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Phase-sensitive reservoir modeled by beam splitters
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The superposition of input fields in a lossless beam splitter is studied in the Schrodinger picture
by using the convolution of the positive P representations, and the convolution law for these rep-
resentations is extended to other quasiprobability functions such as the Wigner and Q functions.
We show that the reservoir can be modeled by an infinite array of beam splitters, and we use the
convolution law and this model to derive the Fokker-Planck equation for a system coupled with a
phase-sensitive reservoir. Solving this equation shows that a phase-sensitive attenuation and ampli-
fication can be described by the superposition of two independent quantum fields, one of which is
the initial signal Beld and the other the squeezed thermal noise Beld representing the reservoir.

PACS number(s): 42.50.Dv, 42.50.Ar

I. INTRODUCTION

pi = d 0! Pi 0! A 0!

where Pi(n) and ~a), respectively, denote the GS P rep-
resentation and the coherent state with amplitude o.. The
other source produces the field whose state is described
by

p2 —— d P2 (1.2)

The density operator for the superposition of the two
fields is written as

p = d o. d Pi o. P2 o. + o. +

d pPp (1 8)
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There has been considerable interest in the evolution
of the quantum nature of an electromagnetic beam that
passes through a beam splitter [1—6]. The phase proper-
ties of a signal beam can be measured by homodyne de-
tection using a beam splitter [4,5], and an imperfect pho-
todetector can be modeled by combining a beam splitter
and a perfect detector [4]. The effect of a reservoir on
a signal beam can be simulated by an infinite array of
beam splitters and has been analyzed in the Heisenberg
picture [7,8].

A beam splitter can superpose two fields [9], and
Glauber has discussed the superposition of two fields
&om independent stationary radiation sources [10]. One
source produces a field represented by density operator pq
whose Quctuation is described by the Glauber-Sudarshan
P representation (GS P representation) [10,11] as

where the P representation for the superposed field is
given by

P(p) = f d'a P, (a)Pg(p —a) . (1.4)

In this way Glauber has shown that the GS P represen-
tation for the superposed field is the simple convolution
of the GS P representations for two component fields
[10,12,13].

The GS P representation, however, is a diagonal ex-
pansion by coherent states so that it is not possible to
describe a nonclassical field using a nonsingular GS P
representation. There are other phase-space representa-
tions of the field, such as the Wigner, Q [14], and gen-
eralized P representations [15]. These are the so-called
quasiprobabilities in phase space. En this paper we extend
the simple convolution law (1.4) to describe the superpo-
sition of nonclassical fields. Once the convolution law
for a quasiprobability is known, the other convolution
relations for the other quasiprobabilities can be found
straightforwardly by using the relations described by the
characteristic functions of the quasiprobabilities. The
convolution relation for the 50:50 beam splitter has been
studied by Leonhardt within the framework of the si-
multaneous measurement of conjugate variables in phase
space [16], but we will derive the convolution relation
more rigorously here by using the quasiprobabilities.

Although the quantum statistical theory of a beam
splitter has been studied by a number of authors, the
phase-space description has attracted attention just re-
cently [17,18]. Agarwal used the evolution of the Wigner
function in his study of quantum noise in interferome-
ters [19], and Leonhardt has recently given considerable
thought to using the beam splitter theory for making si-
multaneous measurements in phase space [16]. The most
general formalism for the input and output fields of the
beam splitter was published by Campos et aL [2], and
their beam splitter unitary operator based on the SU(2)
matrices is used in this paper.

An array consisting of an infinite number of beam
splitters can model a reservoir coupled to a signal field
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[7,8], and the Langevin equations have been derived for
attenuation and amplification of a signal coupled with
the vacuum. In the present paper we use the convolu-
tion relation to derive the Fokker-Planck equations both
for attenuation and amplification of the signal coupled
with the phase-sensitive reservoir [20]. We start f'rom

the beam splitter matrices for the amplification and dis-
sipation cases and find the Fokker-Planck equations for
each case.

The phase-sensitive reservoir [21,22], based on estab-
lishment of squeezed light [23] has been studied theoret-
ically [24—26] and realized experimentally [27]. We find
the general solution of the Fokker-Planck equation for the
phase-sensitive reservoir, and this solution shows that the
reservoir effect can be regarded as the superposition of
two independent quantum fields: one is the signal field,
which is either simply amplified (in the case of amplifi-
cation) or attenuated (in the case of attenuation) with-
out noise, and the other is either the thermal field (for
phase-insensitive reservoir) or the squeezed thermal field
(for phase-sensitive reservoir).

The convolution law is studied in Sec. II where we ana-
lyze the beam splitter output field when a squeezed ther-
mal field is superposed on the input coherent state. In
Sec. III the Fokker-Planck equations for attenuation and
its solution are derived. Section IV shows that when the
signal is amplified, the convolution relation is somewhat
different kom that for attenuation. Section V concludes
this paper by discussing the physical interpretation and
the potential applications of the present theory.

B = exp 0 e '~cdt —e'~ctd (2.2)

p = d odpP'np o. (2.3)

where P'(a, p) is the positive P representation P(a, p)
divided by the trace of the projection operator,

where r and t are real. Since the phase shift p due to
the beam splitter does not affect the theory, we assume
&p = 0 for simplicity. (Even when the phase shift is taken
as p = z/2 as in [23], for example, the phase can later
be absorbed into the coherent amplitudes, and thus we
can assume y = 0 without loss of generality. )

Vlhen the field is fully described by the classical the-
ory, the field can be represented in phase space by the
positive nonsingular GS P representation as in Eqs. (1.1)
and (1.2). For nonclassical fields, however, the GS P rep-
resentation is either negative or not well behaved. This
disadvantage is due to the GS P representation being an
diagonal expansion by coherent states. The generalized
P representation, especially the positive P representa-
tion, has been introduced to meet the growing awareness
of the nonclassical fields [15]. The positive P function,
even for a nonclassical state, is smooth and positive. Be-
cause we want to treat arbitrary signal and noise fields,
we will use the positive P representation to describe the
fields.

The noise field with density operator p can be writ-
ten as the weighted integral of the coherent projection
operators,

II. CONVOLUTION LAW P'(a ~) = P(a ~)/(~'la) (2.4)

Consider that two fields in the two input ports of a
beam splitter are superposed. For convenience we call
one input field the signal and the other the noise (Fig. 1).
The input signal mode 6 with its annihilation operator b

is superposed on the noise mode a with its annihilation
operator a by the beam splitter whose amplitude reflec-
tivity r = sin 0 and transmittivity t = cos 0. Throughout
the paper the beam splitter is assumed to be lossless.
The two output field annihilation operators c and d are
related to the beam splitter input fields by the transfor-
mation

Similarly the signal field with pb is

where

Pb= (2.5)

D(a) = exp(aalu —a*a) . (2.7)

P'(P ~) —= P(P ~)/(~*IP) . (2.6)

Coherent state la) is mathematically generated by the
displacement of the vacuum with the displacement oper-
ator [10]

f a ) - f c ) - t
t' tc+ e'4'rd )

Eb) & "J 0«-e ' «) (2.1)
The density operator p;„ for the total input field is then
written as

for the unitary beam splitter operator [2] P d2A d2 d2 d2~ P.' A, ~ Pb, b

XD (a)D (P)lo)(olD (p)D (b) . (2.8)

=d

From the beam splitter transformation (2.1), we know
that the density operator p „& for the output field &om
the beam splitter is

FIG. 1. Beam splitter vrith the signal input in mode 6 and
the noise field input in mode a.

p~~t = d Ad d Bd QP~

xP~(P, b) lta —rP), (tp* —rb*l

tp+ ra)„(ta + rp*l . (2.9)
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The reduced density operator pg for mode d is obtained
by taking the trace over mode c,

pg
—— do, d dbdpP o. pPg

x ltp ~ rn)«(tb'+ r . (tq' —rb'Itn —rp)

Eq. (2.15) as

C"(4) = C'"'(()
C(i ) (r()e

—I~)!I'C&&l (t()e
—I~I I'

."( &) "(«) (2.16)

(2.10)

where the relation (2.4) has been used. The density op-
erator may also be written in the general form

where C and C& are the characteristic functions for
Q (n, p) and Qi, (p, b) and where the relation r + t = 1
for the lossless beam splitter has been used. The above
equation is Fourier transformed to give the convolution
law for the Q function,

s~ = d'4 d'0 ' I4)«(4'I .
(@'I&)

(2.ii)
Q~(4) = —, d'n Q.(n)Qs I

(P —rn')
(2.17)

Comparing Eqs. (2.10) and (2.11), we find the convolu-
tion law for the positive P representation,

Pd(4 0) = —
4 f d ~ d Y P )cr, p)Pb

f P —rn g —rgb)
t ' t (2.i2)

C~"l(() = Tr[p exp((at) exp( —('a)], (2.13)

for the field represented by density operator p [15]. This
function for the positive P representation is the same
as that for the GS P representation and is related to
characteristic functions CI'i~(() and C~ &($) for the Q
and signer functions as shown in the following equation
[28]:

C'"'(() exp( —ICl'/2) = C' '(&)
= C"(() exp(l&l'/2) . (2.14)

By using the convolution theorem, we can factorize the
inverse Fourier transforin of the convolution law (2.12)
as

C'"'(() = C.'"'( &)C'"'(«) (2.15)

The GS P representation P(n) is a special case of the
positive P representation P(n, n'). The convolution re-
lation (2.12) reduces to (1.4) when P = @' with appropri-
ate weight rates to take the beam splitter t and r values
into account.

The Wigner and Q functions are other quasiprobability
functions and are well defined even for the nonclassical
state, although the Wigner function can be negative for
certain nonclassical states. The positive P representa-
tion is also well behaved for a nonclassical state, but it
is defined in four-dimensional space. The Q or Wigner
function, both of which are defined in two-dimensional
space, is, therefore, sometimes easier to treat, so we will
extend the convolution law for the uses of the Q and
Wigner functions.

Drummond and Gardiner have proven that the posi-
tive P representation may also be defined as the Fourier
transform of the characteristic function,

Similarly, the signer function convolution law for su-
perposition of the two fields with the Wigner functions
W (n) and Wi, (P) in the beam splitter is

(P —rn)
Wg(P) = — d n W (n)Ws

l
(2.is)

Leonhardt has used the wave-function method to study
the convolution of the superposition field in the 50:50
beam splitter [16], and if we take r = t = 1/v 2 the con-
volution law (2.18) agrees with his result. The convolu-
tion law is also related to the simultaneous measurement
of noncommuting observables [16,29—31]. When the sig-
nal field is split into two beams by a beam splitter and
one quadrature component is measured in one beam and
the other quadrature component is measured in the other
beam, the joint probability of obtaining Re[/] and Im[P]
is given by (2.18) [16].

Example: squeezed thermal noise Beld

There have been a number of works on phase-
insensitive amplification and attenuation using superpo-
sition of the signal field and added noise fields. The am-
plification and attenuation are assumed to be linear, and
in this case, the quantum state of the amplified or dis-
sipated signal is calculated as the superposition of the
original signal and the thermal noise field [32—35].

On the other hand, phase-sensitive linear processes are
also important. The signal can be amplified, or attenu-
ated by a phase-sensitive reservoir [20—22]. There also
is a phase-sensitive measurement process, in which the
signal field is coupled to a reservoir and is measured by
heterodyne detection with phase-dependent accuracy and
phase-dependently added noise [36].

In this example, we analyze the superposition of the
phase-sensitive (i.e. , squeezed) thermal noise field on the
signal prepared in an arbitrary field. A squeezed state has
reduced Buctuations in one quadrature at the expense of
the enhanced noise in the other quadrature. The density
operator p,z for the squeezed thermal state is defined [37]
as

where C and C&" are the characteristic functions for
P (n, y) and Pb(P, b). Using Eq. (2.14), we can write p.~ = S(s)pt, &S (s), (2.19)
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where p&g is the density operator for the thermal Geld

[38] and the squeeze operator S(s) for the real squeeze
parameter s is

thermal Geld without squeezing.
Using the definition (2.25) we find the following

quadrature variances of the superposition field:

S(s) = exp —(a, ) ——a
s „t 2 s „2
2 2

(2.20) ((&&*) ) = &((&X') ). + T((&X') ).

The state of the quantum-mechanical system is char-
acterized by the set of expectation values of the system
operators. The normally ordered moments of the bosonic
operators are evaluated, with the help of the character-
istic function C&"l (() defined in Eq. (2.13), as follows:

(2.21)

where the partial differentials are

Dg = —and Dg. = (2.22)

The characteristic function for the superposition of the
squeezed thermal Geld on the signal field is factorized as
shown in Eq. (2.15). Accordingly, the normally ordered
moments are found to be

(2.28)

((»')') = ((»-)') ~+ ((»')') —
4 (2.29)

The quadrature variance for the output field is the
weighted sum of the quadrature variances for the in-
put fields. As seen in Eqs. (2.26) and (2.27), one of the
quadrature variances of the squeezed thermal field can be
reduced below the vacuum limit for s && 1, which means
that it is possible to reduce the quadrature noise of the
signal by superposing it with the phase-sensitive noise.

It should be noted here that the above calculation
based on the convolution (2.12) is realistic while the di-
rect use of the simplified convolution (1.4) will lead to a
wrong result. If we start from (1.4) instead of (2.12), we
will arrive at Eq. (2.15) with r = t = 1, which leads, with
the aid of Eqs. (2.21) and (2.23), to

((a') a") = Dg Dg. &.',"'(&)&.'"'(&)Ic=o
m n

) ) ~ ~ ~

~~ k+rt + —k —E

e=o I =o ( J E )
x ((a')'a")"((a') 'a" "). (2.23)

(n) = B(n),~+ T(n), , (2.24)

where B = r and T = t are the intensity reHectivity
and transmittivity of the beam splitter. This is obvious
because the superposition does not violate the conserva-
tion of energy.

%e are particularly interested in the quadrature noise
added by the superposition because the squeezed thermal
state has the phase-dependent noise. The quadrature
operators are defined by

where the subscripts sq and s, respectively, denote the
squeezed thermal and signal Gelds.

According to the definition (2.19) the expectation
value of the electric field for the squeezed thermal field
is zero. From Eq. (2.23) the mean photon number
(n) = (ata) of the superposition field is found to be the
sum of the mean photon numbers of the component Gelds,

where —1/4 comes from the quadrature variance of the
vacuum field. If we assume that both signal and noise
fields are in a strongly squeezed state having nearly zero
quadrature variance, then the quadrature variance of the
superposed fieM should be negative, which does not make
sense. This difhculty is due to the assumption that two
fields can be superposed without any modification. The
difBculty is removed by adopting the convolution law
(2.12), which describes the realistic superposition of two
GeMs via a beam splitter.

The photon number variance ((An)2) for the output
Geld is

((&~)') = &'((&~)') ~+ T'((&~)')
+» 2(a'a) ..(a'a). + (a') ..((a')').
+(a').((a')') .. (2.30)

This variance is determined not only by the weighted sum
of those for the input fields but also by the cross term
shown in the third term of Eq. (2.30). This is because
the input fields are superposed coherently by the beam
splitter; the photon statistics are thus determined by the
square of the coherent sum of the amplitudes of the two
Geld s.

a+ at a —at
and

2i
(2.25)

III. PHASE-SENSITIVE ATTENUATION
The quadrature variances, ((Ay;) ) = (y,. ) —(g;)
the squeezed thermal state [37,39] are given by

2 —1
((ag, )') = —(2n, ~+1)e—"

4
(2.26)

and

2 —1((»2)') = —(2~th+ 1)e',
4

(2.27)

where noh is the average thermal photon number for the

Phase-sensitive reservoirs, based on the establishment
of squeezed light, have been studied extensively in re-
cent years [20—22], and in this section the phase-sensitive
reservoir is modeled by an infinite array of beam split-
ters. Each beam splitter provides a degree of freedom,
so the reservoir has infinitely many degrees of &eedom.
As shown in Fig. 2, a signal passes through an infinite
number of beam splitters whose transmittivity is nearly
unity. The noise Gelds p~ are assumed to be produced
by independent noise sources, and each p~ is coupled by
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JV beam splitters

e

Ps p, (r + Ar) rs

= Pout

P1 P2 pv

FIG. 2. The phase-sensitive reservoir modeled as an array
containing an in6nite number of beam splitters. The signal
is injected from left and the independent squeezed fields (all
with the same properties) are injected into the other ports
The transmittivity is considered to be nearly unity.

the jth beam splitter. In this paper we assume a homo-
geneous attenuator for simplicity, so the p~ all have the
same noise property.

A similar study, in the Heisenberg picture, has been
done for the signal transmitted through a lossy fiber cou-
pled to the vacuum in a phase-insensitive manner [7,8],
and here we are extending the study to couple the signal
with the phase-sensitive reservoir in order to describe the
dynamics of the signal 6eld in the Schrodinger picture.

A. Fokker-Planck equation

In this section we derive the Fokker-Planck equation
for the phase-sensitive reservoir for the Q function. The
total duration of time when the field is coupled with the
lossy channel is denoted by T, the total number of the
beam splitters by A', and the interval between the adja-
cent beam splitters by L7. The beam splitters are Grst
taken to be discrete components, but their number

(3.1)

Q(u) = (i+ &) f d'n Q. (P) Qs
1 l

(g g)

To calculate the eÃects of attenuation, we need an ex-
pression for the output signal operator in terms of the
input operators. To simulate an attenuator, we consider
the beam splitters forming a continuous array by taking
the limits

JV w oo, Dr -+ 0, and R w 0. (3.3)

These limits cannot be taken independently: from
Eq. (3.1), JVb, r should be kept constant. Also, the total
energy loss within T is described by 1 —exp( —rT), where
K, is the attenuation coefBcient, and this loss should be
equivalent to the beam splitter loss so that

(1 —R) = e " i JVln(1 —R)

is later taken to in6nity in order to model a continuous
attenuating reservoir. Under the assumption that the
refiectivity is very small for the beam splitter, Eq. (2.17)
is written as

(3.6)

where up to the 6rst order terms of Bare kept. The usual
Taylor expansion for a real function having a complex

argument is used tu expand Q (r; n),

( a —rp')
Q I

r
I

= Q(r'a+ &a)

(9Q Rai (9Q Raz

1 o)2Q 2 1 (9zQ

28 2 (9a

+ RPiP. ,i9aiBa2

where, again, up to the 6rst order terms of B have been
kept and the real and imaginary parts of a and P are,
respectively, denoted by ai, az and Pi, P2. The function
Q is the simplified notation of the function Q(r; a).

Substituting Eq. (3.7) into Eq. (3.9), we obtain

R
Q(7 + Ar; a) = Q(7", a) + — d P Q,Q(P) (aiQ)

2 OAy

(9 OzQ 2 82Q
+~ (a2Q) + ~, pi + ~, p2|9A2 0!g 00!2

(9z Q+2~ ~ pip2
|9AyOO!2

(3.8)

which, with Eq. (3.4), leads to

(nrQ)+d (nsQ) fd'pQs(p)
K 8

o)2
(3.9)

where the approximation was made under the assump-
tion that R is small.

Let us define Q(r; a) as the Q function of the signal
field incident on the beam splitter at time r, Q,Q(P) as
the Q function for the phase-sensitive noise added to the
signal at the beam splitter, and Q(r + Ar; a) as the Q
function for the signal leaving &om the beam splitter.
The squeezed. thermal 6elds produced by the indepen-
dent stationary sources act as phase-sensitive noise in
our model, so the p~ have the same Q function, which is
denoted by Q,Q(P) in the following.

From Eq. (3.2), we obtain the relation

Q(r+rtr;n) =(t+&) fd*P Q le; 1Q"(P)

(3.5)

and (a —rP)/t is expanded as

a —rp 1 Ba —HARP =a+ —a —vBP

= —)cJV&r -+ R = rb, r, (3.4)
To finish the calculation we need to have the precise

form of the Q function for the squeezed thermal field.
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Recalling that the Q function is proportional to the av-
erage value of the density operator in a coherent state
[37]; that is,

q. (a) = —f d'pd*v P (p, v)

x exp[—(n, —A)' —(n, —B)'], (3.16)

(3.10) where

we use the definition of the density operator (2.19) for
the squeezed thermal field and find Q,~(P) to be

A = 2i (y. + v),
1B = —.(p, —v) .
2i

(3.17)

where

N = sinh 8+nghcosh2s (3.12)

1 Ã

g(1+ N + M) (1+N —M)
p2 p2

x exp— (3.111+N —M 1+N+M

It has been recently shown by Perinova et al. [40] that
if the initial Q function of the quantum system is (com-
plex) Gaussian, then the solution of the Fokker-Planck
equation (3.14) is also Gaussian with time-dependent pa-
raxneters. The Q function (3.16) is a weighted integral
of complex Gaussian functions, so one can use Perinova's
argument to obtain the time evolution of the input state
(3.15). The quasiprobability function Q qi(n) for the out-
put signal can be written in the form

M =
z (2n, i, + 1) sinh 2s (3.13)

is the mean photon number for the squeezed thermal Geld
and

Q ii(n 7) = d pd vP p, v
Q[N(~) + l]2 —M(~)z

[ai —A(v )]2
1+N(7-) + M(7)

dQ(7-, n) r 8 8 1ai + az + —(1+N + M)
8

d'T 2 OA y Do'2 2 BAg

1 8
+—(1+N —M) 2 Q(v, n) .

2 c)a2
(3.14)

For the phase-insensitive case, this reduces to the usual
Fokker-Planck equation [20,40] with N = noh and M =
0. The Fokker-Planck equation is relatively simple
and observables can be calculated. as correlations of the
quasiprobability function. The Fokker-Planck equation
has usually been derived, with the help of the correspon-
dence principle [41], Rom the master equation for the
density operator [14].

is the sum of both the quadrature variances given by
Eqs. (2.26) and (2.27).

Substituting the simple Gaussian integration of Q,~(P)
into Eq. (3.9), we obtain the Fokker-Planck equation for
the Geld coupled to a phase-sensitive attenuation reser-
voir [24],

(3.18)

where the attenuated signal is represented by

N(~) = N[l —exp( —r~)]

and

M(v. ) = M[1 —exp( —~7)] . (3.20)

The inverse Fourier transform of this Q function gives
the characteristic function C «as a product of two char-
acteristic functions,

C(, ) (( r) C(a) (( ~)C(~) (( ~) (3.21)

A(t) = Aexp( —r7/2) and B(t) = Bexp( —rv/2),
(3.19)

and the noise parameters are

B. Evolution of attenuated signal

In this section the Fokker-Planck equation (3.14) is
solved for an arbitrary signal attenuated in the phase-
sensitive reservoir. The density operator for an arbitrary
input state of the single-mode Geld, written in the coher-
ent state basis, takes the form

d 6 PP p) p )
(v IV)

'

C(9)(( ~) C(e)(ge —K~ () (3.22)

and C,~ (f, r) is the characteristic function, given by
Eq. (3.11), for the time-dependent squeezed thermal field
with the parameters (3.20),

where C( ((,v) is the characteristic function for the at-
tenuated signal without noise [the characteristic function
C,~)($, v = 0) is the inverse Fourier transform of Q, (a)
in Eq. (3.16)],

where ~p) and ~v) are coherent states and P(p, v) the
positive P function. The Q function corresponding to
the input field density operator (3.15) then becomes a
weighted integral of Gaussian functions,

C(~~) ((, 7.) = exp[—(N + M + 1)(1 —e "
)

x(i —(N —M+ 1)(1—e " )Q]
= e.«~ z —e- (3.23)
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where the real and imaginary parts of ( are, respectively,
denoted by (i and (2. We have shown that the fac-
torization is extended to the dynamics of the signal in
the phase-sensitive reservoir. Because the characteristic
function for the signal inHuenced by the phase-sensitive
reservoir is factorized, the convolution law (2.17) can be
applied. Thus coupling of the signal with the phase-
sensitive reservoir brings about the superposition of the
squeezed thermal field on the attenuated signal. We can
also easily 6nd the properties of the output field by using
the relation (2.23).

In the case of attenuation we take r = gl —e "~ and
t = v e "~ to calculate the moments specified by (2.23).
The quadrature variance for the output Geld is

(3.24)

where ((Ayi) ), is the quadrature variance for the sig-
nal and the quadrature variance (2.26) for the squeezed
thermal state is written as

(3.25)

with the definitions (3.12) and (3.13). From (3.24) we
clearly see that while the properties of the signal decay
exponentially, those of the reservoir become pronounced.

The above description is similar to those discussed by
Fearn [42] and I eonhardt [16] in the sense that the evo-
lution is described by exponential decay of the original
signal field with the noise inQow &om the reservoir. The
longer the signal couples to the reservoir, the more the
signal is dissipated and the more noise Bows into it. Fearn
[42] described this dynamics in the Heisenberg picture
by a beam splitter having a decaying transmittivity, and
Leonhardt described the dynamics of the density opera-
tor of the signal in the Schrodinger picture. In the present
paper the evolution of the signal is described using the
Schrodinger picture in quite a simple way —as shown
in Eqs. (3.21)—(3.24) —and we extend the analysis to
describe (phase-sensitive) amplifiers.

IV. PHASE-SENSITIVE AMPLIFICATION

An amplification process is inevitably accompanied by
the increase of the quantum noise in the system [21]. In
other words, the amplification degrades an optical signal
and rapidly destroys quantum features that may have
been associated with the signal. The noise transferred
&om the ampli6er to the system can be associated ei-
ther with quadrature Huctuations or with photon-number
Buctuations, and the nature of the amplifier affects the
physical properties of the amplified states of light. In
particular, for an arbitrarily squeezed input the phase-
insensitive amplifier provides a squeezed output only for
a gain smaller than two [33]. To overcome this cloning
limit, phase-sensitive ampli6ers with reduced quadrature
Quctuations have been proposed. The phase-sensitive
amplifier is conceptually based on the establishment of
squeezed light and enables a squeezed input to remain

squeezed after amplification with a gain greater than two
[22). The phase-sensitive amplifier is a nonclassical am-
plifier that selectively preserves the phase information
during the amplification process.

A. Fokker-Planek equation

The amplification process can also be modeled by an
array of beam splitters similar to that shown in Fig. 2. In
their experiment with phase-sensitive amplification, Ou
et al. have a nondegenerate parametric amplifier where
the signal 6eld is ampli6ed and the idler mode is coupled
with the squeezed vacuum [27]. As in their experiment a
two-mode parametric optical ampli6er is modeled here by
an amplification beam splitter matrix. For a two-mode
parametric ampli6er the signal input b is transformed
into the ampli6ed output d with unavoidable noise at,

(4.1)

Bi ——exp[2&i (ctdt + cd)], (4.3)

with cosh Hi ——~g and sinh gi ——« —1.
To analyze the beam splitter transformation for the

amplifier, let us assume we have two coherent states ln)
and lP)b at the two input ports Then t. he output field is

BiD (n)Dg(P) l0)~l0)g = D, (~g n)Dg(2+g —1 n*)

xD.(2+g —1 P')

x D~(~u P)Bil0)- l0) s (4.4)

where

Bi10) 10)t, = ) (tanh gi) e' ' 122) I22)& .
cosh 8y

(4.5)

More generally, the input fields are expressed as a
weighted sum of diagonal coherent components,

Pj~ = d A d Po, A Pb o' a~ A bb (4.6)

where P and Pb are, respectively, the GS P representa-
tions for modes a and b. Tracing the output Geld over
mode c, we Gnd the output density operator for mode d,

where g ) 1 is the in6nitesimal ampli6cation factor. We
are going to build a beam-splitter-like relation for ampli6-
cation, and consecutive application of an in6nite number
of Eq. (4.1) will give the final amplification result. The
actual gain G by %he ampli6er will, thus, be proportional
to g. The beam splitter output and input transformation
can be written as

lt'd'll Bt
l

~a —gg — '
1l (42)Ea) 'Ec) ' E~gc —2« —1d ) '

where the unitary amplification beam splitter opera-
tor has been introduced in analogy with the two-mode
squeezing operator [43),
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pg —— d o. d P~ n Pg Dg b pggD~~ 8 (4.7)

where

h =i' —1 n' + ~g P (4 8)

pth = d PT ) (4.9)

and p~h is the thermal Geld density operator for the mean
photon number n = g —1. Even when both the signal
and the idler fields are in the vacuum state, i.e. , n = P =
0, the amplifier brings noise into the fields. The noise
energy comes &om the pump.

The density operator for the thermal field [38] can be
written as

that for attenuation (2.17) because of the unavoidable
extra noise due to the thermal field (4.9).

Consider an array of JV beam splitters that satisfy
the transformation relation (4.2). To simulate an am-
plifier we will take JV -+ oo and let the infinitesimal
ampliGcation factor for each beam splitter be given by
g = 1+e = l. After a signal passes through the JV beam
splitters, it is ampliGed by the factor of

G = e~T = (1+e)~, (4.16)

where T is the total transition time of the signal through
the beam splitters and p is the ampliGcation coefBcient.
By using the Taylor expansion of Q function (4.15) to the
second order under the assumption e = 0 (we had r = 0
for attenuation), we obtain the Fokker-Planck equation
for amplification,

and its GS P representation is

(~)
/ (4.10)

dq(~, a)
l7 2

(4.17)

8 8 1 02
ai — a2+ (N+ M— )Bni Ba2 2 Bai

1 82
+ (N —M—) Q(v. , a),

2 gn 2

By using Eq. (4.9), we find the density operator (4.7) for
output mode d to be

where the ampliGcation coeKcient p ) 0. This is identi-
cal to the Fokker-Planck equation derived. &om the mas-
ter equation [24].

pg= d o.'d 6 PT P~ o.'Pg +8 +

= f &'C P~(()10((ll (4.11)
B. Evolution of ampli6ed field

where the GS P representation for the output Geld. is
deGned as convolution of the three P representations

xP2 (P) . (4.12)

The solution of the Fokker-Planck equation is, as for
the attenuation case, straightforward. Solving Eq. (4.17)
for the arbitrary signal described by Eq. (3.15), and am-
pli6ed in the phase-sensitive reservoir, we Gnd. that the
Q function of the amplified signal can be written as

1 7r 2 2
Qamp(n& +) = d p,d vP(p, v)

(Ni(~) + 1) —Mi(~)
The inverse Fourier transform of the GS P representa-

tion gives the characteristic function C&" for the output
6eld in the form of the product of the characteristic func-

tions C ",C&", and C& for the input modes a and 6
and the thermal field,

C&~ l(g) = C "l (—i' —1 g)C&" (~g g)C&~"l(rI) . (4.13)

[ai —A(~)]2
x exp 1+Ni(~) —Mi(~)

1+Ni(~) + Mi(~)
(4.18)

We can simplify this relation using the relation between
the characteristic functions for the various quasiproba-
bilities (2.14) and the exact form of the characteristic
function for the thermal 6eld from the inverse Fourier
transformation of (4.10), yielding

C~~)(g) = C&~(Ping —1—g)Cs~~l(~g g) . (4.14)

The Fourier transformation of this shows that a modi6ed
convolution between Qs for the signal Q function and P
for the noise P representation results in Q~ for the Q
function of the output Geld,

q„(q) = — d2~P. (~)q. ] [
. (4.15)

The convolution relation for ampli6cation divers from

where the time dependencies of the amplification param-
eters are

A(t) = A~G = Ae~ and B(t) = BV G, (4.19)

and those of the noise parameters are

Ni(w) = (N + 1)(G —1) and Mi(v) = M(G —1) .

(4.20)

The inverse Fourier transformation of the Q function
(4.18) shows that the characteristic function C p for
the Q function of the amplified field is the product of
the characteristic function C,~ for the P representation
of the squeezed thermal field and that C~ l for the Q
function of the ampli6ed signal without noise
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C«~, (q) = Ci»('gG —1 q)C(~l(~G q) . (4.21)

The convolution relation for this relation is then in a
form analogous to Eq. (4.15) for the amplification beam
splitter superposition of two input Gelds.

Similarly to the calculation procedure &om Eq. (2.21)
to (2.23), the antinormally ordered moments can be cal-
culated from the characteristic function C(~). Using this
procedure with the aid of Eq. (4.14), we find the anti-
normally ordered moments,

(4.22)

This relation is then used to calculate the mean photon
number,

(ata) i, = (G —1)((ata),~ + 1) + G(ata). . (4.23)

The quadrature variance (3.24) is calculated for amplifi-
cation as

((»i)') = G((»i)'). + 4 [2(~+ M) + 11(G —1) .

(4.24)

From Eqs. (3.12) and (3.13) we can easily see that
2(M + 1V) + 1 is always positive, so the quadrature noise
indeed increases even during phase-sensitive amplifica-
tion [26,27].

V. CONCLUSION

We have developed a general theory, in the Schrodinger
picture, to describe the superposition of two input fields
in a beam splitter. The superposition of the fields is
described by convolution of their quasiprobabilities as
shown in Eqs. (2.12), (2.17), and (2.18), and is simply de-
scribed by the product of their characteristic functions as
in Eqs. (2.15) and (2.16). The attenuation of a signal field
is modeled by using an infinite array of beam splitters
each having an infinitesimal reQectivity. To show the evo-
lution of the signal field coupled with the phase-sensitive
and phase-insensitive reservoir, we have used the convo-
lution relation to derive the Fokker-Planck equation for
this attenuation.

We have also extended this analysis to describe amplifi-
cation of the signal field. We introduced an amplification
beam splitter relation based on the two-mode parametric

amplifier model, and we obtained the modified convolu-
tion relation (4.14). Using this for the signal field pass-
ing through an infinite number of the amplification beam
splitters, we have derived the Fokker-Planck equation for
amplification of the signal in a phase-sensitive amplifier.

The amplification process is not merely the inverse of
the attenuation process. The transformation of the in-
put fields into the output fields is described by the beam
splitter operators B in Eq. (2.2) for attenuation while
the transformation is described by Bi in Eq. (4.3) for
amplification. The argument 8 of the beam splitter op-
erator B is related to the beam splitter refIection r and
transmission t coefBcients by r = sin 8 and t = cos 8, and
the argument Oq for Bi is related to the amplifier gain
g = cosh Hq. From cos 8+sin 8 = I, energy is conserved
in the re8ection and transmission, which refIects the fact
that a usual beam splitter is a passive device. For an am-
plification beam splitter, however, cosh Oq —sinh Oq

——1
holds, and thus energy is not conserved. The vacuum in-
put is transformed into the vacuum output by the usual
beam splitter, i.e. , B[0)a~0)s ——)0),[0)g, while it is not
transformed into the vacuum output by the amplificaion
beam sp»tter, i.e., Bi~0)a)0)s g )0),[0)q. The vacuum
input is transformed into a thermal-state output by a
phase-insensitive reservoir and into a squeezed thermal-
state output by a phase-sensitive reservoir. The fact that
the amplification is not a reverse process of the attenua-
tion is also re8ected in the difference of the convolution
relations, (2.12) and (4.15), and in the difference of the
characteristic function relations, (2.15) and (4.14).

The present theory has a potential of application to
many different directions. For example, the generaliza-
tion of the theory to frequency-dependent attenuation
and amplification is straightforward by introducing the
frequency dependent beam splitter with t(u) and r(tu).
Also, although we treated only thermal-state-like reser-
voirs in the present paper, the generalization to any other
type of reservoir (even non-Gaussian) is possible because
we can replace q,~(P) with the Q function of any kind
of the noise Geld. As discussed in Sec. II, this theory
also gives us a way to describe simultaneous measure-
ment of two quadrature components with an inevitable
noise, which is possibly squeezed (phase sensitive).
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