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We propose a description of the collective atomic-recoil laser based on a set of nonlinear differential
equations for an appropriate set of collective variables. The main obvious advantage of this description
is that, when applicable, it can describe systems having an arbitrary number of particles. A comparison
between the predictions of the collective equations and those of their microscopic counterparts shows a
satisfactory level of accuracy, even during the nonlinear stage of the evolution. The linearized version of
the collective equations is especially useful for the study of the small-signal gain or absorption spectrum
and the analysis of the start-up process.

PACS number(s): 42.55.Ah, 32.80.Qk, 42.50.Vk

I. INTRODUCTION

The collective atomic-recoil laser (CARL) is a source
of coherent radiation that operates as a hybrid between
an ordinary laser and a free-electron laser (FEL). As
originally described in Ref. [I] and further elaborated in
Ref. [2], this system can be visualized as a stream of two-
level atoms driven by a counterpropagating pump field
and probed by a weak copropagating field whose
amplification is the ultimate purpose of the device. Un-
der appropriate conditions, the probe field can be
amplified exponentially through a collective instability of
the active medium leading to the spontaneous creation of
a grating structure in the form of a longitudinal modula-
tion of the atomic density [2].

The amplification process can be interpreted as the
coherent backscattering of the pump field from the mov-
ing grating with an efficiency that increases as the grating
structure becomes progressively better defined; it can also
be interpreted in the traditional sense of pump-probe
spectroscopy in which the probe samples the linear
response of the driven active medium and, in the presence
of gain, increases in strength [3]. In either case, the
translational degrees of freedom and the internal energy
levels of the atoms play an equally important role in the
generation and amplification of coherent light. It is
easier to appreciate this point if we picture the CARL
process as the coherent backscattering of the pump wave.
In fact, by virtue of the internal atomic structure, the
pump field creates a macroscopic polarization within the
active medium, just as in an ordinary laser. The polariza-
tion, in turn, acts as the source of a scattered field which
then interferes with the pump and creates a longitudinal
pendulum potential that traps and bunches the atoms.
The coherent backscattered light reacts on the atoms
enhances the bunching, which further increases the
strength of the backscattering process, and so on. The
radiation reaction originates from the collective interac-
tion which is, ultimately, the source of the exponential

gain for both the CARL and the free-electron laser. The
motion of the atoms is accompanied, of course, by a
Doppler shift of the scattered light. The precise connec-
tion between CARL and FEL has been analyzed in detail
by Bonifacio and De Salvo in a recent contribution [4],
where the common physical driving mechanism was
shown to be the collective recoil-induced gain.

An important feature of ordinary laser theory is that
the basic equations can be framed directly in terms of col-
lective variables. Thus, the behavior of the individual
atoms is not an important issue and the theory of the
laser can readily account for a virtually arbitrary number
of active units. The same does not hold, unfortunately,
for the free-electron laser and CARL. During the early
stages of the FEL evolution, however, its equations can
be cast into an approximate form that involves collective
variables [5]. Not only does this simplify the analysis of
the start-up process because one is not forced to consider
the evolution of a large number of individual electrons,
but it also clarifies the nature of the high-gain instability
in terms of the behavior of only three characteristic rate
constants, i.e., the eigenvalues of the collective linear
equations.

In this paper we show that also the atomic-recoil laser,
for a wide range of parameters, can be described by a
suitable set of collective equations during the early stages
of the evolution of the system, i.e., in the linear regime.
This procedure can be extended to the nonlinear part of
the dynamics with the help of an approximate factoriza-
tion ansatz whose purpose is to allow the derivation of a
closed set of equations. Of course, the nonlinear collec-
tive equations are not exactly equivalent to the micro-
scopic equations of Ref. [2], as one can readily expect.
There is, however, a sufficiently broad range of conditions
of physical interest where they provide at least a qualita-
tively accurate description of the amplification process,
well into the saturation regime. The practical advantage
of the collective equations is that they can be used to
simulate the behavior of an arbitrary number of atoms
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without the numerical constraints imposed by the single-
particle equations. Thus, with limited efFort we can
derive the probe gain spectrum for short times and follow
the growing inhuence of the atomic recoil on the evolu-
tion of the system, and the resulting departures from the
standard shape of the gain spectrum of stationary driven
two-level atoms. Furthermore, in the linear regime the
collective equations allow the analysis of the CARL in-
stability and of the exponential signal growth in terms of
a relatively small number of eigenvalues.

The paper is organized as follows. In Sec. II we outline
the derivation of the collective equations in the linear re-
gime of the CARL model and discuss some useful conse-
quences of this formulation. In Sec. III we extend our
collective-variables description to the full nonlinear re-
gime and compare the results of this description with
those of the exact microscopic equations. We conclude
this paper, in Sec. IV, with a summary of our results and
some general remarks.

II. COLLECTIVE VARIABLES IN THE LINEAR REGIME

(2.1a)dP;e;e= —A', e 'S.—A, e 'S'+2AiRe(S, ), (2.1b)

N;g
=ib2, A, +—g Sje

j=1
(2.1c)

(PJ+2b2O)S —pD~( A, e '+ Az) —I S—, (2.1d)

=[2p(A i e '+A&)S +c.c. ]—I (D —1), (2.1e)

The CARL model simulates the interaction of a collec-
tion of two-level atoms with a counterpropagating pump
field and copropagating optical probe. While the reader
should consult Ref. [2] for a detailed description of the
model, it may be useful to recall that the starting point of
our analysis is provided by the traditional quantum-
mechanical Hamiltonian describing the interaction of N
identical two-level atoms with two counterpropagating
fields. The center-of-mass motion of the atoms is ac-
counted for by the inclusion of the standard kinetic ener-
gy term pj /2m for a particle with momentum P and
mass m, and by handling the position variables z of each
particle as the associated canonically conjugate opera-
tors.

In Refs. [1] and [2] we derived the basic equations of
motion starting from the Heisenberg operator equations
for the position and momentum of each atom, the
creation and annihilation operators of the probe field, and
the usual effective angular-momentum operators describ-
ing the atomic internal degrees of freedom (we consider
the pump as a c-number driving field from the outset).
After calculating the expectation values of the relevant
observables in the semiclassical approximation, i.e., upon
factorization of the expectation values of products of
operators, the equations of motion for the scaled dimen-
sionless variables have the explicit form

where

(2.2a)

and

8 =(k, +kz)[z, —V(0)t) (2.2b)

(2.3a)

where

CO~ CO~ COO COg

CO~ +C02
'

C02
(2.3b)

Equations (2.1) provide a self-consistent description of
the evolution of the translational and internal atomic de-
grees of freedom, under the action of the driving field A 2
and in the presence of the probe field A

&
whose

amplification is the main objective of the study. We
recognize Eqs. (2.ld) and (2.1e) as the atomic Bloch equa-
tions, suitably generalized for the inclusion of the atomic
translational motion, while Eqs. (2.1a)—(2.1c) have the
structure of the traditional FEL equations with addition-
al contributions originating from the pump field and the
atomic internal degrees of freedom.

The natural setting for the derivation of linearized
equations involves the expansion of the dynamical vari-
ables around a suitable stationary state. The initial
configuration of our system (A, =0, P =SJ=0, and
D =1 for all j, 8 uniformly distributed from 0 to 2m. ) is
not a stationary state because the atomic polarization has
a nonzero rate of growth, as a result of the presence of
the pump field. If I is not equal to zero, and if the cool-
ing rate of the atoms under the action of the counterpro-
pagating field is suSciently small, a condition that is well
satisfied if I «p and 62o &&1 because in this case disper-
sive effects dominate, the atomic momentum varies only a
little from its initial value, at least during the early stages
of the evolution, and the atomic variables reach a

are, respectively, the dimensionless momentum and posi-
tion (phase) of the jth atom in the laboratory frame, V(0)
is the average initial velocity of the atoms, and k, =co, /c
and kz=coz/c are the wave numbers of the probe and
pump fields, respectively. The symbol p = (go@ n /co„) ~

denotes the dimensionless CARL parameter; g„ is the
atom-field coupling constant (gp=p+coo/(2'fiso)) ct)p is
the atomic transition frequency in the rest frame of the
atom, n =N/V is the density of atoms in the interaction
volume, co„=Pi(k, +kz) /(2ni) is the one-photon recoil
frequency shift, and v.=co,pt is the time scaled by the col-
lective recoil rate co„p. The scaled amplitude of the probe
field is denoted by A „A2 is the pump field amplitude, S
the complex atomic polarization, and DJ is the popula-
tion difference between the ground and excited states of
the jth atom; finally, I denotes the common relaxation
rate of the atomic variables S and D and the detuning
parameters hz, and b,zo are defined by

(k, +k2) kz
[ V(0)—V„,], hzo= [ V(0) —V„z],
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It is now a simple matter to verify that Eqs. (2.7) to-
gether with the following definitions of the collective
variables,

N

+5S, e
j=i

N

+58e
j=i

N
5D e

j=1

=1X=-
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Y=—+5S e
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(2.9)

1Z=—
1 +id

S = —pA2 So2 I 2+F2 +4 2A2 (2.4a) lead to the required linearized equations

quasisteady state in a time of the order of a few I '. Be-
cause of the significant lethargy in the buildup of the
probe field, this nearly stationary configuration of the
atomic variables persists for a long enough time (see, for
example Fig. 5(d) of Ref. [2]) to justify its use as an
e6'ective initial stationary state.

Guided by these considerations, we solve Eqs. (2.1d)
and (2. le) in steady state (i.e., with dS /dr =dD /dr=0)
and under the assumptions ~Pz ~

&&
~

b, ~o~ and
~

A i ~

&& A z,
which are appropriate during the early stage of the evolu-
tion, and find

I 2++220
D = =Do .J I 2+g2 +4 2A2

(2.4b)

dV
d

= —S*A +2A X

(2.10a)

(2.10b)
We now consider the following "initial" conditions:

8 (0)=uniform, PJ(0) =0, A, (0}=0,
S.(0)=So, Dt(0) =Do,

(2.5)

and introduce the set of small fluctuation variables
5XJ(r},where X stands for 8, P, S, or D, according to the
definitions

8)(r) =8.(0)+581(t),

P, (r) =5P, (t),
SJ(r)=So+5SJ(t),
D (r) =Do+5D (t) .

(2.6a)

(2.6b)
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(2.6d)
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A.t the same time, we assume that A& remains small
enough to justify the linearization of the equations of
motion (2.1).

After substituting Eqs. (2.6) and (2.4) into Eqs. (2.1)
and retaining only the terms linear in the fluctuation vari-
ables, the linearized equations take the form

dAi =l b2, A, —iSO V+X+l Y (2.10c)

dX 1 1

d~ 2
= ——S 8' —6 Y ——pD Ai —pA Z —I X,

dY 1 l
Ox 2 2 0

=—S W+b, OX+ pD A —I Y—,

dz
2pSo A i+4p A2X I Z

d'T

(2.10d)

(2.10e)

(2.10f)

In arriving at Eqs. (2.10) we have used the simple rela-
tions

—iB.(0)
cos8i(0)e

1V . 2 '

—i B-(0) l—g sin8~(0)e
N . 2

'

(2.11a)

(2.11b)

which are valid if 8~(0) is uniformly distributed, and can
be proved trivially in the continuum limit 0 —+0, with
0& 8 & 2~. We note that the first three of Eqs. (2.10) are
the standard linearized FEL equations after ignoring the
terms 2AzXin Eq. (2.10b) and (X+iY) in Eq. (2.10c). Of
course, these are precisely the terms that are responsible
for the coupling of the external (FEL-like) to the internal
(laserlike) degrees of freedom and that eventually lead to
the efFects that are typical of CARL.

A convenient way to gain a global overview of the
short-time behavior of the system is to display the depen-
dence of the small-signal gain upon the frequency detun-
ing parameter 62, . For this purpose, we define the
small-signal gain (or gain spectrum) as

/A, (r)/'
G(A~i, r) =ln (2.12)

A, (0)

where we have used the notations

So =So +iSO

6S =5Sj +i65j

(2.8a)

(2.8b)

Although this definition difFers somewhat from the one
introduced in Ref. [2], Eq. (3.2), we find our new choice
more convenient for the purpose of comparison, when ap-
propriate, with the Mollow spectrum of a stationary
two-level atom. A typical example is shown in Fig. 1(a),
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FIG. 1. (a) The gain spectrum G(h», ~) calculated from the
linearized collective equations (2.10) at v.=0.5 for the parame-
ters I =5 p=30 Ay=1 6pp= —35. (b) An enlarged view of
the central part of the gain spectrum for the same values of the
parameters; curve 1 corresponds to ~=0.5, curve 2 to ~=1.5,
and curve 3 to v.=2.5. The thick lines correspond to the solu-

tions of the collective equations and the thin lines to the solu-

tions of the exact microscopic equations (2.1). (c) The central
part of the gain spectrum in the FEL limit and at ~=2.5; the pa-
rameters are I = 1, p =30, A ~

= 1, h~p = —120; again, the thick
line corresponds to the solutions of the collective equations and
the thin line to the solutions of the exact microscopic equations
(2.1).

where we display the behavior of G calculated from the
linearized equations (2.10) at the early time ~=0.5; this
figure covers a range of values of the detuning parameter
521, which includes the absorption and Raman gain
features located an effective Rabi frequency
(b,zo+4p A z

)' away from resonance, in addition to the
dispersive-looking Rayleigh structure centered at the ori-
gin. These are the we11 known attributes of the Mollow
spectrum, as pointed out in numerous earlier studies of
driven two-level atoms [6]. In Fig. 1(b) we display three
enlarged views of the central part of the spectrum, which
is the most affected by recoil phenomena during the early
part of the evolution; the three curves shown in the figure
correspond to three different values of the dimensionless
time ~ and are matched to the corresponding solutions of
the microscopic CARL equations to illustrate the typical

quantitative agreement between the exact and collective
short-time evolutions.

It is important to note how the dispersionlike Raleigh
part of the Mollow spectrum develops a narrow feature
around 621=Q as time progresses. This typical recoil
structure, which is reminiscent of the small-signal gain
profile of the free-electron laser [7], here is superposed, in
part, to the Rayleigh component of the Mollow spec-
trum. As we approach the pure FEL limit, as shown in
Fig. 1(c), the Rayleigh part of the spectrum virtually
disappears and the well known small-signal gain profile of
the free-electron laser becomes obvious. This limit is ap-
proached by lowering the cooling rate associated with the
driving field Az (i.e., by selecting a smaller value of the
ratio I /p) and by increasing the magnitude of the detun-
ing parameter 620 thus decreasing the relevance of the
internal atomic structure.

The results shown in Figs. 1(a)—1(c) are significant, in
our opinion, because they suggest a very reasonable phys-
ical interpretation of the principles that govern the early
stages of the CARL evolution. In fact, Fig. 1(a) is very
reminiscent of the probe gain profile of a stationary,
driven two-level atom (the so-called Mollow gain spec-
trum [6]). We attribute this to the fact that under the
chosen conditions, the recoil does not yet play an impor-
tant. dynamical role. Thus, the early response of the sys-
tem to a weak probe is essentially the same as the one cal-
culated by Mollow for stationary independent atoms un-
der true steady-state conditions. At later times the
Mollow-type symmetry of the gain spectrum around
bzi =0 [see Fig. 1(b)] is broken, as a consequence of the
effects of the recoil suffered by the atoms whose momenta
are now beginning to change significantly. As time
progresses further, the atomic recoil leads to the forma-
tion of the grating structure, and the small-signal gain
profile becomes even more pronounced [curve 3 of Fig.
1(b)]. For even longer times, i.e., times long enough that
the collective instability has had a chance to develop, the
system enters a new phase of the evolution. At this point,
as already shown in Ref. [2] the small-signal gain profile
with its characteristic antisymmetric structure disappears
and is replaced, instead, by a symmetric gain curve which
is eventually responsible for the generation of the charac-
teristic CARL exponential amplification.

The role of the atomic recoil in the CARL process can
be made even more apparent if we modify artificially the
linearized equations (2.10) by setting the variables V and
8' equal to zero, i.e., by pretending that the atoms are
stationary at all times. The result, as shown in Fig. 2, is
the disappearance of the antisymmetric small-signal gain
structure and, for longer times, the absence of gain at
b,z, =0, as also illustrated in Fig. 2 of Ref. [2] with the
help of the exact microscopic equations.

Apart from the early appearance of the Mallow-like
gain profile, which is foreign to the free-electron laser,
the dynamical similarity between the linear behavior of
the CARL and FEL systems can be made even more ap-
parent if we display the real parts of the eigenvalues A. of
the linearized collective equations (2.10), as shown in Fig.
3. The connection is especially striking as one compares
the expanded part of this figure [see Fig. 3(b)] with Fig. 2
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FICx. 2. The central part of the gain spectrum 6(52&,~) cal-
culated from the linearized collective equations for the same pa-
rameters used in Fig. 1(a). The thin lines have been obtained
with the full set of equations (2.10); the thick lines correspond to
the simplified collective equations after the artificial removal of
the variables V and 8'. Curves 1, 2, and 3 correspond to the
same values of v used in Fig. 1(a).
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of Ref. [5]. The qualitative similarities are obvious; here
also, for example, as in the case of the free-electron laser,
we recognize the existence of an instability threshold with
respect to the detuning parameter 62, . When the FEL is
below threshold for amplification (i.e., for 62, )h2"i', in
terms of our current notations) the real parts of the eigen-
values are zero and the linearized solutions are simple os-
cillating functions of time, while above threshold
(52, (hz",'), the signal grows exponentially. The situa-
tion is qualitatively the same for CARL apart from some
additional complications [see, for example, the region
around b,2, =0 in Fig. 3(b)] due to the mixing of FEL-like
and laserlike features. In the FEL limit (see Fig. 4) the
behavior of the real part of the CARL eigenvalues is far

FIG. 4. (a) The three eigenvalues of the collective equations
(2.10) with the largest real parts. (b) An enlarged view of (a)
around 5»=0. The parameters are the same as those used in
Fig. 1(c).

more transparent. The Rarnan and absorption features
are readily visible, although significantly reduced in mag-
nitude, the Rayleigh part of the eigenvalue spectrum has
almost disappeared, and the close-up of the FEL-like
structure [Fig. 4(b)] looks almost exactly like Fig. 2 of
Ref. [5].

III. COLLECTIVE NONLINEAR EQUATIONS
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Beyond the linear regime, the simple description of the
preceding section fails and a complete solution of the
problem, including saturation effects, requires the numer-
ical integration of 5N+2 equations, where N is the num-
ber of atoms. Obviously, this is not a trivial task, espe-
cially if N is of the order of a few hundreds, or even
larger. In this section we propose an approximate
collective-variables description of CARL that is capable
of reproducing the behavior of the exact equations with
good qualitative accuracy, even in the nonlinear regime.
In spite of the forrnal complexity of the resulting collec-
tive equations, an obvious advantage is that they can be
used regardless of the number of particles.

If B denotes any dynamical variables related to the jth
particle, we define its mean value as

-0.2-

I

-5 0 10

(B)=N 'gB
J

Thus,

(3.1a)

(3.1b)
FIG. 3. (a) The three eigenvalues of the collective equations

(2.10) with the largest real parts. The labels M and F refer to
the parts of the curves with the same qualitative behavior as in
the case of a driven stationary atom (Mollow) and in the case of
FEL, respectively. (b) An enlarged view of {a) around 62&=0.
The parameters are the same as those used in Fig. 1(a).

(3.1c)

(3.1d)
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&a) =N-'yD, (3.1e) where, according to the definition of mean value of a
dynamical variable, Eq. (3.1a), we have

denote, respectively, the average momentum, the kinetic
energy [apart from the factor 1/(2m)], the atomic polar-
ization, and the population difference. In addition, we
define the average complex bunching parameter [8]

(P2b ) =N ' y e iP2

(Sb')=N 'y-e '
S, .

J

(3.10)

(3.11)

V=(exp( i—6, ))=N '+exp( i8 —),
J

(3.1f)

X=(ReS e '), (3.2a)

Y=(ImS e '),
Z=(D, e ''),

(3.2b)

(3.2c)

where ReS and ImS are the real and imaginary parts of
the polarization of the jth atom. %'ith the help of Eqs.
(3.2), the field equation takes the form

dA1 =i A1d21+X+iY .
d7

(3.3)

Furthermore, Eqs. (2.1) and (3.2) together yield the fol-
lowing evolution equations for X, Y, and Z:

whose modulus is bounded between zero and unity; the
lower limit of

~ V~ corresponds to a configuration in which
the particles are distributed uniformly in space, while

~
V~ ~1 signals that the particles' density displays a

periodic modulation with the period of an optical wave-
length, a situation that allows an efficient energy transfer
from the atoms to the field.

As in Sec. II, here also it is convenient to define the
variables

Because, in general, the equations of motion for the
mean values of the product of M dynamical variables de-
pend on mean values involving the product of M+ 1 vari-
ables, the construction of the equations of motion yields
an infinite hierarchy of coupled equations, as expected.
We truncate this hierarchy by assuming the (approxi-
mate) validity of the following relations:

((P —(P))'b &=&(P —(P))'& V,
((s —&s) )pb & = &(s —&s) )b &(p),
&(s —&s &)bb &

= &(s —(s) )b) v,

(3.12a)

(3.12b)

(3.12c)

whose accuracy we have tested with the help of numeri-
cal solutions of the exact equations (2.10). A sample test
is shown in Fig. 5, where we analyze the behavior of the
real and imaginary parts of both sides of Eq. (3.12b).
Furthermore, from Eqs. (3.12) we obtain

(P b) =2(P) W+(P ) V —2(P) V,
(spb & =& p&s —(s)&p) v+ &s& Iv,
&sb') =(s)a+sv —&s & v',

(3.13)

(3.14)

(3.15)

where S= (Sb ) and 8 = ( b ) . The remaining equations
of motion follow with the help of the identities

dX
i (Pb—ReS ) —

—,
' (Pb ImS ) —b, 2o Y —p A 2Z

(P'& =2(PP ), (3.14a)

,'pA, &a& —,'—pA*, (Db'—
& —rx, —

dY
i (Pb ImS—) + ,' (Pb ReS ) +b, zoX—

(3.4)
0.05-

+i ,'pA, (b—,) i ,'pA i (D—b —) I Y, —

=4pA X —rZ+2pA, (b S &+2pA, &S' &
'r

i (PbD—)+I V,

(3.5)

(3.6)

0.00

CC

-0.05-
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(a)
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where b—:exp( i 8 ). The e—quation of motion for the
average bunching parameter follows from Eqs. (3.1f) and
(2.1a) and has the form 0.05-

dV = —iW . (3.7) 0.00

where 8'denotes the joint phase-momentum average

(3.8)

i(P b)+2A~X——A i (Sb ) —Ai(S*), (3.9)
d'T

W'= (exp( ig)P ) =N '—g e 'P
J

From the definition (3.8) and the CARL equation (2.1b)
one can easily derive the following equation of motion for
F.

-0.05—

10 15 20 25 30 35

FIG. 5. Comparison between the real (a) and imaginary (b)
parts of the left (thin line) and right (thick line) hand sides of
Eq. (3.12a). Of the three equations (3.12) we have chosen to
display the worst case. The parameters are I =5, p =30,
32=2, 520= —35,

baal

= l.



2348 LUCIA De SALVO et aI. 52

(b')= —2i(8e " ) (3.14b) 0.06-

Finally, after simple algebraic manipulations, we arrive at
the following closed set of equations of motion describing
both the linear and nonlinear regime of CARL:

0.04-

0.02-
dV =—iS',

7

=2Azx —Ai(s ) 2i—(P) W —A i

(3.15a)
0.00,

0 10 15 20 25 30 35
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+ W, &P & &S & I+c.c. (3.15k)

%'e observe in passing that during a preliminary analysis
of this problem, we considered a simpler alternative set of
equations where we neglected the "second harmonic"
contribution B = (b ) = (e ' ); the results exhibited a

FICx. 6. Comparison between the output intensity calculated
from the nonlinear collective equations (thick line) and the ex-
act CARL equations (thin line) for the parameters used in Fig.
5.

far less satisfactory agreement between exact and approx-
imate solutions, so that we abandoned further attempts
along this line.

As a test of consistency of the collective equations
(3.15), we have constructed their linearized version and
recovered the collective equations (2.1D), as expected. It
follows that the short-time behavior of the full set of non-
linear equations (3.15) matches that of the microscopic
equations (2.1). With respect to the long-time behavior,
in Fig. 6 we compare the output intensity calculated from
the numerical integration of Eqs. (2.1) with the same
quantity obtained from Eqs. (3.15). As we can see, the
agreement is rather satisfactory, especially during the
evolution of the first emitted pulse of CARL radiation.

IV. COCCI.USIOXS

We have developed a simplified alternative description
of the CARL amplification process based on a set of col-
lective variables. While the collective equations are only
approximately equivalent to the microscopic equations
derived in Refs. [1,2], the agreement is rather satisfactory
over a wide range of parameters where the system
displays CARL gain, so that in this regime one can
dispense with the lengthy numerical calculations that are
required when the number of particles is large.

During the linear regime of the evolution, CARL
displays gain in correspondence with the Raman peak, a
feature which is common also to stationary atoms [6].
However, the inclusion of recoil in the theory brings
about major qualitative modifications in the so-called
Rayleigh structure of the Mollow spectrum. Not only
does the symmetry of the gain profile undergo a complete
change as a result of the atomic recoil, but it also indi-
cates that the predicted evolution of the Mollow theory
fails to occur in the presence of atomic recoil, to be re-
placed instead by the collective instability described in
this paper. This can be seen most readily from Fig. 3(a)
with the help of the real parts of the eigenvalues of the
linearized collective equations. In fact, according to the
part of the figure labeled M (the Mollow-type eigenvalues
having the largest real parts) and for a sufficiently nega-
tive value of the detuning parameter hz, [for example,
621= —5D in Fig. 3(a)], the linearized prediction would
lead to the conclusion that an initial fluctuation must be
absorbed (the real part of the Mollow-type eigenvalue is
negative). In the presence of recoil, however, the FEL-



52 COLLECTIVE-VARIABLES DESCRIPTION OF THE ATOMIC-. . . 2349

type part of the same figure shows the existence of one ei-
genvalue with a small but positive real part. Thus, an ini-
tial Quctuation is actually amplified as a consequence of
recoil-induced gain effects.

Producing a precise statement on the range of validity
of the collective equations does not seem to be a simple
matter. Our extensive numerical tests suggest that the

agreement between the microscopic CARL equations and
their collective counterparts continues to be satisfactory
as long as the atomic damping rate I is sufficiently large
and the cooling rate I /p sufficiently small, so that Eqs.
(2.4) provide an accurate representation of the early
stages of the evolution and that, in addition, the CARL
system is reasonably above threshold.
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