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The A system resulting from the interaction of counterpropagating orthogonally polarized beams
of light with a J, =1 — J. = 1 transition is known to exhibit laser cooling without the presence of a
damping force, through velocity selective coherent population trapping. This occurs independent of
the sign of the laser’s detuning from the atomic resonance frequency. We present measurements and
calculations that show a detuning-dependent transient peak or dip in the ground-state momentum
distribution centered at p, = 0, however, which is reminiscent of laser cooling by a damping force.
We explain this in terms of the character of the quantum-mechanical eigenstates of the total ground-
state Hamiltonian of the system, using both analytic expressions and numerical calculations.

PACS number(s): 32.80.Pj, 42.50.Vk

In laser cooling of atoms, velocity selective coher-
ent population trapping (VSCPT) occurs for particu-
lar configurations where the atom-laser system produces
noncoupled states |[NC) that do not interact with the
light [1,2]. This kind of laser cooling is distinguished
from other types (e.g., Doppler [3] and polarization gra-
dient cooling [4]) because it is not described by a damp-
ing force. Rather, atoms interacting with the laser light
may decay into the noncoupled states via a random walk
and then remain there. The atom-laser interaction is in-
effective for these states, but the atomic kinetic energy
causes a motional mixing between the |[NC) states and
other states |C) that are coupled. VSCPT occurs when
this motional coupling depends on momentum p in such
a way that it vanishes for a certain noncoupled state, the
trapped state INC(p = 0)) [1,2]. In the first discussions
of VSCPT, it was shown that for counterpropagating or-
thogonally polarized beams of light, in either the o -0~
(orthogonal circular polarizations) or linlin (orthogonal
linear polarizations) configurationsona Jy =1— J. =1
transition, there is a A system (Fig. 1) that contains such
a trapped state.

Although it is possible for cooling forces to operate
in the presence of VSCPT in some cases [5-8], it has
been shown that no such force is present for the com-
monly studied arrangements of one-dimensional o*-o~

FIG. 1.

Circularly polarized
Jg=1— J. =1 system. The myg = 0 & m. = 0 transi-
tion is forbidden, so that atoms eventually depopulate the V
system and only occupy the A system.

light applied to the
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and linllin polarizations appliedtoa J; =1 —= J. =1
transition, as found in metastable helium for 238, —
23P; [2,5,9]. Thus it is not expected that the sign of 4,
where § = w; — w, is the laser detuning from the atomic
resonance frequency, will affect the cooling process, as it
does in laser cooling caused by a damping force. Indeed,
it has been found both theoretically and experimentally
that VSCPT is efficient independently of the sign of the
detuning [2,5,9,10]. Nevertheless, in [2] a difference in the
finite-time ground-state momentum distribution P (pg,t)
about p, = 0 was found to be associated with the sign
of §. The momentum distribution between the character-
istic narrow VSCPT cold peaks in P(p,,t) at p, = +hk
was elevated for positive detuning and depressed for neg-
ative detuning (see Fig. 10 and Sec. 6.E of [2], as well
as Fig. 6 herein). Kaiser [11] has discussed this phe-
nomenon in terms of the coherence (off-diagonal atomic
density-matrix element) between the [INC) and |C) states.

In recent experiments and numerical calculations using
the linllin polarization configuration with metastable
helium atoms [10], we have observed that for nonzero
detuning, there are many cases where there is a central
structure at p;, = 0, but the typical VSCPT peaks at
pg = thk are not evident. Specifically, for positive de-
tuning we find an overpopulation of slow atoms resulting
in a single narrow peak in P(p,y,t) centered at py = 0,
and for negative detuning a dip (see Fig. 2). This struc-
ture generally has a full width at half maximum of only
approximately 2Akk, indicating that it is not the result
of currently known laser-cooling mechanisms. With pos-
itive detuning, this presents an alternative method for
producing a single cold peak of atoms. Furthermore, the
detuning dependence of the momentum distribution can
be used in conjunction with conventional saturation spec-
troscopy as a measure of laser detuning (see discussion
below). Finally, we have found that the origin of this very
narrow structure in P(py = 0,t) is analytically tractable,
which provides insight into this laser-cooling configura-
tion.

In this paper, we treat the problem in the basis of the

2295 ©1995 The American Physical Society



2296

M. R. DOERY et al.

i 8 > 0 . FIG. 2. Measured and calcu-
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lated momentum distributions
for the linllin case on the
238, — 23P, transition of
metastable He atoms. P(pg,t)
is highly dependent on the sign
of the detuning. Here S = 12
and (a) 6 —8I' and (b)
6 =~ 8I' The total interac-
tion time Thmax = 200I'"!. The
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experimental distributions are

normalized so that the initial
| distribution has height approx-
imately equal to 1. Actual scat-
ter of data points at Tmax is
plotted, along with a smoothed
curve through the initial and
final momentum distributions.

The results of numerical calcu-
lations are shown in (c) and (d),
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eigenstates of the complete ground-state Hamiltonian of
the system, including the kinetic-energy operator for the
atomic center-of-mass motion, rather than the coupled
and noncoupled eigenstates |C) and |NC) of the ground-
state atom-field interaction term alone. Thus we depart
from the more common approach for VSCPT. We exam-
ine the configuration of counterpropagating orthogonally
polarized beams of light in one dimension on a A sys-
tem; we discuss in detail the case of o+-0~ polarizations
and show that similar arguments may be developed and
similar conclusions reached for the linllin case. Our cal-
culations are supported by quantitative agreement with
measurements. A brief discussion of our numerical cal-
culations and experimental setup is provided after the
analytical discussion.

The time evolution of the atomic density matrix is de-
termined by the generalized optical Bloch equations

th = [Htota P] + iﬁrprepopa (1)

with I" the excited-state spontaneous decay rate and
Prepop @ shorthand notation for terms that account for
decay [12]. The total Hamiltonian for our system is

Hior = 5o + hwa Z le)(e| + Har, (2)
where the sum is over the excited states involved. In
the electric-dipole approximation, the atom-laser inter-
action H; is given by the product of the laser’s electric
field with the dipole moment operator H,; = —E - D. For
counterpropagating o -0~ waves the laser’s electric field
is
E = Eo%{cos(kz — wt) + cos(kz + wt)}

—Eoy{sin(kz — wt) + sin(kz + wt)}

ikz + é_e—ikz}e—iwt + c.c.,

Eo .,
= 7§{€+€ 3)

for corresponding laser param-

Po/Pa eters.
with €, = i};—y and €_ = ;\7—321 Hence the interaction is
hQ . .
Hy = —= {e7*2|0.)(1,] — e*Z|0.)(-1
l 2\/5{ | e)( gl | e)( y|}

xe ™ 4 H.c.
_ —iwt iwt
Wege ™" + Wyee'

(4)
()

where we have used the rotating-wave approximation and
restrict the analysis to the A system that connects the
states |—1g), |0c), and |1g) (see Fig. 1). The single-
beam Rabi frequency € is related to the experimental
saturation parameter by S = 202%/I'?, the laser inten-
sity I = Shcl'k®/24n? and for circularly polarized light
BQ = —Eodov/2, where dg = (37reofiI‘/k3)% is the reduced
matrix element of the dipole moment. Atomic motion is
treated quantum mechanically in the expression for H,,
so z becomes the atomic position operator Z.

In the low excitation regime, where the detuning and
the saturation parameter satisfy S/L <« 1, with L =
1 + 46%2/T'2, we can adiabatically eliminate the excited
states to obtain the equations of motion for ground-state
elements alone, p = pgg [4,13-15]:

i = s [P% 7]+ roar (4, 7] — por (4,7},
hk
2 Z [ N @) RN 3R ) (6)

The operator A = Y, WgeWegr. The third term, an an-
ticommutator, accounts for optical pumping out of the
ground states, while the last term repopulates them.
R, (p') accounts for decay from the excited state, includ-
ing momentum recoil and Clebsch-Gordan coefficients,
and N, (p') is the radiation pattern associated with the
linearly or circularly polarized light, denoted by the sub-
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script o, emitted during spontaneous emission [4].

In analogy to Eq. (1), these ground-state equations of
motion have a Hamiltonian-like part He.g, which is the
sum of a kinetic-energy term and an effective potential
Vegg = 45A/hF2L. Vest is block diagonal in the momen-
tum basis; here we write a representative block for one
particular “family momentum” p [2],

U,
Vea(p) = 7°{|p +1,1,){(p+1,1,]

—lp+1,15)(—-1,-1,]
—lp—1,-1{p+ 1,1
+lp_17”—lg>(p_1’—lg|}’ (7)

where we have defined Uy = ShJ/2L and we have
adopted the convention of expressing the momentum p
in units of the recoil momentum #Ak, effectively mak-
ing p into a unitless number. Our state kets are prod-
ucts of internal states with momentum operator eigen-
states |p,m) = |p)|m) and we have used the relation
e**Z = [* dplp){p F 1| [2].

Traditionally VSCPT has been treated using the eigen-
basis of only the effective potential Vg, sometimes called
the “optical basis.” Diagonalizing V.g yields a set of or-
thonormal states |NC) and |C) for any particular family
momentum p,

INC(p)) = % P11 +lp—1,-1)}, (8
IC(p)) = %{Ip+1,1g) —|p—1,-1g)}, (9)

as discussed in [2]. The noncoupled state does not
interact with the laser light, V.g|NC(p)) =0. On the
other hand, |C) does interact strongly with the light,
Veer|C(p)) = Uo|C(p)). Due to the kinetic-energy part
of the Hamiltonian, an atom in the noncoupled state will
evolve out of it into the coupled state in most cases. It
is only trapped in the |[NC) state at family momentum
p = 0, where this “motional mixing” (which is propor-
tional to p) is zero.

Our approach is different from this traditional one be-
cause we work with the eigenbasis of the entire effective
Hamiltonian of the A system Heg = P2/2M + V.g. Work-
ing with these eigenstates of the system gives an added
insight, which, in conjunction with the more usual ap-
proach, leads to an intuitive explanation for the detuning-
dependent effect described in the opening paragraphs.

Heg is block diagonal in the family momentum p, so
we determine the eigenstates by solving the Schrodinger
equation for a representative p, Heg(p)¥(p) = E(p)¥(p).
Writing this explicitly using the recoil energy Er =
h2k2/2M we get

E 1
:_ 2Ly ¥(p)) = 0. 10
[P 5 + 55 Vea)| 190 (10)
Choosing a solution of the form

[¥(p)) =£&(P)lp—1,-1g) +{(p)Ip+ 1, 1) (11)

and substituting v = Uy /2ER we obtain the eigenvalues
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(m) =u+p®+ 1+ u?+4p? (12)

Er/,
and the coeflicients for the associated eigenvectors
u
é+(p) = TNL
1
Cep) = 5 {20 VE T ap ), (13)

where

2
Ny = \/uz + (2p + u? + 4p2) . (14)

These eigenfunctions of the effective Hamiltonian may
be expanded in the optical basis |¥4) = a4 |NC)+ 8+|C)
where a’ay + 816, = 1. The quantity a} o, is a mea-
sure of how well the eigenstates of Heg may be approxi-
mated as eigenstates of Vg, as a function of p:

{—u+2p:i: \/u2+4p2}2. (15)

A plot of |@4|? vs p is given in Fig. 3 for two different
values of Up. We see that for p?> < (Up/ERr)?, |a+|? is
nearly unity, meaning that the eigenfunctions are closely
related to the states of the optical basis. This is because
the effective potential dominates over the kinetic-energy
term in Heg when p is small. In particular, |¥(p = 0))
are exactly the [NC) and |C) states. For § > 0, |[¥_(p =
0)) = INC(p = 0)) and |¥4(p = 0)) = |C(p = 0)) and
vice versa for § < 0. Hence we call the eigenstates of
H.g “weakly coupled” and “strongly coupled,” |[WC) and
|SC).

Spontaneous emission causes atomic population to
build up in the weakly coupled manifold, with a corre-
sponding drop in the population of the strongly coupled
manifold. The two manifolds are clearly distinguishable

1
lox|? =
INZ

1.00F ' — IUo/Enl=2
lgy=1twc) 7 N |77 1Uo/Eal=20
\
0.75
3
< .50
& 0
0.25
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-50 -25 0 25 50
Family momentum p
FIG. 3. Eigenstates of Heg may be  writ-

ten |¥4) = a+|NC) + B+|C). The figure shows |ax|? as a
function of p, for the o+-0~ case, for two different values of
Uo = Ské/2L: (a) |Uo/Er| = 2 and (b) |Uo/Er| ~ 20. This
function is a calculation of the projection of the eigenstates
of H.g, namely, [WC) and |SC) onto the eigenstates of the
effective potential V.g, namely, [INC) and |C).
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FIG. 4. Plot of the atomic

S 18 181 { population at total interaction
2 - IWC) (b) time Tmax = 200I'"%, as a
<_=°>'_ 1.4} 14} —©- 18C) function of the energy eigenval-
o ues of H.g, for (a) § = —8T
z 10 10 and (b) § = 8. In both
5 poa0eT cases the weakly coupled mani-
« 06r 08¢ fold of eigenstates has become
overpopulated at the expense

of the strongly coupled man-
ifold. The time evolution of
the corresponding momentum

distributions are quite distinct;
for (c¢) 6§ < 0, a dip becomes
deeper, but for (d) § > 0,
a peak grows (successive time
increments of Tine = 400!
are shown). These calculations

Relative Population

were performed for the He tran-
sition of Fig. 2, but for the
ot-0~ case and with S = 8.

in Fig. 4, where the calculated atomic He* population is
plotted as a function of energy eigenvalue for an interac-
tion time of 200I'~!, detuning § = %8I, and saturation
parameter S = 8. The initial momentum distribution
P(pg,t = 0) is uniform with unit height from p, = —15hk
to py = +15kk. The corresponding energy distribution
is obtained by projecting onto the basis of eigenstates of
H,,t and is also normalized to unit height. The popula-
tion is plotted relative to this initial distribution.

Regardless of the sign of the detuning, the weakly cou-
pled manifold is always overpopulated. There is very
little difference in the atomic energy distributions when
the sign of the detuning is changed. However, the effect
of changing the sign of § is quite apparent for the corre-
sponding atomic momentum distributions also shown in
Fig. 4. There is a narrow peak centered at p;, = 0 for
é > 0, but a dip instead for § < 0.

This phenomenon is caused by the way in which the
eigenfunctions of H.g are composed of particular ground-
state momenta p,. In particular, we find that one man-
ifold of eigenstates has no contribution from |pg| < 1,
whereas the other manifold is composed of all ground-
state momenta, including |pg| < 1. We can develop some
intuition for this by looking at the eigenvalues when u is
very small. In that case, the kinetic-energy term begins
to dominate Heg at |p| 2 1. From Eq. (12), the dispersion
relations for |u| <« 1 are approximately

(Eﬂa)i ~u+ (pt1)% (16)

These two parabolas (shifted by the constant u) give the
energies of the “free-particle” states |p £+ 1), which are
composed of ground-state momenta p, = (p &+ 1)%k [16].

In Fig. 5 we plot the energies of these free-particle states,
as well as the exact formulas from Eq. (12), as a func-
tion of p. There is a small anticrossing of the parabolas
at p = 0, where p; = +hk. For § > 0, the weakly cou-
pled manifold is the curve below the anticrossing. No-
tice that this curve contains all ground-state momenta,
in particular |pg| < 1. On the other hand, the strongly
coupled manifold, above the anticrossing, has no contri-
bution from |py| < 1 (apart from the small amount of
mixing due to the anticrossing). In Fig. 5 we have la-
beled the energy curves to indicate what ground-state
momenta they are composed of, and relative population
is indicated by filled (empty) circles for the [WC) (|SC))
states. Since atoms accumulate in the [WC) states, this
means that ground-state momenta |pg| < 1 are overpopu-
lated and a peak occurs around p; = 0 in the momentum
distribution. When § < 0, the reverse is true: the weakly
coupled manifold is above the anticrossing and does not
contain |pg| < 1 states; instead, the depleted strongly
coupled manifold contains [pg| < 1 and so we see a dip
in the momentum distribution.

Even when the |[NC(p = 0)) state is most populated
as in Fig. 4, VSCPT peaks at +Ak may not be evident.
In that case, the overpopulation of the VSCPT trapped
state [WC(p = 0)) = |[NC(p = 0)) which is composed
of p, = +Fk, is accompanied by an approximately equal
underpopulation of |SC(p = 0)) = |C(p = 0)), which is
also composed of p, = *hk. However, for long enough
interaction times, the trapped state becomes so overpop-
ulated relative to all other states that it is the dominant
structure in P(pg, t). It is only then that the narrow peaks
at +hk become distinguishable (see Fig. 6).

We have found that using saturation parameters S
not much larger than 1 and § ~ 0 is favorable for the
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FIG. 5. Dispersion relations for small |Uo/ERr|, as given by
Eqgs. (12) and (16). When Uo/ERr # 0, there is an anticrossing
at p = 0, as well as a vertical shift. The weakly coupled state
|[WC(p = 0)) = INC(p = 0)) has a fixed energy eigenvalue of
E/Egr = 1, independent of Uy/ERr. (a) For § < 0, the upper
curve is the weakly coupled manifold and the lower curve con-
tains the strongly coupled eigenstates. Circles schematically
represent where population accumulates. (b) Same as in (a),
only now § > 0. In this case, the strongly coupled manifold is
light-shifted upward and the weakly coupled manifold is the
lower curve.

production of the well-separated and narrow VSCPT
peaks at t#hk, with our experimental interaction times
of Tinax = 200I' 1. This is consistent with the results of
Aspect et al. [2], who showed in addition that the width
of VSCPT peaks varies linearly with Rabi frequency (re-
call § = 2Q2%/T?).

On the other hand, a different region of parameter
space must be visited to obtain the single detuning-
dependent peak/dip at pg = 0. This narrow central struc-
ture is inost clearly apparent when both S and || are
relatively large. Typically, we have used 4 < § < 12
and 4 < |§/T'| < 10 when Tmax = 200I' 1. Note that
Figs. 6(c) and 6(d) indicate that even for parameters
outside this range, the momentum distribution initially
passes through a stage where the central structure domi-
nates and only then passes on to the stage where VSCPT
peaks dominate.

2299

Figures 2, 4, and 6 present the momentum and energy
distributions of the diagonal elements of the atomic den-
sity matrix (populations). The method we have used for
calculating the temporal evolution of the density matrix
has been detailed elsewhere for other laser-cooling con-
figurations [15,17] and we only summarize it here. We
use Eq. (2) in Eq. (1), which is then rewritten in Liouvil-
lean form ifp = Tp, where the density matrix is evalu-
ated over a basis of free-particle states |p, m}). This large
system of differential equations is solved numerically and
the momentum distribution is then determined by taking
the trace over magnetic sublevels m of the atomic popu-
lations. Alternatively, the density matrix is transformed
to the basis of eigenfunctions of the total Hamiltonian
Ho and then atomic populations are plotted against the
eigenvalues of Hyo to produce an energy distribution.
The energy distributions in Figs. 4 and 6 were produced
in this way; however, the excited-state populations were
not plotted there since they are several orders of magni-
tude smaller than the ground-state populations. We have
also numerically solved Eq. (6), now writing a Liouville
equation for the ground-state elements alone, zﬁﬁ = Tﬁ.
For this case we have also determined both momentum
and energy distributions, now using the eigenstates of
the ground-state Hamiltonian Heg for the latter type of
distribution. When S/L « 1 these ground-state calcu-
lations agree well with the calculations that include the
excited state; all numerical results presented in Figs. 2,
4, and 6 were obtained with the latter method.

The lin.llin case is quite similar to, but slightly more
complicated than, the o+-0~ case [18]. Here we present
the main results. The laser field is created by counter-
propagating laser beams that are linearly polarized or-
thogonal to each other, so we take A2 = —FEydy. The
electric field is now written

E= E—%{é+ coskz — &é_sinkz}e ™! 4 c.c. 17)

B
and
Ho = ~ 75 {10)(~1] cos k= + [0) (1] sin bz}
xe ™t 4 H.c. (18)

Once again we find a V.g that is block diagonal in p, and
using this we obtain solutions to Eq. (10):

% (p)) = \/%{ilp —1,-1,) +i€lp — 1,15)
+Clp+1,1,) +iClp+1,-1g5) }, (19)

with ¢ and £ as given in Eq. (13). The associated eigen-
values are again given by Eq. (12). The noncoupled state
is now

1 —imr im
INC) = 5{6 ¢ /4|p—1,——lg)+e /4|p+1,—1g)
+e ™/ p—1,1,) + e p+ 1,15))  (20)

so that the projection of the eigenstates onto the noncou-
pled states is again given by |a|? as defined in Eq. (15)
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FIG. 6. linllin case, § = 2,|6| = 1I" on
He*. In (a) and (b) the calculated energy dis-
tributions at Tmax = 200! are shown. The

time evolution of the corresponding momen-

tum distributions are plotted in (c) and (d),
with time increments of Tinc = 40l "'. For
these parameters, by Tmax, the trapped state
is so highly populated that it dominates the
momentum distribution, creating the typical
VSCPT peaks at p, = *hk, though detun-

ing dependence is still evident. In (e) and (f)
the experimental results for similar laser pa-
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and the same explanation of the detuning dependence
that was given for the o+-0~ case applies.

Figures 2 and 6 show measured and calculated momen-
tum distributions in the case of the lin_Llin polarization
configuration. In Fig. 6 the usual VSCPT peaks at +hk
are quite evident, but we still see that the region between

VaOoM (MHz)
84 86 88
1.4} .
B T~
1.2+ T T~
A T B s
7
/
1 1 1 " 1
-2 -1 0 1 2
/T
FIG. 7. Comparison of experimentally and numerically de-
termined P(pg = 0,Tmax;8). The experimental interaction

time is Tmax =~ 100I'"! and the measured laser intensity
maximum is Smax = 0.94. Numerical results are shown for
Smax = 1.0 (solid line) and Smax = 0.75 (dashed line). The
experimental curve has been shifted horizontally to be aligned
as closely as possible to the numerically obtained curve. In
this way the experimental parameter vaom, as given in the
top horizontal axis, may be related to laser detuning § (bot-
tom axis).

Pg/Pr

the peaks at p, ~ 0 is depressed or elevated depending
on the sign of the detuning. A plot of the energy distri-
bution is also given to demonstrate the existence of two
manifolds of eigenstates |WC) and |SC).

We have studied these effects experimentally for the
linllin case using apparatus that has been described
elsewhere [19], but is briefly presented here. Metastable
23S, helium (He*) atoms are produced by a dc-discharge-
excited supersonic nozzle source cooled by liquid Ns.
About 1 cm downstream of the nozzle is a conical skim-
mer followed 25 cm further downstream by a 30 um X
7 mm collimation slit. Directly after this slit, the atoms
interact with two counterpropagating laser beams with
orthogonal linear polarizations that excite the 235; —
23P; transition in He* at 1.083 pum. The natural
linewidth is I'/2w = 1.6 MHz. The laser beams origi-
nate from a homebuilt laser diode end-pumped cw hexag-
onal lanthanum neodymium hexa-aluminate (Nd:LNA)
laser [20,21] and have a nearly Gaussian profile with waist
equal to 1.6 cm. The transverse velocity distribution
of the He* beam, modified by the interaction with the
laser light, is measured 1.8 m downstream with a multi-
channel plate detector mounted behind a movable 35-pm
slit. The longitudinal velocity distribution from the su-
personic nozzle is 240 m/s wide and centered at 1600 m/s;
the two slits separated by 1.8 m provide a velocity reso-
lution of 4.4 cm/s or Ap ~ 0.5kk.

The laser frequency is tuned near the 235; — 23P;
transition using an offset locking scheme based on Zee-
man tuned saturation spectroscopy [22] in a He rf dis-
charge in a longitudinal magnetic field B = 40 G. The
Zeeman shift wz of the He* atoms is compensated with
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a frequency shift voom =~ 85 MHz from an acousto-optic
modulator (AOM); this shifted beam is always locked to
exact resonance with the Zeeman shifted transition, while
the frequency of the unshifted main laser beam is lower
by an amount vasom. The laser detuning from resonance
is then § = wz — vaom. For a fixed interaction time
Timax and laser saturation parameter S, the calculated
Po(d) = P(pg = 0,Tmax;d) is plotted against detuning
0. This is matched to a similar experimental plot using
the same Thmax and S, only now the height of the mo-
mentum distribution at p; = 0 is plotted vs vaom. By
aligning the experimentally obtained curve with that ob-
tained numerically, a correspondence between 5oy and
é may be made. An example of this procedure is shown in
Fig. 7. It is evident from the figure that the detuning de-
pendence of Py(4) is asymmetric and that the curve does
not necessarily cross Po = 1 at § = 0. The details of the
shape of the curve are dependent on laser intensity and
interaction time as well. Nevertheless, the steep slope in
the region of § = 0 makes this feature useful in conjunc-
tion with conventional saturation spectroscopy for deter-
mination of the absolute laser detuning. The detunings

2301

derived using this procedure are found to be consistent
with those from saturation spectroscopy.

In conclusion, we have presented numerical and exper-
imental results showing that even for significant interac-
tion times, a detuning-dependent peak or dip is some-
times the only observable feature in even the simplest
VSCPT configuration. This peak may contain a signifi-
cant fraction of the atoms and have a rms width less than
1hk. We have developed an intuitive analytical model
based on the character of the eigenstates of the problem
that accounts for this narrow structure. Thus VSCPT
in the low excitation regime can profitably be discussed
using the eigenstates of the effective ground-state Hamil-
tonian, which includes kinetic energy as well as the ef-
fective potential. This approach complements the tradi-
tional method, which uses the eigenbasis of the effective
potential alone.
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