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Compensation of losses in photodetection and in quantum-state measurements
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We show how losses in photodetection and in quantum-state measurements can be numerically com-
pensated after the measurements have been performed. When the overall efficiency exceeds —,', our recipe
works for all quantum states. For smaller e%ciencies, however, the convergence of the compensation
procedure depends on the quantum state under investigation.
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Detector inefficiencies and losses are present in every
real experiment in quantum optics. Apart from attenuat-
ing the signal they create extra noise as a consequence of
the fluctuation-dissipation theorem. This noise causes
quantum decoherence and diminishes our ability to ob-
serve subtle quantum phenomena such as interference in
phase space [1,2]. The effect of losses is especially impor-
tant in the recent measurements of the quantum state of
light [3,4]. How can we compensate detection losses'? It
can be done physically by preamplification [5] or numeri-
cally by deconvolution of the recorded data. In a recent
proposal [6] for the tomographic reconstruction of the
density matrix, the decon volution is woven into the
reconstruction algorithm. There the compensation of
losses is possible, but only when the detection efficiency g
exceeds the critical value —,'. Is this an artifact of the par-
ticular algorithm or is g =

—,
' the general bound?

In this Brief Report we separate the detection from the
compensation procedure. We assume a photon-number
distribution or, more generally, a density matrix as given.
We show how the compensation of losses can be
achieved. Again, only when the efficiency is larger than
the critical value —, is this possible for every density ma-
trix. In this respect, g= —,

' is a bound also for our
method. On the other hand, we show that in certain
cases the critical q can be less than —,'.

The detection efficiency and other losses (e.g., those
due to mode mismatch) can be effectively taken into ac-
count with a simple beam-splitter model [7], where a ficti-
tious semitransparent mirror is placed in front of the
ideal photodetector. The same simple picture can be ap-
plied to a homodyne detection scheme [8]. Here the
measuring apparatus can be considered as an ideal homo-
dyne detector with a single beam splitter placed in front
of it that accounts for all the losses (Fig. 1). Mode 1 is
the signal being in the state p„.g. It is attenuated by the
beam splitter, while mode 2 is the channel of the losses
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where a vacuum input p„„=~0)(0~ is formally intro-
duced. This vacuum mode models the extra quantum
noise involved in inefficient detection.

An elegant way [9,10] of treating the beam splitter is to
apply the Jordan-Sch winger formalism, originally
developed in the theory of angular momenta. Setting the
phase parameters to zero for simplicity, we find for the
unitary transformation of the beam splitter

—i 2 arccos~gE2S(g)=e
where

Here &
&

and d2 denote the annihilation operators for the
signal and the noise mode, respectively. The transmit-
tance q of the beam splitter is identified with the overall
detection efficiency. With this notation the signal density
matrix is transformed according to

p „,=Tr2[k (si)p,~P„„S(rl)I, (3)
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FIG. 1. Model for inefficient detection. The signal is at-
tenuated by a Sctitious beam splitter placed in front of an ideal
detector. The vacuum mode entering the second port of the
beam splitter models the extra noise involved in inefBcient
detection. The detector stands for a simple photodetector or a
homodyne apparatus, respectively.
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where Trz stands for tracing in the noise mode 2. One
theoretically remarkable feature of beam splitters is that
they are not only nice models for losses in photodetection
or homodyne measurements, but they describe rather
general damping processes as well [10,11]. In particular,
the density matrix p „,given by Eq. (3) may be also in-
terpreted as the result of a formal dissipation process de-
scribed by the master equation [10]

dp
t 2

=—(2&pe —a ap —pa 8) . (4)

g=e

Here t means a forrnal time that is related to the
transmittance g of the beam splitter or, in our terminolo-

gy, to the ef5ciency by

can evidently never be fu1511ed perfectly in a real experi-
mental situation. Only a Gnite part of the density matrix
can be measured with some accuracy, determined by the
statistical and other errors. We will study the role of the
statistics in some detail for the simplest photodetection
measuring scheme.

Before doing that, let us examine the form of the ex-
pressions (6) and (7). Introducing the diagonal vectors of
the density matrix

(n ~p~n+p &, p ~0
(d~)„= '

&n —p(p~n &, p(0, (g)

where p denotes the number of the diagonal and p=0
corresponds to the main diagonal we arrive at a simple
matrix form for both the transformation (6) and its in-
verse (7)

How can we compensate the eC'ect of dissipation? Let us
run the process (4) backwards in time. Then we arrive at
the original density matrix p„. Replacing t by —t means
replacing g by g '. In this way we obtain a simple recipe
for getting the original density matrix; calculate the den-
sity matrix in a given basis according to Eq. (3) and then
replace g by g '. That this is correct is immediately
verified by considering the density matrix in the Fock
basis. Using the general formula (3) the calculation of the
matrix elements is straightforward. In the Fock basis we
obtain

&n, ~p „,~n', &

[T'(n) ].

m m+/pf
p n+/p[

X(1—ri) ", m ~n
0, m&n

and

dmeas (9) sig& sig ( 9) meas ~

where we use the matrix notation

j. /2

(10)

I 00"' g &n, +j~p„,~n', +j&
j=0

ni+ j n'i+ j
n, n', (1—ri)J .

(6)

Ri'(ri) =T~(q ') .

We illustrate the effect of the finiteness of the measured
density matrix and the statistical error considering the
simple photocounting scheme. The photon-number dis-
tribution is given by the main diagonals of the corre-
sponding density matrix

n&
I

k

I
n&

This generalized Bernouli transformation can be directly
inverted,

(n, ~p„,(n', &

I OO"' "' y (n, +k~P ...~n', +k&
k=0

n&+j n&+j

0 0
Pn ( sig)n~ 'gn ( mess)n (12)

P (Xo =kii . . . XM =kM )

Nf ko kM
M

igi ~0 1M g 9n
n=o

K

Let the total number of measurements be N and the num-
ber of those where we found n photons X„. The set of
variables X„(n=0, 1, . . . , M) obeys the multinomial dis-
tribution

1x 1 ——
7l

(7) M
E =N gk„, (13)—

n=0
as is easily seen. Note that the special case of the main
diagonals was already obtained by Lee [12]. The ex-
istence of such an inversion formula may be surprising, in
particular if we take into account that dissipation is re-
garded as an irreversible process. The losses, however,
have a statistically we11-de6ned character and therefore
they can be compensated. So, if the corresponding ex-
pressions converge, the original density matrix can be
reconstructed, provided that the overall detection
efficiency g is exactly given and the complete p „, is
known with high accuracy. These conditions, however,

where M is a cutoff parameter for large photon numbers.
According to the multidimensional central limit theorem
[13] the relative frequency (h„=Xn/N) is distributed
normally in the weak limit, with vector notation

limahM ~(qMyh, M) (14)

where JV stands for the multidimensional normal distri-
bution with q mean (the index M refers to the finite di-
mension of the vectors due to the cutoff). The error ma-
trix is given by
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yhM " " yhMq„(1—q„)
nn Jim

9'num
(15)

The transformed distribution

gM RO, MLM (16)

follows in the weak limit a transformed normal distribu-
tion

hmegM~(pMggM)

The corresponding error matrix is

yg, M—RO, Mph, M( R0,M) T

(17)

(18)

%'e should emphasize at this point that p„ is not equal to
the original p„probability because of the cutoff. Only in
the limit

photon numbers have a dramatic inhuence, making an
accurate reconstruction impossible.

We sum up the consequences in some simple state-
ments, which can easily be proved using the properties of
(20). First, all finite distributions can always be recon-
structed, with arbitrary g. Second, if q) 0.5, then every
p„distribution can be recovered, with arbitrary statistical
precision, from a large enough number of data. The ele-
ments of the reconstruction matrix tend to zero for large
photon numbers, thus the effect of their uncertainty is
negligible. Third, for an efficiency g & 0.5 there are coun-
terexamples, where the reconstruction is impossible. For
a thermal distribution

(n )"

(1+n )n+1

p„= lim p~~—+ oo

does it hold. The statistical uncertainty is characterized
by the main diagonals of the error matrix

the critical efficiency needed takes the form

1 +2
n

(22)

I l
yg, M

I=n

21

(1—q) ~"qi(1 —q, )

( 1)k+1 tl
'k l

I, k=n n n '9

X (1—ri) "qhqt (20)

For a given finite cutoff M there exists a minimal X,
for every small e that if X & X, , then Xg'„&e. Thus, in
the presence of a cutoff, the statistical uncertainty can be
reduced by increasing the number of measurements.
Tending with the parameter M to infinity we have two
different cases depending on the behavior of N, .

(a) limit X, (~. In this case there is an upper lim-
it X, above which the statistical error, according to the
normal distribution, is smaller than e. Hence, in the
weak limit, the original distribution can be recovered.

(b) limM X, = ao. Now p„cannot be recovered
with a precision E. The statistical fiuctuations in the high

Here n denotes the mean photon number of the original
distribution. Above this critical value the statistical er-
rors have a finite effect in the weak limit. Note that in
this case (q (0.5) other errors (e.g. , the experimental un-

certainty of g itself) are also amplified during the recon-
struction process, adding extra noise beyond statistics.

To summarize, we have shown that losses in photo-
detection and in quantum-state measurements can be nu-

merically compensated. The inefficiencies are modeled by
a fictitious beam splitter placed in front of an ideal
measuring apparatus. Our recipe for compensation is the
following: derive the formula for the attenuated density
matrix in a given basis and then replace the efficiency g
by g '. In this way we obtained a compensation formula
for the density matrix in the Fock basis. For detector
efficiencies smaller than or equal to —,', however, our pro-
cedure does not work for all quantum states.
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