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Dynamical behavior of a Brillouin fiber ring lager emitting two Stokeg componentg
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The dynamics of a Brillouin fiber ring laser operating on the two 6rst Stokes components is studied
both theoretically and experimentally. The emergence of the second order Stokes wave is described
within the framework of a coherent 6ve-wave model that generalizes the usual three-wave model. The
laser steady states are analytically characterized and the dynamics is numerically studied. The laser
emission is stable except at high pumping rates for which the system exhibits periodic and quasiperiodic
instabilities. Experimental results are in good agreement with the theoretical predictions.

PACS number(s): 42.65.Es, 42.50.Ne, 42.81.—i

I. INTRODUCTION

The dynamics of stimulated Brillouin scattering (SBS),
which is one of the most dominant nonlinear e6'ects in
cw-pumped optical fibers, has recently captured consider-
able interest [1—3]. Resonantly coupling two electromag-
netic waves and an acoustic wave through electrostric-
tion, SBS can be a very low threshold phenomenon when
the fiber is placed inside an optical resonator. Such a sys-
tem is then called a SBS fiber laser [4] and it can exhibit
various types of behaviors. Very stable single-mode cw
regimes with linewidths as narrow as 30 Hz [5] have been
obtained in high-finesse resonators [6] or in externally
stabilized systems [7]. Mode-locked operation has been
demonstrated with the aid of an intracavity acousto-optic
modulator [8]. Finally, the observation of solitonic re-
gimes has recently been achieved [9].

The first theoretical description of the Brillouin fiber
ring laser dynamics was formulated by Bar-Joseph et aI.
[10]. In this model, the inertial response of the acoustic
wave is neglected, the system dynamics being then de-
scribed by equations for the pump and the SBS beam in-
tensities. Such an instantaneous response model obvious-
ly fails when the characteristic evolution times of the sys-
tem become comparable to the acoustic-wave relaxation
rate. A more realistic description of the SBS ring laser
dynamics is then given by the now well established
three-wave SBS model [11]. This one takes into account
the acoustic damping and correctly describes most of the
experimentally observed regimes. Recently, for example,
a Hopf bifurcation between steady and pulsed regimes
has been evidenced in a Brillouin fiber ring laser [12].

However, at high enough pump power level, the first
Stokes component, downshifted by V, (the acoustic fre-
quency) from the pump frequency, may generate a second
Stokes component downshifted by 2V, from the pump
frequency. Such a process can easily recur so that the
second Stokes component may induce the appearance of
a third-order Stokes line and so on. First evidenced in a
Fabry-Perot configuration [13],this "Stokes cascade" has
also been pointed out in a Brillouin ring laser [11]. The
description of this efFect requires a generalization of the
three-wave SBS model that only deals with two optical
waves.

In Sec. II A of this paper, we develop a five-wave mod-
el that takes into account the appearance of the second-
order Stokes wave. The resulting equations, completed
by appropriate boundary conditions, then describe the
dynamics of the first two Stokes components emitted by a
SBS fiber ring laser. Section II B is devoted to a charac-
terization of the system steady states; in particular, a
threshold condition for the growth of the second-order
Stokes wave is derived. The stability of the steady-state
solutions is numerically investigated in Sec. III. Finally,
in Sec. IV, experimental results are compared with the
theoretical predictions. For the SBS laser studied, experi-
ments and numerical simulations show that the steady
"Brillouin mirror" regime is reached just above the first-
order Stokes lasing threshold. The intensity of the first-
order Stokes wave is then stable and increases with the
input pump power up to the second-order Stokes lasing
threshold. First of all, the appearance of this third opti-
cal wave does not destabilize the system but, at higher
pumping levels, the interplay between the three optical
waves results in the emergence of instabilities. Periodic
oscillations at the frequency of the cavity free spectral
range (FSR) are then observed. For higher input pump
powers, new frequencies appear, giving rise to quasi-
periodic regimes.

II. THEORETICAL DESCRIPTION

A. The Sve-wave model

In order to describe the time-dependent behavior of
multiple SBS, let us first consider the propagation of a
linearly polarized optical pump wave Cz(co~, kz) in a
single-mode fiber. k and co are, respectively, the wave
vector and the frequency of this forward-propagating
wave, which can parametrically decay into a forward-
propagating acoustic wave Wi(co„,k„) and a backscat-
tered Stokes wave C„(co„,k„). The frequencies and the
wave vectors of these waves are assumed to fulfill the res-
onance condition co,

&
=co~ —co, &

and the phase-matching
relation k~=k, &+k, &. We now allow the first Stokes
wave 8, i to be reduced to a backward-propagating acous-
tic wave JK2(co,z, k, z) and a forward-propagating second-
order Stokes component C,z(co,z, k,2). The resonance and
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phase-matching conditions corresponding to this last in-
teraction are then written, respectively, as co,2

=co, &

—co,2

and k, &=k,2+k,2. Using the well justified plane-wave
approximation and assuming a propagation along the z
axis, the optical and acoustic waves can be written, re-
spectively, as

6 =E (z, t)expi {to teak z]+c.c. , j =p, sl, s2,
JN=, p (z, t)expi[a), t+k, z]+. c c ., . j=1,2 .

Substituting these expressions for 6,6,&, @,2,Af&, JM2

into the propagation equations of the optical and material
waves [14] and using the slowly varying envelope approx-
imation, we obtain the set of equations describing the
five-wave interaction:

BE, BE,
+v + Ez =iV~piE»,

Bt Bz

BEq ) BE~)—v + E„=iV, (p,'E +p2E,2),
Bt Bz

this last assumption is indeed very rough. However, it is
commonly used [11,12] and supported by the good agree-
ment between our theoretical and experimental results.

Following Ref. [15], the wave amplitudes can be re-
scaled with the new dimensionless variables:

P E & $1 E & $2 E0 0 0

'Pi~ ~ 'P2~ W

The time can be written in units of cavity round-trip time
and the spatial variable z in units of cavity length so that

Since v„/v is approximately equal to 10 in silica, the
propagation of the acoustic wave can be neglected, and
Eqs. (1) then become

BE„BE„
+u + E,2=i V,P2E,Bt Bz 2

+ v a +a A p, =i V3 E~E~~i
Bt Bz

P2 ~P2—v„+a~pi=i V3E, iE,*z,
Bt Bz

BEp Bep p+ + Ep
= g8)E~)Br B 2

Be) Be) p+—c,„=g(8 f e~
—82E,2),

B1 B 2

Be 2 Be 2 p+ +—E,z=g8z e„,
B7 B 2

(3a)

(3b)

(3c)

where uz is the sound velocity and v = c /n the light ve-
locity in the fiber (refractive index: n) yis th. e damping
rate of the optical fields; it is linked to the absorption
coefficient of the fiber a by the relation y =av.
az =~Eve is the damping coefficient of the acoustic
waves, hv& being the full width at half maximum of the
spontaneous Brillouin gain curve. The optomaterial cou-
pling constants are V, =(nn p&zc)/(A, p0) and

V3 (m n p &2e0) /( 2A& vz ) where A~ is the pump wave-
length and c0 the free-space permittivity. Finally, p &2 is
the longitudinal elasto-optic coefficient in fused silica and

P0 the average fiber density.
The set of Eqs. (1) generalizes the usual three-wave SBS

model by including a possible decay of the first-order
Stokes wave into a second Stokes component and a
backward-propagating acoustic wave. In order to de-
scribe Brillouin fiber ring lasers, these wave propagation
equations have to be completed by the boundary condi-
tions

E (z =O, t) =ED@+RE (z =L, t),
E„(z=L, t) =RE„(z=O, t),
E,&(z =0, t) =RE,2(z =L, t),

(2)

where I. is the fiber length. E0 is the maximum pump-
field amplitude coupled in the fiber and p then plays the
role of a dimensionless pump parameter. R is the ampli-
tude feedback parameter. For the sake of simplicity, we
will assume that it has the same value for the three opti-
cal waves and that it is real. Since it means that each op-
tical wave is in exact resonance with one cavity mode,

1 Bi +8, = e,*,+f(g, ),
A

B8z
+82=a„e,'z+f (g,r),

A

where

(3d)

(3e)

aI. I.m
13 ~ Pg ag ~ g=

U U

V, V3L~E0~

CXgU

The boundary conditions, rephrased in a dimensionless
form, are written as

e (/=0, r)=@+Re (/=1, r),
e„(g= l, r)=Re„(/=0, r),
E,2((=O, r)=RE,z(/=1, r) .

(4a}

(4b)

(4c)

B. The laser steady states

The steady-state solutions without optical attenuation
(P=O) are obtained by transforming the field complex

Equations (3} and (4}, which are now our working equa-
tions, govern the dynamics of a Brillouin fiber ring laser
able to operate on the first two Stokes components. Since
the laser emission is initiated from noise, a Langevin
noise source f (g, r) [16,17], which describes the thermal
fluctuations of the medium, has been added to the right-
hand side of Eqs. (3d) and (3e). Above the lasing thresh-
old, this term is obviously much weaker than all the oth-
ers and will therefore be neglected in the analytical calcu-
lation.



52 DYNAMICAL BEHAVIOR OF A BRILLOUIN FIBER RING. . . 2329

amplitudes to modulus-phase form and by dropping the
time derivatives in Eqs. (4). All the field phases are then
independent of g and the equations for the moduli are
written as

0.6

ddt 2
p sl= —gA

dA, i

dg
d~sz

dg

fa, /=A, A„,
fa, f=A„A„,

=gA, qA, ),

gA ]Ap+gg ]g p (5b)

(5d)

Ã
C

0.2-
~~

0.0
tr.

1.0
a

0.8
@

0.6

0
~ ~

~ ~ ~

~
~

~ ~
~ ~

where A~ =
~ s~ ~, A„=

~ e„~, and A,2=
~
c,,2~. The station-

ary boundary conditions are written as

0.2 ~

0.0
0.0

t

0.2

4

0.4 0.6

S

0.8 1.0

A (/=0)=p+RA~(g=l),
A„(g= 1 ) =R A„(/=0),
A,2(/=0) =RA, 2(g= 1 ) .

(6a)

(6c)

FIG.2. Fixed-state longitudinal profiles of the pump (solid
line), first-order Stokes (dashed line), and second-order Stokes
(dotted line) fields for R =0.36, g =6.04 and (a) @=0.45, (b)
@=0.90.

Below the first-order Stokes lasing threshold, the am-
plitudes of the two Stokes waves are equal to zero and the
pump-field amplitude then linearly increases with the
control parameter: A (g)=A&(0)=p/(1 —R) (see Fig.
1).

Between the first- and second-order Stokes lasing
thresholds, A,2(g)=0 and Eqs. (5a) and (Sb) can be in-
tegrated [10,11] yielding the fixed-state longitudinal
profiles of the pump and of the first-order Stokes wave
[see Fig. 2(a)]:

A()= Q(R' 1)e—
(R 2

1 )e
—GQ (R 2 e

—GQ )e
—Gn(

(R 2 e
—GD)Qe —Gng

A„(&)=
(R 2 1)

—Gn (R 2 —Gn)e —Gng (7b)

where Q= Az(0) —A, i(0)= A&(g) —A i(g) and G =2g.
Fora gimme~ vahie ofA, i(0), A (0) can be calculated b
numerically solving the equation

R Aq(0) = [ Ap(0)+(R —1)A, i (0)]

Xexp[ —G[A (0)—A, i(0)]] .
1.2
1.0

0.8

0.6-

0.4

0.2

0.0 (b)
U

0.4
0)

0.2

0.0
0.0 o.z 9 » 0.& 0.6Psrz 0.8 1.0

The corresponding value of the control parameter p, cal-
culated by combining Eqs. (6a) and (7a), is

1/2

p= A~(0) —R Q(R —1)
exp( —GQ) —1

It is then possible to plot the steady characteristics of the
laser operating on the first-order Stokes line. As shown
in Figs. 1(a) and 1(b), the increase in the first-order Stokes
field amplitude does not have the same repercussion on
the pump field characteristic at /=0 and at g= l. The
pump depletion effect manifests through a diminution of
the slope of this characteristic at /=0 and through a
slope sign change at /=1. Putting A, i(0)=0 in the two
last equations simply leads to the analytical expression of
the first-order Stokes lasing threshold:

1/2—lnR
PsTi = (1—R) .

FICx. 1. Steady characteristics of the pump (solid line), first-
order Stokes (dashed line), and second-order Stokes (dotted line)
fields for R =0 36 and g =. 6.04. {a) At /=0, (b) at g= l. The
numerical values of ps» and p»& are, respectively, 0.263 and
0.648.

The term (1—R) expresses a diminution of the threshold
value linked to the cavity effect on the pump field. If the
recoupling of the pump wave is avoided, one then simply
retrieves the result of Ref. [12]. Note, however, that ex-
pressions (7a) and (7b) remain valid if and only if QWO.
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If Q=O, the resolution of Eq. (Sb), associated with the
limit condition of Eq. (6b), leads to

A~(g) = A, i (g) =
R

G g+
(8)

By combining Eqs. (6a), (6c), and (9b), we obtain

(9b)

Nevertheless, this equalization of the two fixed-state lon-
gitudinal profiles can only be reached for a sufficiently
high value ofp.

Above the second-order Stokes lasing threshold ps~,
the steady-state equations (5) have two invariants:

(9a)

tion of the pump and of the first-order Stokes field
characteristics coincides with the second-order Stokes
lasing threshold. At this point, the longitudinal field
profiles are given by Eq. (8). Furthermore, this equation,
associated with Eq. (10},yields the analytical expression
of pseud:

1/2
1 (1—R)

Psr2

The laser steady states being now well characterized,
their stability can be theoretically studied by linearizing
Eqs. (4) around the stationary solution. However, this
procedure leads to difFerential equations that are compli-
cated and dificult to solve analytically; we will then re-
strict ourselves to the numerical study presented in the
next section.

A (0)=
1 —R'' (10a) III. FIVE-WAVE DYNAMICS: NUMERICAL STUDY

R
(10b)

A,z(g)= —+~D tan Gv D (g —1)

[ A,'z (0)]/R ' —(8/2)
+arctan

D

where D =I —8 /4. The stationary longitudinal profiles
A„(g) and A (g) are then easily deduced from Eqs. (9a),
(9b), and (11) [see Fig. 2(b)]. The steady characteristics of
the two Stokes fields are obtained numerically: for a
given value of A,z(0),p is computed by solving Eq. (11)
in which one imposes /=0. Figure 1(a) shows that the
appearance of the second-order Stokes wave entails a di-
minution of the slope of the first-order Stokes field
characteristic at /=0. By considering Asz(g) as a first-
order perturbative term in Eqs. (5},it is possible to estab-
lish that A~(g)= A, i(g) for p=psiz. This result is illus-
trated in Figs. 1(a) and 1(b), which show that the intersec-

This surprising result means that for p & ps&2, the charac-
teristic of the pump field no longer depends on the medi-
um and is only determined by the cavity feedback param-
eter R. This characteristic is then a straight line and its
slope is obviously lower than the one obtained in the pas-
sive regime for p&p, si, (Fig. 1). Appropriate combina-
tions of Eqs. (6a), (6c), (9a), and (10a) allow one to express
the constants 8 and I as functions of p, and A,z(0):

1+R

A, z(0)pr=
(1—R )

and to establish that I —8 /4&0 whatever the values of
A,2(0), p, and R may be. Taking into account the
boundary condition (6c), Eqs. (5) can be analytically in-
tegrated, yielding

In order to solve numerically Eqs. (3) in the presence of
boundary conditions (4), we used an algorithm based on
the method of characteristics. In the results that we illus-
trate in this section, the physical data used to compute
the reduced parameters are chosen in order to describe
the experimental system depicted in Sec. IV. At the
working wavelength of 800 nm, hv& is estimated to be 60
MHz [18]. p, 2, U„, and po are, respectively, equal to
0.286, 5.96X10 ms ', 2.21X10 kgm [11]. The ac-
tive medium is a single-mode fiber of length I.=12 m
with a 2.75-pm core diameter (n =1.45); its absorption
coefBcient a is 1.2X10 m '. The maximum power
launched in the fiber is 130 mW and Eo is then equal to
3.37 MV/m. The parameter values deduced from these
physical data and used for numerical simulations are then
g =6.04, Pz =10.93, P=0.01. Finally, the feedback pa-
rameter that we used to describe our Brillouin fiber ring
laser is R =0.36.

The laser dynamics can be synthesized in the single nu-
merical bifurcation diagram presented in Fig. 3. It is ob-
tained by numerically solving Eqs. (3) and (4) for a given
p and for long enough time to ensure that the system evo-
lution is well after the transient process. Then we plot
the maximum values reached by A, i, (/=0, v) inside a
final time interval that is much greater than the system
characteristic time (that is, the cavity round-trip time
T„}.Finally, starting from initial conditions characteriz-
ing the system state at the end of the integration, the pro-
cess is repeated for a greater value of p. The dashed line
in Fig. 3 represents the analytically calculated stationary
state for P=O. Above the first-order Stokes lasing thresh-
old, the computed points of the bifurcation diagram near-
ly coincide with the steady characteristic, the difFerence
corning from the optical attenuation. The stability of the
system, already discussed in Ref. [19], is then related to
the monornode character of the first-order Stokes laser
emission in short enough cavities. As shown in Fig. 3,
this stability persists up to and well above the second-
order Stokes lasing threshold. However, when p becomes
greater than p„ the system abruptly destabilizes and
periodic instability regimes are then reached. Further in-



52 DYNAMICAL BEHAVIOR OF A BRILLOUIN FIBER RING. . . 2331

3.5

3

2 0 5

C)

~ 1.5-

05-

0.0
0.0 p. 2 Wq 0.0 0.6 9~2 0.8 &c 1.0

crease in the value of p leads to the emergence of quasi-
periodic instability regimes. Let us point out here that
the destabilization scenario thus described for A, &(/=0,
r) is identical for the dynamical variables A~ (/=0, ~) and
A,2(/=0, r). As illustrated in Figs. 4(a) and 4(b), the
periodic instabilities are characterized by a frequency

FIG. 3. Numerically computed bifurcation diagram of the
Brillouin 6ber ring laser. The dashed line represents the analyt-
ically calculated system steady state and the numerical value of
p, is 0.870.

equal to the cavity FSR. Quasiperiodicity manifests itself
through the appearance of a low-frequency envelope that
modulates the signal oscillating at the cavity FSR fre-
quency [Fig. 4(c)]. The spectral analysis reveals a mul-
tipeak structure that superimposes itself on the spectrum
of the periodic signal [Fig. 4(d)].

Let us now describe more precisely the nature of the
bifurcation occurring between the stationary and the
periodic state at p=@,. As already mentioned, the sys-
tem destabilization is abrupt; this suggests that one
should sweep p back and forth around p, . This sweeping
was performed with the method used to compute the bi-
furcation diagram of Fig. 3 and the result is presented in
Fig. 5. By increasing p, the stationary solution becomes
unstable for p, &p, and the system precipitates towards
another attractor, that is, a limit cycle. The backward
sweep shows that the switch from the limit cycle to the
steady state occurs for p=p, . Since p, (p„a range of
values of p for which generalized bistability between a
limit cycle and the stationary solution exists. The bifur-
cation associated with the coexistence of these two at-
tractors is then a subcritical Hopf bifurcation [20]. Note
that the width of the hysteresis is small and the general-
ized bistability efFect could then be diScult to evidence
experimentally. Another way to characterize the nature
of the bifurcation consists of continuously sweeping the
control parameter at a very slow rate. As shown in Fig.
6, the discontinuous jump from the steady state to the
limit cycle is then expressed through an explosive growth
of the oscillation amplitude. Even if it generates dynami-
cal efFects on the position of the bifurcation points, this
last sweeping method provides a global description of the
laser dynamics. Moreover, as it is easy to implement ex-
perimentally, we will use it in Sec. IV.
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FIG. 4. Temporal evolution of the first-order Stokes wave in-
tensity and associated power spectrum for (a),(b) periodic state
(p =0.875); (c),(d) quasiperiodic state (@=0.882).

FIG. 5. Numerical bifurcation diagram illustrating the coex-
istence between the stationary solution and a limit cycle. + in-
dicates the system state as the control parameter increases. X
corresponds to the system state as p decreases. The numerical
value of pz is 0.857.
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FIG. 6. Evolution of the amplitude of the first-order Stokes
field as the control parameter p is slowly increased.
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When the system evolves on the limit cycle, interesting
information concerning the energy exchanges between
optical waves can be obtained by considering the field
longitudinal profiles inside the fiber at different times. As
shown in Fig. 7, the instabihty regimes are characterized
by the propagation and by the interactions of Stokes

pulses along the optical fiber. In order to understand the
nature of these interactions, let us consider initial condi-
tions such that a first-order Stokes pulse is localized near
g=l [Fig. 7(a)]. This backward-propagating pulse en-
counters a forward-propagating second-order Stokes
pulse and is depleted [Fig. 7(b)]. The forward-
propagating pulse then exhibits noticeable gain and pur-
sues its propagation toward the output end of the fiber.
During this time, the first-order Stokes pulse encounters
a fresh pump envelope which is then strongly depleted
while the pulse amplitude grows [Figs. 7(c) and 7(d}]. Fi-
nally, because of the cavity effect, the amplitudes of the
two Stokes pulses are multiplied by R and the process
starts again. However, the periodic motion thus de-
scribed rapidly disappears if p increases (Fig. 3). During
the interaction between the two Stokes waves, the first-
order Stokes pulse is depleted and the trailing edge of the
second-order Stokes pulse is then less amplified than the
leading edge [Figs. 7(a} and 7(b)]. For high enough
pumping rates, the depletion can be so important that the
"center of mass" of the second-order Stokes pulse is
slightly shifted in the forward direction. A similar pro-
cess occurs during the interaction between the pump and
the first-order Stokes waves [9]: the leading edge of the
first-order Stokes pulse is more amplified than the trailing
edge, which interacts with an already depleted pump
wave [Fig. 7(d)]. The center of mass of the first-order
Stokes pulse is then shifted in the backward direction.
So, from one cavity round trip to the other, the two
Stokes pulses collide at different positions in the optical
fiber and then experience a slightly different gain. This
effect is thus responsible or the emergence of the quasi-
periodic instability regimes.

IV. EXPERIMENTS

0.5-

tD
Zal

~ r P 0'
o 0.0
F

CC

1.0

0.5

0.0
0.0 1.0

The experimental setup used for the generation of mul-

tiple SBS in a ring cavity is schematically shown in Fig.
8. The pump source consists of a single-mode titanium-
sapphire laser (Coherent 899-29), pumped by an argon
ion laser (Coherent Innova 400), and operating at 800
nm. The titanium-sapphire laser, characterized by a
500-kHz linewidth, is optically isolated from the Bril-
louin ring laser by a Faraday isolator. An acousto-optic

U

1.0
La

(c)
~ ~

T 0.54

Ti-Sa
Laser

0.5- I

/ 0.5

I AOM
l

Isolator I I

Microscope
objective

Beam Detector D,

p
&S ~

0.0
0.0

0.0 1.0

Beam
Splitter 1 Detector D

&

FIG. 7. Longitudinal profiles of the fields along the fiber axis
at di8'erent times: pump (solid line), first-order Stokes (dashed
line), and second-order Stokes (dotted line). The system evolves
on the limit cycle (p =0.876).

12 m long
single mode
o tical fiber

FIG. 8. Experimental setup. The reAectivity of beamsplitters
1 and 2 are, respectively, equal to 0.3 and 0.04.
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modulator (AOM) allows one to control the incident
pump power. The polarization-preserving fiber is cabled
in order to limit external perturbations and has a cuto6'
wavelength of 630 nm for monomode propagation. Two
20X microscope objectives are used to couple the light
into and out of the optical fiber. The feedback is simply
achieved by reinjecting the output beam at the entrance
end of the fiber. In this ring configuration, each optical
wave propagates in a single direction and the counter-
propagative beams can be spatially separated by inserting
a low reQectivity beam splitter into the cavity. The
forward-propagating (pump+ even Stokes components)
and backward-propagating (odd Stokes components)
beam powers are then respectively detected by the silici-
um photodiodes Di and D2. These have a rise time of 5
ns and are connected to a digital oscilloscope (Lecroy
9400), which has a data sampling rate of 10 ns. Finally,
an external Fabry-Perot interferometer (not displayed in
Fig. 8) was used to monitor the emergence of the different
Stokes components.

In Sec. III, we have mentioned that the feedback pa-
rameter used to describe our SBS fiber ring laser is equal
to 0.36. In fact, this value is approximate and results
from an estimation of the resonator round-trip losses.
Moreover, it drifts slightly because of unavoidable envi-
ronmental fluctuations and any quantitative experimental
verification of the theoretical results (e.g. , the threshold
values) is then delicate. Nevertheless, a qualitative com-
parison between the theoretical and experimental results
shows that our model incorporates all the essential in-
gredients characterizing the laser dynamics.

An overview of the system dynamics can be obtained
by slowly sweeping the input pump power with the aid of
the AOM. The signal recorded by the photodiode D&
during this sweeping is presented in Fig. 9(a). Since the

frequency shift between the pump and the second-order
Stokes waves is several tens of GHz [18], this signal is
directly proportional to the sum of the two field powers,
that is, 3 (/= 1)+A,2(g= 1). The signal recorded at
the same time by photodiode D2 is shown in Fig. 9(b). It
is proportional to the power of the first-order Stokes
wave, that is, A, &(/=0). A direct comparison between
Figs. 6 and 9(b) is then possible and one can note a good
qualitative agreement between the experimental and the
numerically predicted behaviors. In particular, the ex-
plosive growth of the instability amplitude that we ob-
serve experimentally confirms the existence of a subcriti-
cal Hopf bifurcation between the stationary and the
time-dependent states. For input pump powers lower
than the second-order Stokes lasing threshold, the signal
presented in Fig. 9(a) can be directly compared to the
pump-field characteristic of Fig. 1(b). Above this thresh-
old, the two forward-propagating waves are detected and
the observed instabilities are then linked to the oscillation
of the two associated dynamical variables.

The temporal analysis of the instabilities observed in
the first-order Stokes emission (photodiode D2) was per-
formed at constant input pump powers. Some examples
of periodic and quasiperiodic signals and of their associ-
ated power spectrum are presented in Fig. 10. As evi-
denced in Figs. 10(a) and 10(b), the periodic instabilities
are characterized by a frequency equal to the cavity FSR:
16.9 MHz. By increasing the input pump power, quasi-
periodic instability regimes of Fig. 10(c) are observed. As
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FIG. 9. (a) Power detected (photodiode D&) in the forward
direction, (b) power detected (photodiode D2) in the backward
direction, while slowly sweeping the input pump power.

FIG. 10. Temporal evolution of the first-order Stokes power
and associated power spectrum: (a),(b) periodic instabilities at
the FSR frequency; (c),(d) and (e),(f) quasiperiodic instabilities.
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shown in Fig. 10(d) the corresponding power spectrum
becomes richer with a low frequency of about 600 kHz.
In other experimental conditions characterized by a
higher coupled power and by a lower feedback efBciency,
this low frequency value drastically changes and becomes
about 3.3 MHz [Figs. 10(e) and 10(f)]. This result, not
mentioned in Sec. III, is, however, well confirmed by nu-
rnerical computations performed with other sets of pa-
rarneters.

V. CONCLUSION

The dynamics of a Brillouin fiber ring laser emitting
two Stokes components was studied both experimentally
and theoretically. At first, a theoretical model involving
three optical and two acoustic waves was elaborated on in
order to include a possible decay of the first Stokes com-
ponent into a second-order Stokes wave. Taking into ac-
count the boundary conditions characterizing the ring
laser, the system steady states were studied, yielding
analytical expressions for the two Stokes lasing thresh-
olds. A numerical study of the stability of these steady
states was performed with parameters characterizing the
experimental conditions. It was then demonstrated that
the system destabilizes, via a subcritical Hopf bifurcation,
towards periodic and quasiperiodic instability regimes.
All these predictions are in good agreement with our ex-
perimental results.

Although no chaotic behavior was observed in experi-
ments, numerical simulations evidence a transition from
quasiperiodicity to chaos for values of the pump parame-
ter larger than those actually available in the experi-
ments. However, one can conjecture that such pumping
rates would be sufficiently high to induce the emergence

of a third Stokes component, which should noticeably
inhuence the system dynamics. This last efFect is obvi-
ously not taken into account in our model. Let us em-
phasize that, for parameters different from those describ-
ing our experiments, the simulations show other destabil-
ization scenarios such as sequences of period doubling
which always appear at high pumping levels. Obviously,
these numerical predictions require an experimental cor-
roboration. Improvement of the experimental setup is in
progress to provide access to these possible domains of
chaos. Moreover, a theoretical model, involving a third
Stokes component, is equally studied in order to check its
effect on the laser dynamics.

Another nonlinear efFect prone to influencing the sys-
tem dynamics is the optical Kerr effect. By taking it into
account, the phase dynamics then plays a nontrivial role
and the nonlinear refraction can be responsible for self-
phase and self-amplitude modulation [11]. However, it
remains a perturbative effect and its study, although nu-
merically possible, is difficult to realize from an experi-
mental point of view. Finally, an important parameter is
the length of the optical fiber. By increasing it, one de-
creases the cavity FSR and then favors longitudinal mode
competition [19]. The first-order Stokes emission can
then become unstable for a given range of input pump
power values. Thus, the previously described scenario of
the Stokes cascade could be altered.
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