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A method is presented for the generation of valence-only local Hamiltonians, or pseudo-
Hamiltonians, within the framework of the local-density-functional theory. Extensive transferabil-
ity tests for atoms and crystals show that the performance of pseudo-Hamiltonians in density-
functional-theory calculations matches the standards of other state-of-the-art methods. These
pseudo-Hamiltonians represent a useful tool for quantum Monte Carlo simulations of many sp-
bonded valence-only systems.

PACS number(s): 31.15.—p, 31.15.Ew, 71.10.+x

I. INTRODUCTION

When dealing with Green's function Monte Carlo
(GFMC) techniques [1], the strong Z dependence of the
simulation time needed to achieve low enough statisti-
cal errors in the computation of the relevant physical
quantities for an atomic system [2] puts a very low up-
per bound on the number of electrons that can be ac-
counted for simultaneously in quantum simulations of
real atomic, molecular, and solid-state systems [3—5]. To-
gether with the consideration that many properties of in-
terest do not directly depend on the atomic cores (which
are almost identical in atoms, molecules, and solids),
we arrive in a natural way at the idea of a valence-
only Hamiltonian replacing the full-core one in the de-
scription of the valence properties of the system. This
id.ea, although not new [6], represents a lively branch
of solid-state physics [7], where important results based
on diferent methods of investigation and new theoreti-
cal developments [8] continue to blossom. Unfortunately
the state-of-the-art valence-only Hamiltonians, which all
stem from the nonlocal norm-conserving pseudopotential
introduced by Hamann, Schliiter, and Chiang in 1979
[9], are not suitable for GFMC techniques (Sec. II A)
without additional approximations [5]. The need for a
valence-only operator specific to GFMC methods has led
Bachelet, Ceperley, and Chiocchetti [10] to the develop-
ment of a local pseudo-Hamiltonian (Sec. II). Up to now,
however, only very few atomic pseudo-Hamiltonians have
been available. In addition Foulkes and Schluter [ll] have
pointed out that only those elements for which the single-
electron valence eigenvalues follow the "natural" order,
~, & ~„& ~g & . . -, can be described by a loca/ pseudo-
Hamiltonian (which rules out transition metals [12]). In
spite of these limitations such an operator has been the
first and for a long time the only choice for solid-state
GFMC studies. For example, it was successfully used by

Li, Ceperley, and Martin [13] in the first GFMC simula-
tion of an extended system (the Si crystal), a calculation
well beyond the possibilities of the last-generation corn-
puters without the use of a pseudo-Hamiltonian. Since
pseudo-Hamiltonians are, to date, the most practical way
to perform GFMC quantum simulations for systems con-
taining atoms heavier than neon, it seemed to us a good
idea to obtain accurate pseudo-Hamiltonians for more
and more elements in those regions of the periodic ta-
ble where the method works well, leaving to alternative
methods, which are more elaborate and introduce ad-
ditional approximations, the task of tackling those ele-
ments for which pseudo-Hamiltonians are either impossi-
ble or more difficult to obtain [5]. For the construction of
pseudo-Hamiltonians (as well as nonlocal pseudopoten-
tials) we stick to the density functional theory —local den-
sity approximation (DFT-LDA) framework [14] and to
the main ideas of Ref. [9], suitably extended for our aim
(Secs. IIC and III). We have generated several pseudo-
Hamiltonians for the second and third rows of groups
IIIB, IVB, VB, VIB, and VIIB as well as alkali metals
like Li and Na and a first-row element like C (Sec. IV B).
If accurate natural orbitals [15]become available for more
and more elements, then the method presented here will
have a straightforward extension to exact many-body
atoms. For the atoms considered in this work, how-

ever, DFT-LDA ions should provide an excellent approx-
imation [16]. We have tested the transferability of the
generated operators in different ways (always within the
DFT-LDA) using more severe transferabihty checks than
is usually done with norm-conserving pseudopotentials
(Sec. IVC). The results (Sec. IV) are extremely good in
most cases; for our representative first-row atom, carbon,
they are not of the same quality. Our results also con-
firm the common finding, recently emphasized by Teter
[17], that the usual logarithmic derivative tests are not
always conclusive from the point of view of transferabil-
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ity, and other tests involving the self-consistent response
of the system are more appropriate (Sec. IVC). As far
as portability is concerned (i.e., to what degree of accu-
racy pseudo-Hamiltonians can be trusted as physically
accurate efFective ions outside the DFT-LDA framework
[16]),we rely on the very encouraging results of Ref. [10]
on atoms and molecules and of Ref. [13] on the bulk Si
crystal, and leave further portability tests to future work.
At the end of this Introduction it may be worthwhile
pointing out that, besides their interest for GFMC quan-
tum simulations, pseudo-Hamiltonians can suitably re-
place nonlocal pseudopotentials in connection with many
other methods of investigation [11]since their manipula-
tions are in general easier than those of nonlocal pseu-
dopotentials: for example, they were recently used for
the study of alkali-metal clusters [18].

Atomic units are used throughout the paper unless oth-
erwise speci6ed.

region D to know its action on 4'(R) inside it. The en-

ergy corresponding to the ground state of the boundary
value problem Eo is an upper bound to the true, un-
constrained fermionic ground state Eo of the Hamiltonian
H in the whole configuration space; as OD approaches
the exact nodal surface of the fermionic ground state,
Ep —Ep vanishes quadratically [19]; this means that
for a local operator H the fixed-node approximation
has the very important feature of being variational and,
since BD is defined by the nodes of an approximate trial
function (IIT (R) such that (IJT(R) ) 0 VR, 6 D —BD,
)I)'z (R) = 0 VR p BD, only the nodes of iIIT (R) are im-
portant for Eo, not its value anywhere else. Another
fundamental reason to have a local Hamiltonian H
comes from a basic hypothesis of GFMC: the Green's
function

G(R, R', r) = @z (R)ilJT'(R')(Ri exp( —7H )iR') (3)

II. THEORY

A. The pseudo-Hamiltonian

The reason why a straightforward use of nonlocal pseu-
dopotentials together with GFMC methods is not possi-
ble is connected with the need of positive Green's func-
tions and with the so-called fixed-node approximation
[19]. We are not going to describe in detail GFMC and
its fixed-node approximation but we need to recall some
aspects which are essential for the development of the
pseudo-Hamiltonian [10,20]. In fixed-node GFMC we
are faced with the following boundary condition prob-
lem (we use the notation H+ for the electronic Hamil-
tonian since we always deal with pseudo, valence-only
operators):

has to be interpreted as a conditional probability density
for each choice of O'T, if we want to make use of the statis-
tical result that the error decreases inversely proportion-
ally to the square root of the number of steps. This means
that G(R, R', r) must be non-negative VR, R' g D, and
for all w & 0: this is automatic for "regular" Hamiltoni-
ans formed by a standard kinetic operator plus a local
potential, but, unfortunately, not so for nonlocal pseu-
dopotentials; even for more general local operators the
Green s function may not satisfy this positivity require-
ment. Under which conditions does a local operator have
a positive Green's function? To answer this question we
recall an argument given previously [20]: we may first

expand the generic local Hamiltonian H in powers of
the momentum operator conjugate to R, P = —iV'~,

3N

H '= W(R)+) Z. (R)P.

H~~4 (R) = E~~4(R) VR c D,

C(R) =0 VR e BD,

3N

) T p(R)P Pp+. . . ,

a.,p=1

and then consider the tensor

(4)

and we look for the lowest energy eigenstate 4'(R)
that never changes sign in the region D of the many-
electron configuration space and vanishes on its frontier
BD. This problem is well defined if the matrix elements
(R~H ~R') vanish for R g R' or, in other words, if
H is a local operator; else from

o p(Ro, o) = f (R —Ro) (R —Ro)pG(R, Ro, o)dR. (5)

If G is to be non-negative VR, K' g D, and for all 7. & 0,
then c p must be positive definite for each w ) 0. For
7- = 0 we have

(R~H~siR')0 (R')dR' = E~~@(R) (2)
G(R, , R„r = 0) = CT(R)C~'(Rp)b'(R —R, ),
c p(Rp, ~ ——0) = 0.

(6)
(7)

it follows that we might need to specify (I)'(R) outside the
I

Let us calculate the time derivative of c p for r = 0

t9c~p BG
B7 ~—0 07(R —Rp) (R —Rp) p (R, R(), r)

= —@~'(Ro) f(& —&o) (& —&o)o@o(R)(Roifr iR)dR

= —4'~'(Rp) b(R —R())H [(R —Rp) (R —Rp) p@T (R)]dR,
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where in the last lines we have used the fact that H
is Hermitian and that we can always choose real wave
functions. Using repeatedly the relation

A(r) + 1 ~ 9,

A(r) +B(r) +1 & 0,

we end up with

[R,f(P)] = i
OP which guarantee that h is bounded &om below. Going

back to Cartesian coordinates with all the derivatives on
the right, we have

Bc~p g2~2 S
= 4 ~'(Ro) b(R —R, ) 4&(R)

(9P~BPp

i9 H= @~'(Ro) . C&(R)
OP BPp

This expression can be chosen positive definite for each
trial function 4'~ only if H is of the form

II = W(R)+) K (R)P

h = —— ) [A(r)+B(r)+1[b p —,~ ~pI
~pg 1 B(r)

r
cx,P=1
8 (0[

X
O'T~ Brp

) A'(r) B(r) r (9

2 T T OT~a=1

which can be proved to produce a Green's function
G(r, r', r) whose leading term in the short time approxi-
mation is non-negative [22].

whence

) T p(R)P Pp,
a,@=1

= @~'(Ro)T p(Ro)@r(Ro)

= T p(Ro). (12)

HPs ) g2+ )
z 2', ~.-""

In conclusion, the local Hamiltonian to be used with
GFMC must have the form of Eq. {11),with the Hes-
sian tensor T p(Ro) positive definite for each Ro E D.
This guarantees that Bc p(Ro, r)/t9'7 and c p(Ro, r) are
also positive definite VRO g D in a right neighborhood
of ~ = 0, and consequently it is a necessary condition to
have G(R, R', r) non-negative in the same neighborhood.
This rules out a large number of conceivable local Hamil-
tonians H+~, in particular those containing any power of
momentum higher than 2. If we further require the two
following conditions to hold:

(a) that H+s has the same structure of the true Hamil-
tonian for a collection of spherically symmetric atoms,

B. The Kohn-Sham equations

1 d2y~P (r) l(l + 1)
2 dr 2 2T2

z—
—, +~ .(r) ~ e (r)

1--, [A( ) + ll „"„, + [A( ) + B( ) + ll
d'X e{r) E(E + 1)

We are now going to write down the Kohn-Sham equa-
tions within the DFT-LDA for both the full-core Hamil-
tonian and the pseudo-Hamiltonian in the spherical ap-
proximation (the Appendix gives details about their so-
lution). Let e„e and y~e{r) be the single-particle eigen-
values and radial eigenfunctions of angular momentum
E and of quantum number n (in the following n will be
dropped, since for each angular momentum 8 we focus
only on one valence state), and denote the full-core quan-
tities with the upper index FC (this notation will be used
throughout the paper). We have then

= ) i~PS+ —)2.-,'~.-"

where i, j run over valence electrons, I runs over ions,
r;~. = lr; —rzl, r, r = lr; —sl~, {r;)are the electronic co-
ordinates, {se) the ionic coordinates, and v&+s describes
the electronic interaction with the Ith ion;

(b) that II+s be invariant against time-reversal sym-
metry [21],
then we end up, for one electron in the field. of one ion,
with the pseudo-Hamiltonian [10]

h~s = V[A(r) + 1]V+—-, I, +2m,.„(r),

and the conditions

1dA d 1 + ~; (r) + ~Hxc(r) X e(r)
2 dr dT T

= e„ey„e(r). (18)

~(r') „2 i ~@xc"[~l

n(r) —= 4, ).f elX e(r)l
~e

(19)

When relativistic eKects are important, we replace
Eq. (17) with a scalar-relativistic Dirac equation [24].
v»~(r) is the Hartree, exchange, and correlation poten-
tial de6ned as
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Ex+g+[n] is the DFT-LDA exchange-correlation energy
functional [25,26], n(r) the charge density, and f„e the
occupation numbers of the Kohn-Sham radial orbitals
y e(r) [14]. To simplify the notation, we introduce the
functions a(r), c(r), and v(r), defined as follows:

1 d'y e(r) E(E+ 1)

1da d 1
+&(&))xe(r) =eexe(r). (22)

2 dT dP T

a(r) = A(r) + 1,

c(r) = A(r) + B(r) + 1,.() =....()+-
(") = + velxc(r).

Then Eq. (18) becomes

(21a)

(21b)

(21c)

(21d)

As already briefly mentioned in the Introduction, Foulkes
and Schluter have shown that our operator necessarily
yields a "natural" order ~, & 6p + Ez + of the energy
eigenvalues [11].It may be useful, based on Eq. (22), to
recall their point in greater detail now. If we multiply
Eq. (22) by ye~ (r) on the left, subtract it &om itself after
the exchange of S with E', and integrate the result from
r = 0 to +oo, we obtain

1 d

dinge

1

2 0
(r)—a(r) (r) dr ——

(& dT 2 0
ye (r) —a(r) (r) dr

(& c&

+—(E(E+ 1) —I.'(E'+ 1)] c(r) 2
dr = (ee —ee ) ye(r)ye (r)dr. (23)

x()x ()
2 0 r 0

Rearranging the 6rst term on the left

ye(r) —a(r) (r) dr = ye(r)a(r)

(r)a(r)Xe (r)

+oo
&e'(")—

0 dr

- +oo +oo d dXE'
(r) — „'(r)a(r) „' (r)«

0 0 dp
- +oo +oo d+ &e (r) —a(r) (r) «Xe

0 dP dP

a(r) (r) dr,
dT

(24)

where we have used the fact that ye(0) = 0 and
ye(+oo) = 0 (see the Appendix), Eq. (23) becomes

(&e —&e') ye (r)ye (r)dr
0

eg & eye m 8 ) S' ve, e', (26)

which gives the ordering rule [11]which limits the pseudo-
Hamiltonian method to sp-bonded systems [12].

C. Norm conservation

Now we are ready to generalize the method of Ref. [9]
for the construction of pseudo-Hamiltonians. We start
&om a reference atomic state containing all the or-
bitals whose angular momentum is relevant for the va-

c(r) is positive for each r ) 0, and if we take for ye and
gee the lowest energy states of angular momentum E and
E', which are nodeless and can be chosen real and positive
Vr ) 0, it follows that

lence systems we are interested in. This is one of the
main differences &om nonlocal pseudopotentials: we need
all angular momenta in one shot because the pseudo-
Hamiltonian, being local, acts on all angular momenta
at the same time, rather than picking them one by one
as a typical Hamann-Schluter-Chiang nonlocal potential
does through projection operators. In practice 8 = 0, 1

(s and p waves) or E = 0, 1, 2 (s, p, and d waves) are
enough to characterize most of the interesting elements
of the periodic table [27]. We choose a single core radius
r„ the same for each of the three functions a(r), c(r),
and v(r), and use it in a way more similar to Kerker [28]
than to Hamann, Schliiter, and Chiang [9]. Given the
reference state and the core radius we can write the four
main requirements for our pseudo-Hamiltonian; three of
them are just identical to the procedure of Ref. [9]; the
fourth is peculiar to our pseudo-Hamiltonian:

(1) identical full-core and pseudo-single-particle va-
lence eigenvalues (Pl);

(2) correctly normalized pseudo-single-particle valence
orbitals which are identical to the full-core orbitals out-
side the core (norm conservation) (P2);

(3) valence orbitals without nodes (P3);
(4) "positivity" conditions: A(r) + 1 ) 0 and A(r) +

B(r) + 1 & 0 (P4).
An immediate consequence of the property (P3) is that

for each angular momentum 8 our valence orbital is the
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a(r) = 1

c(r) = 1
V P = V P

Vr &r.. (27)

lowest energy eigenstate of Eq. (22). This also shows that
nothing can be done to beat the ordering rule, Eq. (26):
the only ways around it are either to drop the prop-
erty (P3), which would introduce unphysical pseudocore
states, or to drop the condition (P4) [c(r) ) 0 Vr ) 0],
which, instead, would violate the fixed-node GFMC re-
quirements and make the energy spectrum of h un-
bounded Rom below. Therefore the ordering rule first
pointed out by Foulkes and Schliiter [ll] poses a severe
limitation on the description of transition elements for
which the energy ordering of valence states seldom fol-
lows Eq. (26): in this case the true valence-only atom
cannot be reproduced by any pseudo-Hamiltonian satis-
fying the properties (Pl) to (P4).

The properties (Pl) and (P2) imply the following
asymptotic behavior for a(r), c(r), and v(r):

while Lastri [30] has shown that for the pseudo-
Hamiltonian these quantities are equal to

t'&)"
I

—
I

*e(e, r)(ae)

/81" '
xxe(~, ~)

I

—
I(Beg

xxe(E, P)«

Equation (32) diff'ers &om Eq. (31) in the presence of
a(v) under the integral sign; this is a way to see why,
even if a pseudo-Hamiltonian and a pseudopotential have
identical pseudo-wave-functions at some reference energy
eg, their logarithmic derivatives, for energies away &om
the reference state, will sooner or later disagree [31].

In analogy with the method of Hamann, Schluter, and
Chiang [9], it can be shown that the properties (Pl)
and (P2) imply the equality of full-core and pseudolog-
arithmic derivatives of the single-particle wave functions
to first order in energy. If we proceed in a way similar
to that described in Ref. [9], but using Eq. (22) for the
pseudo-Hamiltonian, we end up with

2 R

(~) 2( ~) xe (~1 r)«)

Xe(e, ~)
ze{e,r) =-

Xe &p~

Bxg
(e, r) (28)

(29)

where ye(e, r) is the solution of the radial Schrodinger
Eq. (22), which is regular in r = 0 and corresponds to the
single-particle energy e, in some reference state (usually
the atomic ground state), ge(e, r) its first derivative with
respect to r and xe(e, r) its logarithmic derivative (see
the Appendix). For R ) r„si cena(R) = 1, Eq. (28)
reduces to the well known result [9,29]

Bxg
(e, r)06

R

ye(e, r)«, {30)

and hence, as originally shown by Hamann, Schluter,
and Chiang [9], the "norm conservation" [properties (Pl)
and (P2)] ip of key importance for the ioiiic transfer-
ability. While Eq. (30), for B ) r„h ldsoboth for
pseudo-Hamiltonians and nonlocal pseudopotentials, this
is not true for higher order logarithmic-derivative energy
derivatives. Shirley et al. [29] have obtained for nonlocal
pseudopotentials

D. Pseudo-Haxniltonian and nonlocal
pseudopotentials

In this section we consider the relationship between
the pseudo-Hamiltonian and nonlocal pseudopotentials
in the DTF-LDA &amework. If we compare the Kohn-
Sham equation (18) for the pseudo-Hamiltonian with the
corresponding one for nonlocal pseudopotentials

1 d'~e(. )
2 dr2 2r2+ , +. ()+. () ~.()

= mete(r), (33)

and we require that both of them have the same eigen-
values ee and eigenvectors ge(r) for E = 0, 1, 2, by sub-
traction we obtain the following equation linking A(r),
B(r), and v, „(r) with v~~~(r):

A(), —IA( ) + B( )1ye(r) «2 2r2

+
~

—— +2[ ( ) — '-( )1 =o.dye(&) 1 ~s
«ge F r p

We notice that the role of the six potentials is not sym-
metric: given A(r), B(r), and v, ,„(r) there are no dif-
ficulties in calculating the corresponding vP (r), while
given the latter we must solve a first-order differential
equation to obtain A(r) [10,11],

f 81"
*e(e, r)

(Oep
G(r) A' + I' (r)A + 2V(r) = 0, (35)

/0't" *

x Te(e, r)
I

—
I

~e(e, ~)«,
(BfJ

where G(r), F(r), and V (r) are functions involving
ve (r), ye(r), and ee. This equation must be solved
with the initial condition A(r, ) = 0. Unfortunately, ex-
perience tells us that two main diKculties arise when
trying to solve for A(r) using standard nonlocal pseu-
dopotentials [33]: either G(r) has some zeros in [0, r ]
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and A'(r) diverges in such points, or the property (P4)
is not satisfied. Since nonlocal pseudopotentials are by
no means unique inside the core, it was initially hoped
that small norm-conserving distortions of existing non-
local pseudopotentials might remove these two obstacles
and make the use of Eqs. (34) and (35) a viable route to
the construction of pseudo-Hamiltonians from nonlocal
pseudopotentials. Again experience has soon shown that
this was not a realistic hope: "in the neighborhood" of
existing nonlocal pseudopotentials there is no good solu-
tion to Eqs. (34) and (35) which satisfies all the required
constraints, and thus no acceptable pseudo-Hamiltonians
[10]. The way Bachelet, Ceperley, and Chiocchetti [10]
went around this problem was to avoid the difFerential
Eq. (35) by dropping E = 2, thus reducing to E = 0, 1. Of
course an 8p-only pseudoion is less accurate than an Spd
pseudoion, but transition metals are out of reach anyway,
and for the remainder of the periodic table (sp elements)
the lack of d-wave nonlocality is not too serious. This
leaves A(r) undetermined and we can parametrize it by
means of Ao, ro, and k,

I'C E=o, i, 2, (37)

Xe(r) = Xe (r) Vr &~.,

Xe(r) K 0, (40)

a(r) ) 0,

of different physical systems). A second distinction is
possible in connection with the details of our construc-
tion: some requirements will be satisfied by construction
or by restricting the domain in the space of the Hermitian
operators that we are searching (built-in requirements),
while others will be obtained by a stepwise numerical
optimization scheme.

Using the same notation of Sec. II, we can write the
properties (Pl) to (P4) outlined in Sec. IIC as

(v l"
A(r) = Ao exp rp, k &0; c(r) ) 0.

(41)

based on any such A(r) we then explicitly derive H(r)
and v, „(r) &om the E = 0 and / = 1 pseudopotentials
and pseudo-wave-functions through Eq. (34), and finally
try to fix the three parameters Ap, rp, and k in such
a way as to fulfill the property (P4). This method has
proven to work for a number of simple sp elements [10].
Of course the d wave is poorly described and, even in the
cases where only 8 and p waves are relevant, if one does
not pay attention, a too tightly bound d state can lead
to unphysical efFects.

The idea of focusing on two wave functions yp and yi
and working on A(r) has been generalized and pursued
by Foulkes and Schliiter [ll]. They do not start from
nonlocal pseudopotentials, but directly parametrize in a
suitable and efBcient way these three functions, and op-
timize the parameters in such a way as to satisfy the
property (P4) and the properties (Pl) and (P2) for g2
and e2,'eo and Eisatisfy'the property (Pl) and are kept
fixed.

III. CONSTRUCTION TECHNIQUE

A. Fundamentals

We are now going to consider in greater detail all
the desired properties for the pseudo-Hamiltonian, which
have been stated in Sec. II C. We can group these proper-
ties according to two different criteria. A first distinction
can be made between main requirements and secondary
ones. The former are those conditions which must be ex-
actly satisfied for the pseudo-Hamiltonian to have phys-
ical meaning as a valence-only norm-conserving Hamil-
tonian. The latter are additional conditions and can be
fulfilled only approximately: the degree of fulfillment will
measure the quality of the pseudo-Hamiltonian (Rom the
point of view of its possible use in a wider and wider range

In addition, to guarantee that the operator h, of
Eq. (16) is defined for r = 0, we must have

lim B(r) = 0,
v —+0

(42)

A'(r) a(r)
v —+0 2 p

=0, (43)

which are satisfied if we choose

A'(r) '- O(r),

( ) ~ o („)

(44)

Consequently [30,34]

a(r) = ao + air + O(r ),
c(r) = co + cir + 0(r ),

&o = co&

ai ——ci ——0.

(46)

(~) O(r +') + O(~ ), (47)

where O(r +i) is also the first term in the expansion near
r = 0 of the LDA wave functions of the full-core atom and
of the nonlocal pseudopotentials; the next term in the

The reason why in Eqs. (44) and (45) we take O(r) and
not a fractional power of r is the fact that r = 0 is a sin-
gular point for Eq. (22); our choice guarantees that this
singular point is "regular" [35] and the equation admits
two linearly independent solutions, one of which is finite
for r = 0 (see the Appendix). If v(r) is finite for r = 0,
it is easy to show that ap = cp and aq ——cq ——0 if and
only if [34]
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0&a( &a(r) &ah„
0 & c(o & c(r) & cp„. (49)

The lower bounds, which imply Eq. (41), will be a built-
in condition, while the upper bounds will be obtained by
a stepwise minimization.

The group of Eqs. (48) and (49) yield a smooth match-
ing at r, and avoid huge variations of a(r), c(r), and
v(r), but do not tell anything about their smoothness,
which is a desirable property for most practical appli-
cations. To accomplish this goal we build an optimally
smooth function. over the interval [0, r, ] as a linear combi-
nation of certain special functions (R,}with coefficients
(A, j (Sec. IIIC). In this way, keeping in mind both
Eqs. (41) and Eq. {49), our "smoothness" requirement
can be turned into the built-in condition

expansion of the full-core wave function is O(r~+2) due to
the Coulombic singularity of the nuclear potential, while
for nonlocal pseudopotentials we have again O(r + ).

Equations (37)—(41) and Eqs. (46) are the main re-
quirements. In our approach, due to the difBculty of im-
posing constraints expressed by inequalities, Eq. (41) is
treated as a built-in condition, together with Eq. (46)
[see below Eq. (50)]; Eq. (38) too {exact matching
with the full-core atom outside the core is also built in);
Eqs. (37), (39), and (40) are instead imposed by a numer-
ical optimization scheme. Secondary requirements arise
froin practical reasons [36]. These take us to consider
only those radial functions a(r), c(r), and v(r) which
are bounded and continuous with their first derivatives
Vr ) 0. As far as the matching properties of a(r), c(r),
and v(r) with the known expressions outside the core ra-
dius r are concerned, we explicitly require the continuity
of the functions and their first derivatives at r, (built in,
see Sec. III C)

a(r, ) = 1,
a'(r.,) = 0,
c(r, ) = 1,

(48)c'(r, ) = 0,
v r~ = v r~ )

v rc = v rc

where v (r) is the full-core self-consistent potential.
While Eq. (41) fixes only a lower bound on a(r) and

c(r), several reasons suggest imposing more stringent
bounds on them. Too wide a variation of these functions
in the range [0, r, ] can give numerical problems connected
with the use of the pseudo-Hamiltonian in real calcula-
tions; too large or too small values of a(r) and c(r) over
a substantial &action of [O, r, ] can change the effects of
the kinetic energy operator and the centrifugal poten-
tial on the single-particle LDA wave functions in such a
way as to push abnormally up or down in energy the ex-
cited states, thus deteriorating the transferability of the
pseudo-Hamiltonian. We then choose

The Eqs. (46) and (48), in conjunction with the previous
expressions, introduce linear relations among the coe%-
cients (A; },(A;), and (A", ) of Eqs. (50).

Additional conditions can be thought and conceived
[37]. For example, we have sometimes added the request
of improved logarithmic derivatives beyond the usual
norm conservation [9,38]. We obtained that by choosing
for every state of angular momentum X a second energy
e& above the corresponding eigenvalue eg (e& ) eg) and, as
a secondary condition (to be obtained by numerical step-
wise minimization), required the matching of full-core
and pseudologarithmic derivatives also at this second en-
ergy e&, i.e., required the following equality to hold for
B=r,:

x~( g, R) X~ ( ~, R)
' (51)

(e, r) and y~(e, r), being the eigensolutions of the ra-
dial Schrodinger Eqs. (17) and (22) which correspond to
the energy e, are regular in the origin r = 0, and are, in
general, not normalizable [30]. The self-consistent poten-
tial, Eqs. (2lc) and (21d), is that of the reference state
(Appendix) .

B. The cost functional and its minimization

Our distinction between conditions which are built in
and conditions to be imposed by numerical stepwise min-
imization has no physical relevance, and is by no means
unique. It just; simplifies the problem of constructing a
suitable pseudo-Hamiltonian for a given element in terms
of the algorithm to be implemented on a computer. The
problem of determining o(r), c(r), and v(r) is highly
nonlinear because these three functions are linked to the
properties of the original full-core atom via the second-
order eigenvalue differential Eq. (22) and the conditions
appearing in Eqs. (37), (39), and (40) [plus, possibly,
Eq. (51)]. An additional difficulty comes from Eq. (41),
the inost difficult constraint which prohibited [10] the
straightforward use of nonlocal norm-conserving pseu-
dopotentials [33] to generate the pseudo-Hamiltonian by
direct inversion of Eq. (34). Precisely because of this ex-
perience we decided that the best strategy is to have this
condition automatically verified at the very start, i.e., to
include it among the built-in conditions. The built-in
conditions are analytically implemented in a very sim-
ple way which will be detailed later on. Here, instead,
we want to illustrate how those equalities or inequalities
which are not built in can be approached by a numerical
stepwise minimization. Fortunately also for this second
purpose there is a relatively simple and natural way: one
only needs to reasonably quantify the degree of approx-
imation in fulfilling an equality or an inequality. If the
equation x = y holds only approximately, then the "dis-
tance"

a(r) = a(~+ [P,. A, R;(r)]
c(r) = c( + [P,. A;R;(r)]', «[0, i' ].
v(r) = P,. A,"R;(r)

(50)

d(x, y) = (x —y)2 ) 0

can be a practical measure of the deviation from the
equality [satisfied exactly if and only if d(x, y) = 0] and
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can be generalized for the inequality x & y as

D(x, y) = (2: —y) 8(y —x) & 0,

where 0 is the Heaviside function or, if x and y are func-
tions defined over the interval [a, 6],

b

D(* y) = [*(r) —y(r)]'0(y(r) —*(r))«& o (54)
a

If we sum all the so-defined "distances" for Eqs. (37),
(39), (40), and (49) and Eq. (51), we obtain a functional
of a(r), c(r), and v(r) which is non-negative, and equals
zero if and only if the equations hold exactly, that is,
a functional whose absolute minimum zero, if it exists,
corresponds to our ideal pseudo-Hamiltonian. Even if the
functional never takes the value zero (or we are not able
to find it), it remains true that the lower the value we can
find, the better approximation to the exact solution we
have reached. In fact, a straight sum of the "distances" in
the definition of the functional as suggested by Eqs. (52)—
(54) may not be the best idea. A weighted sum of these
distances will take care of their absolute magnitude and
of their importance (main vs secondary requirements) in
a controlled way, and we thus prefer this choice. We then
define our cost functional as follows:

E, ,e [a, c, v] = E„g[a,c, v] + .E„[a,c, v]

+E„g,[a, c, v] + Eb „„d,[a, c, v]

+End, [a) cq v] q (55)

E„[a,c, v] = ) pe d(Ng, &q ),
e=o

(56b)

0
E„~d,, [a) c, v] = if ye(r) g 0 Vr & 0

otherwise, (56c)

Ebaund [a) c) v] rID(ahi) a) + PD(chi 9 c) )

2

Etd[a, c, v] = ).8e d[xe(&e, r ), &e (&e, rc)],
e=o

(56d)

(56e)

E„g[a,c, v] = ) Pe d[xe(ee, r, ))xe ( ee, r, )], (56a)
e=o

Since, through Eqs. (50), a, c, and v are now functions
of (A; }, (A;. }, and (A,". } (the next subsection contains
all the details of our basis set), the functional E, ,& is
also turned into a function of (A; }, (A, },and (A,"},and
as such it is used in practice: one looks for the min-
imum of E, ,e in the multidimensional space of (A,. },
(A;}, and (A,". }.Neither theoretical reasons nor experi-
ence suggest that this cost function is unimodal (without
local minima). For a rnultimodal function of many vari-
ables, unless we know with enough accuracy the position
of the absolute minimum, we are faced with the problem
of avoiding local minima during the search of the global
minimum. Many deterministic algorithms are available
which, given a certain starting point, will rapidly locate
the closest local minimum of the target function [39],
but our problem is that here we do not have in advance
a good starting point. If we only rely on deterministic
algorithms, we should then try very many (in principle
infinite) diferent starting points at random, obtain by
deterministic search many (all) local minima, and finally
select the best one (in principle the absolute minimum).
This is, however, impractical if the number of variables
is high. A much more efIicient approach is the simu-
lated annealing with Metropolis Monte Carlo sampling
[40—44] in which a random walk in the domain of search
is supported by a sampling criterion that drives the walk
only into the most interesting regions, and in such a way
as to avoid trapping in the various local minima. The
idea of using simulated annealing to generate pseudo-
Hamiltonians is due to Mitas and co-workers [20,45], who
also demonstrated the feasibility of this approach. The
global minimum is reached with unit probability only for
an infinite walk [42] but, if we fix a threshold (above the
ideal value of zero) corresponding to an acceptable ap-
proximation for the pseudo-Hamiltonian, we often reach
a region where the cost function is below our desired ac-
curacy within a reasonable amount of time (or length of
the walk) [46]. In practice the simulated annealing pro-
cedure is stopped as soon as the cost function goes below
the threshold; we found it convenient to use a nonlin-
ear simplex method [39] to improve the minimum found
as the ending point of the simulated annealing and thus
obtain the final optimal solution.

where

(57)
C. Representation of a(r), c(r), and v(r)

and Pe, pe, &e, rj, and p, weight the importance of the
corresponding terms. The various contributions to the
cost functional E, ,q correspond to and are listed in the
same order as Eqs. (37), (39), (40), and (49) and Eq. (51).
d[xe(me++, r, ), ze++(ee, r, )] is equivalent to d(ee, re++) be-

termine the eigenvalue eg implies much more work than
to obtain xe(ee +, r, ) [the latter task requires just one
more integration of Eq. (22) from r = 0 to r = r; see
the Appendix]. Equation (40) has been taken into ac-
count with the accept-reject term E'„d, only a, c, and
v such that ye(r) g 0 Vr & 0 are accepted.

As we have anticipated in the preceding section, a nu-
merical approach is feasible if we can treat in a convenient
finite form the three continuous functions a(r), c(r), and
v(r) and thus turn the cost functional into a function of
a finite number of variables. An obvious possibility is to
expand each of the three functions a, c, and v in terms of
some suitable finite basis set, and then to work with the
coefficients (A, }, (A;. }, and (A,". }of such an expansion.
Many analytical basis sets are available; among them we
have chosen a nonorthogonal family (R,}, the regular-
ized splines with tension (RST), whose main virtue, in
our view, is its smoothness criterion [47,48]. In Eq. (50)
as given in Sec. IIIA, we take



BOSIN, FIORENTINI, LASTRI, AND BACHELET 52

Rp(x) = 1

R;(x) = R(x, x;)

R~+, (x) = —,
' R(x, y)

R~+2(z) = ss R(x, y)

where

R(x, y) = —,coth
~

I* —
yl

and D & 0 is an adjustable parameter called tension.
For our purpose it seems that a reasonable choice for N
is around 20.

Once the three functions have been determined, we
use Eqs. (19), (20), (21c), and (22) to calculate the ionic
potential v, „(r). Equations (22) are integrated using
a finite numerical grid. to find the self-consistent charge
density n(r) (see the Appendix). The potential v„~ (r)
obtained from this density is fitted to a RST over [0, r, ]
to give v, „(r) in the same form. Outside the core A(r) =
B(r) = 0 and, from Eq. (27),

(60)

For large r, v, „(r) behaves like Z„/r but right —outside
the core it may still slightly depart &om this asymptotic
behavior, so outside the core we found it convenient to fit
it to a superposition of error functions times the Coulom-
bic tail:

r&r.

given threshold, as suggested at the end of Sec. III B, we
finally also separately monitor individual contributions
to the cost function, and perform some sort of fine tun-
ing which amounts to setting acceptance thresholds to
individual contributions.

The simulated-annealing run (which inevitably implies
soine degree of arbitrariness) is made up, as usual, of
many "trial and error" cycles. This is due to the very lit-
tle knowledge and the great complexity of the topography
of the cost function, and to the fact that the algorithm
converges to the optimal solution with unit probability
only in principle, as we cannot deal with infinitely long
random walks. A general prescription about the most
efIicient way to carry on the simulated-annealing proce-
dure is thus impossible. There are, however, two guide-
lines: too short a random walk means a high probability
of missing the important region of the parameter space;
too sudden a lowering of the temperature T means a high
probability of getting frozen into a local minimum which
is unacceptable. Of course "too short" and "too sudden"
are problem dependent, and we can only resort to the
"trial and error" strategy. In our experience (with our
particular 60-parameter cost function), if the starting
point of the random walk is far enough &orn a local min-
imum, or in other words if the temperature T is not too
low, even two simulated-annealing runs which originate
&om the same starting point in the parameter space end
up in two difFerent minima, as soon as a slightly difFerent
annealing strategy is adopted. This is of course related
to the complex structure of the cost function, and would
sound discouraging if the goal of the simulated annealing
were to pick the exact location of the absolute minimum
of the cost function. Fortunately, however, once a simu-
lated annealing run finds a local minimum which matches
our accuracy requirements, then all the (in principle dif-
ferent) local minima which are reached by independent
simulated annealing runs originating from that starting
point are of comparable accuracy. So for our purpose the
strategy is perfectly adequate.

IV. RESULTS AND DISCUSSION B. Some examples

A. General considerations on simulated annealing

The starting point of our simulated-annealing pro-
cedure is usually the pseudo-Hamiltonian of Ref. [10],
which reproduces exactly only 8 and p angular momen-
tum states. The whole procedure is carried on until a
minimum of the cost function is reached, for which the
main requirements are satisfied within the desired accu-
racy: typical values for the relative errors on the DFT-
LDA eigenvalues are of order 10; on the norms, 10
[49]. Since the secondary requirements have by construc-
tion smaller weights in the cost function (Sec. III 8), they
are only approximately fulfilled at the minimum where we
stop. Depending on the degree of fulfillment of the sec-
ondary conditions we then decide whether to really stop
and take the resulting a(r), c(r), and v(r) as our optimal
solution, or, instead, to start over. So in fact, after mon-
itoring the cost function and finding a minimum within a

A number of pseudo-Hamiltonians have been obtained
by means of the powerful method of simulated anneal-
ing. In particular, for alkali metals &om Li through
Cs, starting from the pseudo-Hamiltonian of Ref. [10],
it is possible to end up with a more transferable pseudo-
Hamiltonian, as we will show in d.etail for Na. Another
region of the periodic table that has been investigated
is the second row for which, besides Na, we have built
pseudo-Hamiltonians for Al, Si, P, and Cl. Among these
the case of Si will be detailed in the following. The third
row has also been attacked with positive results for Ge
and As, while we still have difficulties for the first-row
elements: we will present some results for C that are
far &om being satisfactory, but show that something can
be done and also help clarify the reasons why first-row
pseudo-Hamiltonians are intrinsically less transferable.
As we have seen, theoretical reasons prevent us &om
reproducing transition elements with standard pseudo-
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TABLE I. Numerical coeijicients for Si pseudo-Hamiltonian (see Sec. III C). Numbers in square
brackets denote powers of 10.

Z = 14
r, = 1.90801447[

a~ = 1.00000000[
ci ——7.01006204[
ni = 2.37847912[

A.

1.57773662[
-8.85236760[
1.80143777[

-1.72675285[
1.75841796[

-2.80132889[
3.69441735[

-5.16169983[
7.34859550[

-8.97216383[
1.17584506[

-1.54935995 [
2.03687067[

-2.67627715[
3.36901960[

-4.14709224[
5.15386069[

-6.16352611[
7.21171341[

-8.07012089[
8.62369408[

-4.47019581[
2.33283412[

-4.45098506[

+00]
-01]
+00]
+00)

+00]
-01]
+00]
+00]
+00]
+00]
+00]
+00]
+00
+00]
+01]
+01]
+01]
+01]
+Ol)
+01]
+01]
+01]
+01
+01]
+01]
+01]
+00]
-02]

1.32586946[
-1.77981302[
2.32586387[

-2.93498646
3.53117054[

-3.98046094
4.16770026[

-4.11444787[
3.91064877[

-3.57796012
3.10003116

-2.52395610
1.93796994[

-1.40818063
9.67736199[

-6.57305731[
2.71342986[

-1.15903468
9.75030914[

+03]
+03]
+03]
+03]
+03]
+03]
+03]
+03]
+03]
+03]
+03]
+03)
+03]
+03]
+02]
+02]
+02]
+01)
+00

Z =4
D = 5.00000000[-01

c(, = 1.00000000[-03
c2 ——-5.85550349[+00]
og ——2.15978820[+00]

7.17813275[-01]
2.16485127[+02]

-4.97923120[+02]
6.83268691[+02]

-9.63053012[+02]

N = 21

+02]
+02]
+02]
+02]

2.12550896
-2.70134840
3.35502611[

-4.06201324[
4.65263656[+02]

-4.94131168[+02]
4.81713922[+02]

-4.46214160[+02]
2.14286023 [+02]

-1.01743412[+01]

c3 = -1.54558553[-01)
cx3 ——1.04377440 [+00]

A,".

-1.22586351 [+00]
4.80429388[-02]

-7.73525376[-01]
3.82821268[+00)

-9.73799267[+00]
1.83722202[+01]

-2.74939378[+01]
4.00928597[+01]

-5.54510496[+01]
7.31762428[+01]

-9.75429253[+01)
1.27989123[+02]

-1.65142887[+02]

Hamiltonians [that is, obeying properties (Pl) to (P4)]
and we have not considered them. Other regions, such
as the second column of the periodic table, are instead
not expected to be problematic and will be investigated
in the near future.

The numerical coeKcients through which the gener-
ated Si pseudo-Hamiltonian is expressed, Eq. (50) and
Sec. III C, are listed in Table I. For each pseudo-
Hamiltonian obtained &om the simulated-annealing pro-
cedure a DFT-LDA atomic calculation has been per-
formed. This has been done in order to check the numeri-
cal errors on the eigenvalues of the reference configuration
with respect to the corresponding full-core atoms, since
they are only estimated and never exactly calculated

(see the Appendix) during the simulated-annealing run.
The reference configuration chosen for Si is s p d

(I = 0, 1, 2) withcore radius r = 1.91 a.u. , for Na so spo i

(f. = 0, 1) with r, = 2.40 a.u. , and for C it is the ground
state s2p (I. = 0, 1) with r, = 1.31 a.u. Tables II, III,
and IV show the results for Si, Na, and C compared with
full-core and standard nonlocal pseudopotential [33] cal-
culations; we also consider other relevant valence config-
urations, such as the ground state. The functions A(r),
B(r), and v, „(r), together with the corresponding radial
wave functions yr(r) for the reference configuration, are
shown in Fig. 1 for Si and Fig. 2 for Na. The full-core
wave functions are shown for comparison: we notice that
neither the error on the eigenvalue nor the error on the

TABLE II. Atomic energies in atomic units for Si in the reference configuration 8 p
' d '

and in the ground state 8 p . The eigenvalues eg and the total energies E are shown for the
pseudo-Hamiltonian, the full-core atom, and the nonlocal pseudopotentials of Ref. [33).

Configuration &s 6d

PH

Full core

Nonlocal

O.S 2.4d0. 2

8 p
0.8 2.4go.2

S p
0.8 2.4d0. 2

8 p

-0.62778
-0.39899
-0.62788
-0.39989
-0.62588
-0.39990

-0.35861
-0.15268
-0.35866
-0.15322
-0.35752
-0.15327

-0.07714

-0.07714

-0.07816

-3.24934
-3.76002

-288.25400
-288.76510

-3.24021
-3.75042
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TABLE III. Atomic energies in atomic units for Na in the reference configuration 8 '
p

and in the ground state 8 . The eigenvalues eg and the total energies E are shown for the
pseudo-Hamiltoiiian, the full-core atom, and the nonlocal pseudopotentials of Ref. [33] (see text).

Configuration 6d

PH

Full core

Nonlocal

0-6 0.1dO

S P
0.6 0.1dO

S P
0.6 0.1dO

8 P

-0.15928
-0.10466
-0.15931
-0.10371
-0.15724
-0.10357

-0.07313
-0.02824
-0.07314
-0.02847
-0.07738
-0.03205

-0.01218

-0.01271

-0.01259

-0.13843
-0.18617

-161.56832
-161.61580

-0.13767
-0.18437

C. The transferability problem

To put to test the pseudo-Hamiltonian against the
true, full-core ion, we have performed a number of atomic
calculations. Let us first examine our plots of logarith-
mic derivatives, versus energy, shown below in Fig. 3 for
C, Fig. 4 for Na, and Fig. 5 for Si. The logarithmic
derivatives are always taken at the covalent radius; in
the figures we show R&(e, r)/Rg(e, r) rather than xg(s, r)
as given in Eq. (29); they are related by

Rg(e, r) = Xe(e, r)

= rag(e, r) —l.R~(e, r)
Rg e, r (63)

The case of carbon illustrates an important difFerence be-

norm can be resolved by eye; in other words, the tails of
the functions are perfectly overlapping. This results from
numerical optimization (not from numerical inversion as
in the Hamann-Schliiter-Chiang method of Ref. [9] and
related ones) and is thus a remarkable success of the pro-
cedure presented here. Even in the case of Na we monitor
the d eigenvalue and eigenvector (with zero occupation
in the reference configuration s p d ), although for
this element we did not include the d wave in the con-
struction of the pseudo-Hamiltonian; for the d wave we
find (Table III) eq ) ez, as it must be (see the end of
Sec. II D); the eigenvalue eg is even very close to the full-
core eigenvalue (only a few percent off e& ), but we see
from Fig. 2(d) that the norm conservation of yg(r) is, in-
stead, not as good: the tails of the wave functions do not
overlap. This shows that unless all three Spd waves are
explicitly optimized the resulting pseudo-Hamiltonian is
inevitably poorer.

tween pseudo-Hamiltonians and nonlocal pseudopoten-
tials. Figure 3 shows the s-wave logarithmic deriva-
tives [(a) and (c), left panels] and the p-wave logarith-
mic derivatives [(b) and (d), right panels] as a function
of energy for two difII'erent carbon pseudo-Hamiltonians
(shown in Fig. 6). Three logarithmic-derivative curves
are shown in each paiiel: the full-core (solid) and the
nonlocal pseudopotential (short-dashed), which are al-
ways so close to each other as to appear almost indistin-
guishable, and the pseudo-Hamiltonian (dashed), which
instead, sooner or later, departs from the full-core and
nonlocal pseudopotential curves. The upper panels re-
fer to a carbon pseudo-Hamiltonian [Fig. 6(a)] which ex-
actly corresponds to a nonlocal pseudopotential for car-
bon [50] (used as a benchmark throughout the figure); to
be precise, in the reference state, the upper-panel pseudo-
Hamiltonian has identical 8 and p wave functions as the
benchmark nonlocal pseudopotential. As expected &om
Eqs. (28) and (30), at the reference energy (shown as
a bullet), the logarithmic derivative and its first energy
derivative are identical for all curves. It is also appar-
ent that higher energy derivatives must be diferent for
pseudo-Hamiltonian and nonlocal pseudopotential, be-
cause the two curves, at some point, evidently depart
from each other. This can be understood by compar-
ing the Eqs. (31) and (32) at the end of Sec. IIC, which
deal with the "extended norm conservation" for nonlocal
pseudopotentials [29] and pseudo-Hamiltonians [30]. The
upper panels of Fig. 3 show that, for carbon, this efFect
is large; that the effect is physically relevant can be seen
by independent atomic calculations (not presented here),
which show that the upper-panel pseudo-Hamiltonian,
whose ground-state wave functions are identical to the
well-transferable nonlocal pseudopotential carbon, is in
fact much less transferable [31]. To obtain a more trans-
ferable pseudo-Hamiltonian [Fig. 6(b)] one can for ex-
ample, for each E, impose the agreement of full-core and

TABLE IV. Atomic energies in atomic units for C in the reference state 8 p that is also the
ground state. The eigenvalues eg and the total energies E are shown for the pseudo-Hamiltonian,
the full-core atom, and the nonlocal pseudopotentials of Ref. [33].

Configuration Es Cp

PH
Full core
Nonlocal

8 p
8 P
S P

-0.50128
-0.50120
-0.50139

-0.19931
-0.19925
-0.19857

-5.34973
-37.42832
-5.34505
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FIG. 1. Pseudo-Hamiltonian for Si: the
reference configuration is 8 p

' d ' and the
core radius r = 1.91 a.u. (a) Functions
A(r ) (solid line), B(r) (long-dashed), and
v,o„(r) (short-dashed), and Coulomb poten-
tial Z„/—r (dotted). (b) s wave function,
(c) p wave function, and (d) d wave func-
tion for the full-core atom (solid line) and the
pseudo-Hamiltonian (dashed) in the reference
con6guration.
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pseudologarithmic derivatives at two diferent reference
energies rather than just one. Such an additional con-
straint was mentioned as a possibility in Sec. IIIA, and
has been implemented for carbon. The results are shown
in the bottom panels of Fig. 3. We see that, after impos-
ing this additional constraint, the logarithmic derivatives
of the pseudo-Hamiltonian follow the good ones over a
wider energy interval; independent self-consistent atomic
tests suggest that the pseudo-Hamiltonian transferability
has improved considerably. Yet the transferability of the
pseudo-Hamiltonian remains for carbon (as well as other
first-row atoms) less satisfactory than that of nonlocal
pseudopotentials. Why are first-row atoms more dificult
for the pseudo-Hamiltonian method'? The likely reason
for that is the following. To have good higher order en-
ergy derivatives of the logarithmic derivative one needs,
in the pseudo-Hamiltonian case, the agreement of inte-
grals involving both the valence radial wave function and
the function a(r) [Eq. (32)]. But in the first-row atoms
there is very little &eedom for the p radial pseudo-wave-
function, which cannot depart much f'rom the original
full-core p wave function: besides having the same behav-
ior in the origin, the same norm inside the core radius,
and the same value and derivative at the core radius, they
both have no nodes. As a result, two opposite situations
are found for first-row pseudo-Hamiltonians and nonlo-
cal pseudopotentials: for nonlocal pseudopotentials the
p-wave logarithmic derivatives are almost automatically
very good [all higher order energy derivatives give almost
identical integrals for full-core and nonlocal pseudopoten-
tials in Eq. (31)],while for pseudo-Hamiltonians the same

physics (little freedom left for first-row p pseudo-wave-
functions inside the core), combined with the presence
of a sizable a(r) in all the relevant integrals of Eq. (32),
yields —even when eÃort is taken to improve the energy
dependence, as done in the bottom panels of Fig. 3—
poorer logarithmic derivatives.

Similar logarithmic-derivative plots have been ob-
tained for Na and Si. They belong to the second row,
so the problem just discussed for carbon (and first-
row atoms in general), which is of course related to
their stronger nonlocality, is much less pronounced; as
shown in Figs. 4 and 5 much more transferable pseudo-
Hamiltonians can be obtained. In these two figures the
s-, p-, and d-wave logarithmic derivatives are shown as a
function of energy. The solid, short-dashed, and dashed
lines correspond to the full-core atom, the nonlocal pseu-
dopotentials, and the pseudo-Hamiltonian, respectively;
here we are using standard nonlocal pseudopotentials
[33]. For the construction of the Na pseudo-Hamiltonian
(Fig. 4) no attempt was made to optimize the d wave
[the E = 2 quantities were not included in the cost func-
tion Eq. (55)]; the corresponding logarithmic derivative
is evidently less good, but still acceptable, also because
the d states are high up in energy and are not expected
to play an important role in the chemistry and physics of
this ion. The s logarithmic derivative is, instead, excel-
lent, and the p is even better than the nonlocal pseu-
dopotential. The case of Si, finally, is a good intro-
duction to the next set of atomic tests, not based on
logarithmic derivatives. From the logarithmic-derivative
plots (Fig. 5) the nonlocal pseudopotential would appear
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slightly more transferable than the pseudo-Hamiltonian
(the nonlocal pseudopotential tracks the full-core atom
slightly more closely), but crystalline calculations, as well
as other self-consistent tests, suggest that the transfer-

ability of the pseudo-Hamiltonian obtained for Si is, in-
stead, slightly better than standard nonlocal pseudopo-
tentials. These differences in the ionic transferability
are at a much finer level of accuracy than just seen
for carbon, but are a good way to emphasize an as-
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FIG. 5. Logarithmic derivatives for Si: (a) s-wave and (b)
p-wave logarithmic derivative versus energy for the full-core
atom (solid line), the pseudo-Hamiltonian (dashed), and
nonlocal pseudopotentials of Ref. [33] (short-dashed) in the
ground state s p; (c) d-wave logarithmic derivative as above
but for the reference configuration. Nonlocal pseudopotential
and full-core plots are perfectly overlapping. See also text.
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pect of pseudopotential theory empirically known to spe-
cialists, but only recently clarified and rationalized by
Teter [17], namely, that the agreement between full-core
and pseudologarithmic derivatives gives only partial in-
formation on ionic transferability. Let us brieHy recall
why. To obtain logarithmic-derivative plots, the elec-
tronic charge density is frozen into some fixed valence
configuration (thus the screening potential vs~ is also
fixed), and then the solution of the radial Schrodinger
equation [Eqs. (17), (22), and (33)] is obtained at many
different energies. The energy is varied, but the charge
density remains fixed. Such an energy sweep, thus, only
partially mimics the changed boundary conditions ex-
perienced by the wave functions when the atom is put
into a molecular or solid-state environment: a faithful
energy dependence implies a good ionic transferability
only when the total amount of valence charge density
contained inside the core radius is very small [16,33], and
the core and valence charge densities do not overlap sig-
nificantly [51]. The more accurately these two conditions
are met, the less important are the effects of the self-
consistent rearrangement of the charge density inside the
core, and the more reliable are the logarithmic-derivative
plots as transferability tests. If, instead, these two condi-
tions are not met, then alternative tests which do involve
self-consistency are more conclusive. We present some
of them here. In comparison to the "chemical hardness"
test proposed by Teter [17], which has the advantage of
addressing nonspherical charge perturbations, ours are,
unlike his, extended to finite charge distortions. Three
distinct types of tests involving self-consistency have been
performed: a change of the atomic boundary conditions,
a change of the orbital occupation (presented. in this sub-
section), and a set of crystal calculatioiis (presented in
the next subsection). We have put to test the pseudo-
Hamiltonian single-particle eigenvalues e& and e and
the excitation energies E —E, and E —E, (i.e. ,
the total-energy difI'erences between excited states and
ground states of isolated atoms) against the correspond-
ing full-core counterparts. For completeness, we have also
included in our comparison standard nonlocal pseudopo-
tentials [33] (index PP in the calculated quantities), as
they have been widely and successfully used, and repre-
sent an obvious quality reference. Before discussing the
atomic tests, we note that the appropriate comparison
is between full-core and valence-only systems within an
identical (approximate) DFT-LDA framework. Most im-

yr(R) = 0 (64)

was moved from R = +oo (isolated atom) towards
smaller and. smaller radii, covering a wide range of spher-
ical boundary conditions, which to some extent could
mimic the transition from the isolated atom to more
closely packed environments [30]. In this group of tests
the orbital occupation is always that of the ground state,
so that, for the atoms under consideration, only the
angular momenta E = 0, 1 are involved; Fig. 7 show s
the results for Si [upper panels (a) and (b)] and Na
[lower panels (c) and (d)]. The left panels of Fig. 7
[(a) and (c)] deal with single-particle eigenvalues. They
show Ae& ——e&

—e& (Ae, solid line, Ae„ long-

dashed) and Ae& ——e&
—

e& (Ae, short-dashed,
dotted), as a function of R . In Fig. 7(a)

the s and p curves for the Si pseudo-Hamiltonian are
slightly Hatter than the corresponding curves for non-
local pseudopotentials. This means that, as the radial
node moves inward, the pseudo-Hamiltonian eigenvalues
track the corresponding full-core eigenenergies slightly
more closely than nonlocal pseudopotentials, i.e., the op-
posite of what the analysis of the logarithmic derivatives
alone would have suggested [53]. In Fig. 7(c) the p curve
for the Na pseudo-Hamiltonian is much closer to zero
than for nonlocal pseudopotentials, this time in agree-
ment with the expectations suggested by the logarithmic-
derivative plot of Fig. 5(b). The behavior is the oppo-
site for the s curves (but on a finer level), once more in

portant is to note that, as pseudopotential methods rely
on the frozen-core approximation [52], benchmark full-
core calculations should also keep the core frozen into a
specified reference con6.guration. While the results pre-
sented in this subsection do not substantially change if we
replace the relaxed-core with the frozen-core calculations,
we will see in the next subsection that this difference can
be relevant in some situations. Experimental quantities
are quoted where relevant only for completeness. We now
come to a discussion of the transferability tests.

In the first group of tests we have evaluated the change
of pseudoeigenvalues and total excitation energies with
respect to the corresponding full-core quantities, while
changing the boundary conditions for the atomic wave
functions. The atomic orbitals were confined within a
sphere of radius B, or, in other words, the position B of
the radial nodal surface, defined by the equation
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tentials. See also text.

contrast with the behavior of logarithmic derivatives in
Fig. 5(a), where the pseudo-Hamiltonian curve is closer
to the full-core one. The right panels of Fig. 7 [(b)
and (d)] deal with total-energy differences: they show
NEPH (EPH EPH) (EFc EFC) (sohd hne) and
AE = (E —E ) —(E —E c) (dashed), as a
function of R, for both Si and Na. Here the difference
between pseudo-Hamiltonian and nonlocal pseudopoten-
tials is less pronounced. For both pseudoions the curve
is very similar, and can be easily understood in terms
of differences between the full-core and the valence-only
atom; these differences are, in fact, almost independent
of the pseudionization scheme. When the atomic charge
density is con6ned within a sphere of smaller and smaller
radius B, core and valence begin to overlap significantly,
and the LDA exchange-correlation functional will be af-
fected by the absence of the core charge in the pseudo
case. This effect would be obviously greatly reduced
by the nonlinear core correction of Louie, Froyen, and
Cohen [51], but, on the other hand, the introduction of
such a density-dependent correction would unfortunately
make our pseudo-Hamiltonian useless for quantum Monte
Carlo calculations [54).

In the second kind of group of tests we have studied the
response of the pseudo-Hamiltonian and nonlocal pseu-
dopotentials to a change in the orbital occupation (see
the Appendix), compared to the corresponding response
of the full-core atom [49]. Single-particle and total en-
ergies are de6ned as above, and the orbital occupation
has been varied in two different ways: in one case the
total electronic charge was kept constant and equal to

its ground state value, i.e., the valence charge was just
moved Rom one orbital to another (Fig. 8), in the other
case the total valence charge was allowed to vary, and it
was decreased from the ground state to the doubly ion-
ized Si atom, or to the simply ionized Na atom (Fig. 9).
More precisely, in Figs. 8(a) and 8(b), the occupation
of the s and p orbitals of Si has been varied from s p
(ground state) to s p: the curves corresponding to the
pseudo-Hamiltonian are Hatter than the curves of nonlo-
cal pseudopotentials. This means that, once again, the
pseudo-Hamiltonian more closely follows the full-core re-
sponse than nonlocal pseudopotentials. The lower panels
of Fig. 8 [(c) and (d)] show, for Na, the same behav-
ior just described for Si (but now the occupation goes
from s p to s p ), and the discrepancy between pseudo-
Hamiltonian and nonlocal pseudopotentials is even more
marked. In the "ionization test" (Fig. 9), the occupa-
tion for the s orbital of Si is kept fixed and equal to
s, while the p occupation ranges from p (ion Si ) to
p [upper panels (a) and (b)]; for Na, only the occupa-
tion of the s orbital is varied from s to s, with the
p orbital unoccupied [Figs. 9(c) and 9(d)]. For both Si
and Na, the response of the eigenvalues of the pseudo-
Hamiltonian is closer to the full-cere behavior than for
nonlocal pseudopotentials [Fig. 9, panels (a) and (c)]; in
the case of total energies the situation is the same for
Na [Fig. 9(d)] but reversed for Si [Fig. 9(b)], with the
nonlocal pseudopotential curve more closely tracking the
full-core atom in the latter case. This shows that the
transferability at a really fine level of accuracy is a sub-
tle game: for Na, where the overall transferability is less
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good, logarithmic-derivative and eigenvalue plots give a
coherent picture, while for Si, where the overall trans-
ferability is excellent, the tests give contradictory results
and thus the slight quality difFerences cannot be conclu-
sively deduced from logarithmic-derivative plots. Notice,
however, that both in the previous test and in this one
the energy scale on which the performance of different sil-
icon pseudoatoms (nonlocal pseudopotentials vs pseudo-
Hamiltonian) may differ is so small that questions may
legitimately arise about which one of the various trans-
ferability tests should be taken as the most meaningful
measure of this property. So crystal or molecular calcu-
lations are not expected to add much to the picture al-
ready gained by atomic tests (as far as transferability is
concerned) in the case of sodium, while, in the case of sil-
icon, they may represent the only way to resolve a puzzle.
This transferability puzzle is by no means an idle ques-
tion, since it is precisely on this energy scale that recent
variational Monte Carlo and quantum Monte Carlo calcu-
lations based on nonlocal pseudopotentials and pseudo-
Hamiltonians, respectively, disagreed [4,13].

D. Crystal properties

To substantiate our previous statement with numbers,
before concluding our work, we proceed to the calcu-
lation of the bulk properties of crystalline silicon and
sodium. The environments experienced by an isolated
atom and an atom in the crystal are different, and such
a difFerence just amounts to the kind of transferabil-
ity one is interested in; this calculation enables an in-
dependent and direct inspection of the quality of the
pseudo-Hamiltonian being studied. , which complements
the tests discussed previously (especially as far as non-
spherical terms are concerned). A good transferability of
the pseudo-Hamiltonian within the DFT-LDA also ap-
pears as a prerequisite for reliable further use in a QMC
simulation.

We have studied insulating Si in the diamond structure
and metallic Na in the bcc structure, at zero tempera-
ture, by means of DFT-LDA total-energy calculations.
A suitably modified plane-wave LDA total-energy code
was used for the pseudo-Hamiltonian and nonlocal pseu-
dopotentials calculations of the valence-only crystal [7],
while the full-core crystal was studied by means of the all-
electron full-potential linear-muffin-tin-orbitals (LMTO)
method [55]. The full-core crystal calculation was per-
formed both relaxing self-consistently all the electronic
states and &eezing the core states in the atomic ground-
state configuration. In the latter case, the core density

to be used in the electrostatic and exchange-correlation
terms was obtained by overlapping the free-atom cores
at each iteration, while the one-particle core eigenvalues
were added to the total energy (for details see Ref. [56]).

Some technical points are worth mentioning. As can be
guessed from Figs. 1 and 2, the pseudo-Hamiltonian may
require a rather high energy cutoff in a plane-wave cal-
culation. Converged quantities were obtained for cutoff
energy of 50 Ry for Si, while Na required 25 Ry. The set-
up of Hamiltonian matrices is 3—5 times faster than with
conventional nonseparable nonlocal pseudopotentials for
the matrix sizes of up to 1500 used here. On the other
hand, the kinetic operators of the pseudo-Hamiltonian
cause the kinetic energy to be nondiagonal in Fourier
space, so that the energy cutoff should be increased grad-
ually during the self-consistent cycle; the convergence of
the latter is delayed somewhat. In the full-core calcu-
lations, the crystal was represented by well-packed non-
overlapping atom-centered spheres, the muffin-tin radius
being 98% of that of touching spheres. As is usually done
within LMTO methods [57], we insert empty spheres, of
the same radius as the atomic spheres, in the intersti-
tial regions of the diamond structure. The basis we used
consisted of three Hankel functions with decay energies
—0.7, —1.0, and —2.3 Ry, augmented for E & 2, which cor-
responds to 27 LMTO's per atom. For both Si and Na
we included in the valence 3s, 3p, and 3d states; for Na,
the 2p states were treated as delocalized semicore states.

The Brillouin zone summation for Si was done on the
standard 10-point mesh [58]. Its treatment in metallic
Na is instead. worth some comments. In metals, to ac-
celerate the convergence of the summation in the pres-
ence of a Fermi surface, an artificial broadening is often
imposed on the energy distribution of electronic states.
This is equivalent to assigning a fictitious nonzero tem-
perature to the electron gas. The smoothing of the step
distribution function can be enforced, e.g. , by adopting
a T $0 Fermi-Dirac distribution, or approximating the
b function by a Gaussian of width E = T (the two pro-
cedures are not equivalent). The problem is that the
exact result is recovered only in the limit 4 ~ 0, and
reaching this limit requires again a very large (in prin-
ciple infinite) number of k points. An operative solu-
tion is given by the procedure of Gillan [59], who gave
a prescription for a "generalized free energy" which de-
viates from the 4 = 0 value for the total energy by
terms of O(A ). De Vita [60] has recently generalized
this approach to arbitrary broadening schemes, indicat-
ing that the deviation might even be O(b, ): indeed
his treatment is equivalent in principle to the first-order
Methfessel-Paxton formula [61],as our results confirm for

TABLE V. Comparison between lattice constants and cohesive energies for the Na
pseudo-Hamiltonian calculated with the methods of Needs, Martin, and Nielsen [62], Fu and Ho
[63], and Gillan and De Vita [59,60].

Needs-Martin-Nielsen
Fu-Ho
Gillan —De Vita

Lattice constant (A)
4.07
4.36
4.19

Cohesive energy (eV/atom)
0.61
1.10
0.86
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TABLE VI. Bulk properties of Si crystal (see text). Experimental dataare from Ref. [64]. FLAPW indicates the full-potential
linearized augmented-plane-wave method.

PH (this work)
PH (Ref. [10])
Nonlocal
Full core (frozen core)
Full core (relaxed core)
Full core (relaxed core, FLAPW [65])
Full core (relaxed core, FLAPW [66])
Expt.

Lattice constant (A)
5.44
5.46
5.37
5.42
5.41
5.41
5.43
5.43

Cohesive energy (eV/atom)
5.04
5.08
5.31
5.04
5.25
5.28
5.24
4.63

Bulk modulus (kbar)
912
916
968
960
958
960
998
992

the present system. We adopted a Gaussian broadening
of 0.075 Ry, and find 44 k points [58] to be sufficient to
give converged results. We warn that, evaluating the to-
tal energy at finite L with the techniques suggested by
Needs, Martin, and Nielsen [62] and Fu and Ho [63], one
can run into severe problems, as far as cohesive energy
and equilibrium lattice constant are concerned. These
problems are clearly illustrated by our Table V, where
the different broadening schemes are compared for the
sodium crystal; here the electron-ion interaction is al-
ways represented by the pseudo-Hamiltonian. Based on
Table V we choose the Gillan —De Vita scheme for all
the following sodium crystals. Comparisons of pseudo-
Hamiltonians, pseudopotentials, and full-core atoms are
instead shown in Tables VI and VII. Corrections for
zero-point motions are not included. The performance of
the pseudo-Hamiltonian for Si as compared to the full-
core results is remarkably good; in particular, we ob-
serve that the &ozen full-core cohesive energy is very
well reproduced. For Na, the structural properties of
the pseudo-Hamiltonian crystal are excellent but the ab-
solute cohesive energy is underestimated with respect to
the all-electron result. The satisfactory results are all the
more remarkable considering the difhculties normally en-
countered by pseudopotentials in treating alkali elements.
Both Si and Na have a slightly larger lattice constant and
a smaller bulk modulus when the core is frozen into its
&ee-atom shape, an effect discussed in greater detail in
Ref. [56].

V. CONCLUSIONS

Accurate pseudo-Hamiltonians, which are useful and
conceptually simple tools for the quantum Monte Carlo
simulations of many valence-only systems, are much more
diKcult to construct than nonlocal pseudopotentials; it
is precisely their (very desirable) local character which,

because of complicated related constraints, makes any
simple Hamann-Schluter-Chiang-like construction, based
on straight numerical inversion, essentially inapplica-
ble. Moreover, unlike nonlocal pseudopotentials, local
pseudo-Hamiltonians cannot even in principle deal with
transition-metal ions, and encounter considerable practi-
cal difficulties also with the (strongly nonlocal) first-row
elements. In this paper, besides giving a detailed ac-
count of the pseudo-Hamiltonian method, we propose a
numerical technique based on simulated-annealing cycles,
and show that it is capable of yielding accurate pseudo-
Hamiltonians for that portion of the periodic table of
the elements where they really work well (the simple sp-
bonded atoms). For first-row elements and transition ele-
ments conceptually less simple approaches are needed [5],
but for those chemical elements for which it works well
the pseudo-Hamiltonian represents a clean and accurate
tool.

As far as transferability is concerned, our extensive
atomic and solid-state tests suggest that the quality of
our pseudo-Hamiltonians is comparable to standard non-
local pseudopotentials. A surprise of our crystal tests was
that the cohesive energy of a relaxed-core silicon crys-
tal is larger (in the local-density approximation) by as
much as 0.2 eV/atom than the &oxen-core silicon crys-
tal. This simple finding was never previously presented
in the literature, at least to our knowledge, and suggests
some caution when comparing on this energy scale cohe-
sive energies from various quantum Monte Carlo valence-
only simulations and experimental values [4,13]. This
finding also shows that, as far as cohesive energies are
concerned, the Si pseudo-Hamiltonians are, on the 0.2
eV/atom scale, slightly more transferable (and not less
transferable) than standard pseudopotentials. We would
probably find a rational explanation for that if we con-
sistently included the I ouie-Froyen-Cohen nonlinear core
corrections in all of our pseudoions. We did not do that
because this density-dependent correction does not lend

TABLE VII. Bulk properties of Na crystal (see text). The difFerences between frozen- and
relaxed-core results are negligible. Experimental data are from Ref. [64].

PH
Nonlocal
Full core
Expt.

Lattice constant (A)
4.19
3.87
4.08
4.20

Cohesive energy (eV/atom)
0.86
1.15
1.21
1.13

Bulk modulus (kbar)
75

110
94
68
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itself to an extension to quantum Monte Carlo valence-
only simulations [54], which were the motivation for local
pseudo-Hamiltonians in the first place.

Our guess is that, at the subtle level of the silicon dis-
crepancies just mentioned, but even to explain some of
the sodium results (Tables VI and VII), one would prob-
ably discover that the pseudo-Hamiltonian tends to com-
pensate exchange-correlation and Hartree errors, in the
sense discussed by Teter [17], in a slightly more efficient
way than standard nonlocal pseudopotentials. System-
atic hardness tests as well as a complete tabulation of
pseudo-Hamiltonians for the 8p elements represent the
natural extension of this work, and are under way [32].
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APPENDIX: INTEGRATION OF THE
KOHN-SHAM EQUATIONS

We sketch brieBy how we solve numerically the radial
Kohn-Sham Eqs. (22). The need to recall a number
of known things is related to a few key choices in the
construction of the cost function (see text). The Kohn-
Sham equations involve the unknown eigenvalues ep and
eigenvectors yt(r) and the density

(AI)

where ft is the occupation of the Kohn-Sham orbital
yt(r). The density is responsible for the screening po-
tential v~xc (r) through Eq. (19) and the self-consistent
solution if found by standard iteration schemes. The way
we solve each of the Eqs. (22) for a given trial density,

that is, a given potential vHxc (r), is the following. Once
we have fixed the value of the angular momentum E, for
each value of the energy e ( 0 the Kohn-Sham equations
admit a solution yt (e, r) and a solution yt (e, r), such
that [67,34]

(e, r)™c2 exp (—Q—2er),

(A2)

(A3)

then we have found the eigenvalue eg ——e and the cor-
responding eigenfunction. The difference ytl (e, R)—

(e, R) is then a measure of the departure of e &om
the eigenvalue et [69] and, to first order in this energy
diQ'erence, the eigenvalue can be estimated &om

et e + —[gt (e, R) —gt (e) R)]gt (e, R). (A6)
2

As known, the above formula yields the eigenvalue eg

within the machine precision in a few iterations. The
reason why we recall this known procedure here is to
point out that we do not even need those iterations in
our present scheme. During our simulated-annealing
run we take B = r and, for each new trial pseudo-
Hamiltonian, we only need to integrate once yt (e, r)
at the full-core eigenenergy e = e& . Our final pseudo-
Hamiltonian must satisfy Eqs. (37) and (38): the wave
function yg and its radial derivative y& must simply be
identical to the full-core counterparts beyond R, and
thus Eq. (A6) enables us to estimate the distance be-
tween the full-core target eigenvalue e& and the eigen-
value of the current trial pseudo-Hamiltonian. This clar-
ifies the equivalence of d[ (xi+et, r, ), xt (et, r, )] and
d(et, et ), which was stated in Sec. IIIB, and the con-
venience of using d[xt(eP, r, ), xt (et, r, )], which re-
quires just one integration, instead of using d(et, e& ),
which requires many iterative integrations.

and. they can be easily calculated for any negative energy
e on a finite numerical grid (following, e.g. , Hamann [24]).
If, after rescaling one of the two to match the other one
at a radius R [68]

IN( R) oUT(

we find that also the first derivatives happen to exactly
match in B

(A5)
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