3.

In Table I, we present our results for all possible ab-
sorption oscillator strengths ~0.005. We can see that
the RCI length and velocity results are closer than are
the Dirac-Fock values. Experimentally, only lifetime
values are available. For ~( Gs) there are two values
[3,4], 6.2 ns and 5.8 ns, and for r( Ds ) a common value

[3,4] of 5.0 ns.
Lifetimes are given [16] in terms of the spontaneous-

emission transition probability Ak, as (in s):

TABLE II. Lifetimes ~(ns), for z4d Sp 63 and D3.

Lifetime Expt. Velocity
RCI

Length
Dirac-Fock

Velocity Length

6.2(4)
5.8(5)

6.53 5.16 5.47 3.78

(3DO ) 5.0(4-5) 5.60 4.67 4.74 3.86
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the decay channels for G3 J=2&J=3&J=4 and for
D3 J=4=J=2 &J=3. If we could know a priori which

were the important lower states, this could save much
computation. Since the length operator is proportional
to b,E [7], the lowest states are favored, if radial and an-
gular characteristics are similar.

Nb 11 is a moderate Z atom and the G3 and 4d 5s F
states are & 90% LS pure. At least for these, LSJ analy-
ses may yield useful results. Nonrelativistically, ES=O,
~b,L~ ~1; given [9] the distribution of lower levels, only
decays to 4d 5s Fz may be important for the G3. Next,
we consider the J dependence of the G3 f values.

Nonrelativistically, we may show that the f value be-
tween two levels has the proportionality

(2J +1) J; 1 Jk

Jk S L; (3)

Since A, only depends weakly on J for G3~ Fz, angular
factors should predominate. Equation (3) predicts
f (J; =2) =—", , f(J; = 3 )= —",„f(J; =4) = —,'6; proportions
which are pretty well borne out by Table I results.

The situation for D3 is considerably more complicat-
ed. First, the state is nearly an equal mixture of D' and
F'. Second, using I.S rules, each can decay to a variety

of lower states, viz (.PDR and (DF), some of which may
not be so pure themselves (especially S =1 [1]). We may
use Eq. (3) to correctly predict that D3~ Lz decay is
largest for L = 1 (see Table I) and that F3 ~ Dz decay is
largest for J=2. However, the F3~ FJ decays are not
ordered (in J) as predicted.

The remaining length-velocity discrepancies are likely
mainly due to the failure to include 4p ~vp, vf, and 4p4d
pair correlations in the odd-parity states. Secondarily,
improvements in the J=3,4 states may also be warrant-
ed. Such improvements are computationally expensive
and must be postponed to the future.
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