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Wave-packet dynamics and photoionization in the Coulomb potential
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We study the dynamics of radial wave packets in the singular Coulomb potential by solving

the time-dependent Schrodinger equation numerically. A propagation scheme involving fast-Fourier
transforms is used. We concentrate on the simple radial motion of the hydrogen atom to test the
numerical method. In particular, we calculate the dynamics under the inBuence of a strong laser

pulse and document how above-threshold-ionization peaks can be interpreted in terms of momentum-

space wave functions. The results are compared to those obtained from a calculation that uses a
soft core potential.

PACS number(s): 32.80.Rm, 32.80.Fb

I. INTRODUCTION II. PROPAGATION SCHEME

Numerous studies on the model problem of a one-
dimensional atom interacting with a high intensity laser
pulse can be found in the literature. For reviews of
difFerent approaches see the papers of Eberly and co-
workers [1—4] and the references cited therein. Some of
the most recent publications on this matter are listed
in Refs. [5—8]. In most of the numerical studies a one-
dimensional hydrogen atom is treated but the singular
Coulomb potential is replaced by different kinds of "soft-
core" potentials [3]. The reason for this is clear since any
singularity introduces numerical instabilities. Obviously,
one way to avoid these difFiculties is to expand the time-
dependent wave function in a basis of eigenfunctions of
the unperturbed system. However this approach is not
eKcient if Rydberg or continuum states are excited since
convergence with respect to the basis set expansion is
hard to obtain. This is the case we study in the present
paper. Another possibility is to artificially cut the singu-
lar potential at a finite distance and calculate the quan-
tities of interest as a function of the cut-off parameter,
hoping that convergence can be achieved. In this paper
we want to pursue another approach: we solve the time-
dependent Schrodinger equation directly on a grid and
force the wave function to be zero at the origin so that
the potential operator acting on the function remains G-

nite. This idea was introduced by Hermann and Fleck in
connection with wave-packet propagation in spherical co-
ordinates [9]. Our intention is to present a method which
is numerically stable, easily implemented, and can be ef-
ficiently used to treat Coulomb problems with attractive
potentials. Furthermore it can be extended to electronic
problems in higher dimensions [10].
After a description of our numerical scheme in Sec. II
we will apply it to the radial hydrogen atom with zero
angular momentum interacting with intense laser pulses
(Sec. III). In addition, the results are compared to a cal-
culation with a soft-core potential. Section IV contains
a summary of the paper.

We are interested in the solution of the time-dependent
Schrodinger equation (atomic units are used throughout)

where

is the Hamiltonian for the radial motion of the hydrogen
atom with zero angular momentum. We assume that the
position of the nucleus coincides with the center of mass
of the system. The perturbation in our model system is
of the form

H'(r, t) = rEpf (t) sin((ut),

which is the energy of an (isotropic) dipole in a homo-
geneous electric field of strength Ep and energy u. By
treating the electric Geld as classical and independent of
r, neither spontaneous emission nor laser focus efFects
are included here. f(t) describes the envelope function
of the light pulse. Note that r is a radial coordinate and
thus assumes only positive values. This is an essential
difference to other one-dimensional models (such as the
soft-core model) which use a coordinate defined on the
whole real axis. Thus in our model the electron dynamics
is restricted to radial motion only, i.e., we investigate the
motion of a sphere.

Another wave function is introduced by

The corresponding Hamiltonian which acts on this "re-
duced" function is

The definition (4) ensures that the wave function g is zero
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at the origin. The time propagation is carried through in
the Schrodinger representation approximating the time-
evolution operator by short-time propagators. Therefore
the propagation time t is divided into small increments
b, t, so that the perturbation H'(t) can be regarded as
constant during the propagation interval At [ll]. Then
the wave function at time t + Lt is

@(t+Dt) = V(b, t)vp(t) = e '( '+ (')I 'g(t}, (6)

where we have approximated H' by its value at the time
t' = t + 2'. This ensures correct time ordering in the
time-evolution operator. The numerical problem is to
evaluate the action of the short-time propagator on the
wave function. This is done with the "split-operator tech-
nique" [12] which approxiinates U(At) as

U (~t) —i(HO+H') &t i ( —'„+H') ~~'— —

&dr e&(
& ~ )~g ( 1+H&~dt

This expression is correct up to second order in Lt but
higher-order corrections can be obtained [13].

The wave function is represented on a spatial grid,
hence the exponential parts of the short-time propagator
(7) which depend on the radial coordinate r are evalu-
ated by multiplication of the spatial wave function with
the respective phase factors. The part of the propaga-
tor which contains the kinetic energy is evaluated in the
same way by multiplication in momentum space. To do
so, the wave function has to be transformed back and
forth between coordinate and momentum space. This is
efBciently done by fast-Fourier transforms.

In our propagation we use sine transforms which au-
tomatically ensure that the wave function has the right
boundary condition at r=0. Also, we have to choose the
coordinate grid large enough so that the wave function
does not reach the grid boundary at large distances since,
if this happens, the function is no longer periodic and re-
Hections occur at the boundary. If we are not interested
in the parts of the total function which are located at
large distances we might remove them by use of an op-
tical potential which has to be chosen carefully to avoid
boundary reflections [14].

For the Coulomb problem we typically use grid lengths
of 350 up to 1100 a.u. and a number of grid points be-
tween 4092 and 16384. The choice of the time step used
in our short-time propagator depends critically on the
choice of the spatial grid. . If, for a given grid length, the
number of points N is increased, there will be grid points
closer to zero and thus a larger negative value of the po-
tential enters into the numerical calculation. This dimin-
ishes the accuracy of the split-operator approximation
[15]. In our case we used a time step of about 10 a.u.
Note that the electron dynamics determines the choice
of Lt and not the approximation to replace the time-
dependent perturbation H'(t) by its value at the fixed
time t' = t+ 2 during the short-time propagation. This
follows &om the fact that for our choice of parameters
the temporal variation of the field is much slower than
the dynamics determined by the Hamiltonian Ho.

III. RES'ULTS

As a first test of the method outlined above, we solved
the eigenvalue problem of Ho by using complex time
propagation [16] of an initial Gaussian wave packet, i.e. ,
taking e ' ' as propagator, where s is real and posi-
tive. Since this propagator is no longer unitary the wave
packet asymptotically "relaxes" to the ground state of
Ho. Higher states can be obtained by substracting the
numerically obtained ground state froxn the initial wave
packet. Another propagation yields the first excited state
and so forth. We achieved accurate energies and wave
functions [15] which increased our faith in the method.
A similar method was applied recently to calculate the
ground-state energies of s-state helium and H [10].

A. One-photon ionization

Next we studied the interaction of the system with a
short and intense laser pulse. We chose a pulse envelope
of the form

f(t) = sin (
—

)
and a field strength of Eo——0.7 a.u. The wave function at
t=0 corresponded to the hydrogen s state g(0) = re
An energy of m=1.0 a.u. was used in a Brst calculation
to investigate the case in which one-photon ionization oc-
curs. The propagation time was T = 20m, i.e., ten optical
cycles of the electric field. This laser paraxneters are, of
course, fairly unrealistic concerning a real experimental
arrangement. The choice was motivated by our inten-
tion to test the numerical method and to concentrate,
for now, on the process of direct ionization.

Figure 1 shows the radial wave function during the in-
teraction of the electric field with the model atom. After
about three cycles of the laser Beld the wave packet has
split into two parts. A further split into even more &ac-
tions is observed for longer times. The single packets
move on average to larger distances, and when the field
is turned off the single parts approach the asymptotic
region with constant but different velocity. A similar be-
havior was found in a one-dimensional study by Schwen-
gelbeck and Faisal [8]. These authors used the meaii
velocity of the separate packets to extract the kinetic en-

ergy and relate this to above-threshold-ionization (ATI)
peaks. Since our calculation employs the coordinate- as
well as the momentum space representation of the wave
function at every tixne step, we might as well follow the
dynamics of the momentum-space wave function dur-

ing the time the Beld interacts with our one-dimensional
model atom The pr.obability density ~g(p, t)

~

is plot-
ted in Fig. 2. Starting &om a symmetrical distribution
around p=0 initially, it can be seen that during the time
evolution the distribution shifts to purely positive mo-
menta. Several peaks can be distinguished which oscil-
late around different mean momenta. When the pulse
is switched off the momentum distribution remains un-

changed. which is characteristic for the motion of a &ee
wave packet. We see that already after six cycles the
momentum-space wave packet has split into different
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(3) and (8)]. We use the initial condition pe~ ——0 for the
classical momentum since the momentum distribution of
the initial quantum state is peaked around zero and fur-
thermore the electric Geld envelope is exactly equal to
zero at 4 = 0. The solution is

Ee (2cos(~t)
p, i t

4 ~

cos[(~ + 20)t]
&+20

cos[(cu —20) t] 80+
(u —20 (u((u2 —402) ) ' (9)

where 0 =
& [see Eq. (8)]. Since this classical dynamics

does not yield further insight and makes it hardly possible
to follow the formation of the fractional ATI wave packets
during the pulse we substract it from the momentum-
space wave packet to obtain the shifted wave function:

&'(p t) = &(I —&.~(t) t).
It should be noted that the continuum part of the wave
function @'(t), which is (at least approximately) the wave
function of a free electron, does not move in momentum
space. This is in contrast to the linear combination of
bound states produced by the excitation process, which
moves in the Coulomb potential and thus does not be-
have like a free electron. In the calculation we chose an
energy of ~ =0.23 a.u. and a field strength of Eo——0.7 a.u.
Figure 4(a) displays the function for a 10-cycle pulse. For
comparison the wave function obtained in the one-photon
ionization process dicussed above is shown in Fig. 4(b).
In both cases we observe the splitting of' the wave func-
tion. The function for three-photon ionization looks al-
most stationary after about three cycles. This shows that
at this time the ionization probability is nearly equal to
one. It is possible to distinguish between three kinds of
structures in the wave function. The maxima which are
separated by the photon energy can be identified as the
ATI peaks. As in the case of the one-photon ionization

(see Fig. 2) almost all ATI peaks appear already after
four optical cycles and do not change significantly from
then on. The separation between them diminishes with
increasing momentum since the energy depends quadrat-
ically on the momentum. After about five cycles addi-
tional smaller peaks appear. These sidebands are due to
the envelope function of the short pulse. Furthermore
the figure shows a broader structure with a minimum at
p —p ~ 2.7 a.u. which is superimposed on the peaks we
just discussed. A similar minimum has been seen in other
calculations [1,4, 19] but the physical meaning is not yet
understood. There might be a relation to a theory of pho-
toionization, originating in the work of Keldysh [20, 1,21].
It is not clear to us if this theory applies to our case of
short-pulse excitation. No attempt was made to modify
the theory which would go far behind the purpose of this
paper. %e note, that the additional structure appears in
a slightly different form for other envelope functions (e.g. ,
a Gaussian profile or a square pulse) and disappears at
lower intensities (see Fig. 3). We carefully checked our
numerics and found the results to be converged with re-
spect to the time step and the grid parameters.

Figure 5 shows part of the electron spectrum. The
curve was obtained by successively substracting the
bound states from the wave function @(T) until conver-
gence was obtained. The figure displays the momentum-
space wave function calculated in this way plotted versus

the energy E„= ~2. A rich structure is encountered.
Many of the peaks are separated by the photon energy
thus are ATI peaks. Sidebands occur as well and the
structures mentioned above are clearly visible.

IV. COMPARISON TO THE SOFT-CORE MODEL

Finally we want to compare our results to the case
when the Coulomb potential is replaced by the soft-core
potential
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gen atom with the Coulomb potential and another model
which uses a soft-core potential shows that in the latter
the ionization rate is much lower. In the soft-core case
only one ATI peak is encountered for the employed in-
tensity whereas in our model higher order peaks occur.
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