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Model calculations of polarization-dependent two-color high-harmonic generation
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Emission rates for high-harmonic generation by a zero-range-potential model atom in the superposi-
tion of two monochromatic plane-wave fields are calculated. Several polarizations of the driving fields
are considered: two linear polarizations enclosing an arbitrary angle, and two circularly polarized fields
that co- or counter-rotate in the same plane. Transition amplitudes are obtained in the form of sums of
one-dimensional integrals that have to be computed numerically. For commensurate frequencies of the
driving fields the results depend critically on the relative phase between the two fields. Parallel driving
fields are not always more efficient in harmonic generation than perpendicular fields; also, two circular
polarizations can be at least as effective. The odd harmonics of one field are usually weakened by the ad-
dition of the other field in favor of the mixed harmonics. If the ratio of the frequencies of the two in-
cident fields equals the ratio of two odd integers, then harmonics with elliptic polarization can be gen-
erated by two linearly polarized driving fields. Harmonics with circular polarization can readily be pro-
duced with the help of two incident circularly polarized fields whose field vectors co-rotate or counter-
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rotate in the same plane.

PACS number(s): 32.80.Rm, 42.65.Ky

I. INTRODUCTION

The first experiments on the generation of very high
harmonics by an intense laser field irradiating a gaseous
target [1] have set off a major collaborative effort of ex-
perimentalists and theorists in order to elucidate the un-
derlying physical mechanisms. Owing to its nonpertur-
bative character as expressed, e.g., in the existence of the
“plateau” high-harmonic generation (HHG) holds great
intrinsic interest. However, the potential of practical ap-
plications as a source of bright coherent light with a
choice of polarization characteristics is no less important,
particularly, since it leads into a frequency regime where
few other sources are available.

The process of HHG as observed experimentally has
both single-atom and collective aspects: the emission of a
high-harmonic photon by some individual atom on the
one hand as well as the ensuing propagation in the gas
and the superposition of radiation emitted by different
atoms on the other. The collective aspects can be dealt
with classically and are now well understood [2]. They
will not be considered in this paper. The single-atom as-
pect is calculated either by a numerical solution of the
time-dependent Schriédinger equation or by more or less
detailed modeling. To date, the most extensive theoreti-
cal treatments include both aspects and have yielded
good agreement with the data [3]. A semiclassical ap-
proach [4,5] to the single-atom aspects has met with re-
markable success in providing intuitive understanding of
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the physical mechanism and also describing the data at
least semiquantitatively: the atom is assumed to release
an electron into the continuum with near zero velocity,
either via tunneling or multiphoton ionization. Subse-
quently, the electron is accelerated by the field. Depend-
ing on the time it appeared in the continuum it may re-
visit the ionic core and recombine leading to the quantum
mechanical event of HHG. In this simplest version the
model is obviously restricted to a linearly polarized laser
field, since otherwise the electron will never revisit the
core.

Up to now most experimental as well as theoretical
work has concentrated on HHG by one monochromatic
linearly polarized laser field. There are, however, mea-
surements of HHG by a monochromatic elliptically po-
larized field, concentrating on the rates of harmonic emis-
sion [6,7] or on the rotation of the axis of the ellipse of
polarization of the emitted harmonics as compared to
that of the incident field [8]. There are a few experimen-
tal investigations of two-color HHG, for the case where
one field is the second harmonic of the other and the two
fields are of very different [9] or comparable [10] magni-
tude. Moreover, results have been published for a fre-
quency ratio of 3:1 [11]. In all of these experiments, the
frequencies of the two fields have been commensurate so
that the relative phase is physically well defined. Howev-
er, it appears that in all of these cases the experiment was
not able to control the phase. Since this is experimentally
possible by now [8,11], the situation is likely to change
soon. As for theory, at the time of this writing we are
only aware of one paper [12] that touches upon two-color
HHG.

High-harmonic generation by a two-color laser field
has a huge parameter space: the intensities of the two
fields, their polarizations, their frequency ratio, and, if
commensurate, their relative phase can be varied. The
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calculations to be presented in this paper will demon-
strate that the characteristics of the high-harmonic emis-
sion may dramatically depend on these parameters.
There is some hope that this can be exploited for tailoring
the harmonic output to ones liking. For example, one
may think of extending the plateau, suppressing or
enhancing particular harmonics or entire frequency re-
gions, quenching ionization and thereby increasing the
saturation intensity, or generating particular polariza-
tions, such as getting circular polarization out of incident
linear polarizations. If, in the commensurate case, a cer-
tain combination of the phases of the two fields can be
controlled, this offers a particularly efficient way of mani-
pulating the harmonic emission rates relative to each oth-
er. There is a close correspondence to ‘“coherent con-
trol” in photochemistry, i.e., controlling the branching
ratios into different reaction channels by varying the rela-
tive phase between the laser fields [13]. Conversely, once
this is understood it can be used to measure the relative
phase between two laser fields [14].

Trying, however, to find the appropriate values of the
parameters for a given objective by means of a shotgun
approach, either experimentally or theoretically, appears
as promising as searching for the famous needle in the
haystack. What is needed is some guide to the regions of
the parameter space which are most appropriate for a
given purpose. A suitable generalization of the aforemen-
tioned semiclassical model may turn out to serve as such.
As it stands, however, there is the problem that for all
but linearly polarized fields a classical electron released
with zero velocity does not return to the site of its
release. There are several ways in which the semiclassical
model [4,5] may nevertheless be extended to deal with
general polarizations: (i) due to the finite range of a real-
istic binding potential the electron only needs to return to
within the range of the potential; (ii) quantum-
mechanical wave-packet spreading ensures that the clas-
sical trajectory of the electron needs not to return to the
exact site of release [5]; and (iii) nonzero initial velocities
may be important [15]. Of these, the first possibility is
trivial. It will certainly contribute to HHG in a finite-
range potential. The second is invariably part of any ful-
ly quantum-mechanical description. The third becomes
apparent if one considers the path-integral representation
of the electron propagator in an external field. It has
been shown that the classical electron orbits which have
the electron return with maximal kinetic energy are such
that initial and final velocities are perpendicular [15].
Only for linearly polarized laser fields does this allow for
an initial velocity of zero. In this paper we will not at-
tempt to identify such a generalized semiclassical model
that is capable of dealing with polarizations that are not
linear. Rather, we will pursue the more modest goal of
providing compact expressions for the various two-color
high-harmonic emission rates as well as their polariza-
tions in the form of one-dimensional integrals that allow
for a comparatively quick numerical evaluation.

As opposed to HHG, there is a very substantial
amount of work on multiphoton ionization by two fields,
mostly theoretical. In particular, two configurations
have been investigated: the combination of a low-
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intensity high-frequency field and a high-intensity low-
frequency field [16] or, alternatively, two fields with com-
mensurate frequencies so that the relative phase does
matter [17,18]. This has been done with various motiva-
tions. Here we just mention that the first case has been
used as a testing ground for the impact of the pondero-
motive barrier (created predominantly by the high-
intensity low-frequency field) on total and partial ioniza-
tion rates while the second situation allows for the study
of the influence of the relative phase on the same quanti-
ties and of the effects of interference and resonances, the
latter being most pronounced for a frequency ratio of 3:1
[18]. Experiments have been directed at the first case
with the ponderomotive potential in mind [19] and the
second in order to study the effect of the relative phase on
the above-threshold ionization spectra [11,20].

In this paper, we will model two-color HHG by replac-
ing the atomic binding potential by a zero-range potential
[21,22]. In particular, we will refer to our earlier paper
[22] which deals with HHG by one monochromatic laser
field of arbitrary polarization as I. The model is closely
related to the description of Ref. [23] which satisfies all
the same model assumptions that we will make here. The
zero-range potential has, in general, fared quite well in
reproducing qualitative trends of the data. For one-color
HHG, it has been used by several groups for fits and in-
terpretations of their experimental results [24-26]. In
particular, it was employed in order to decide whether or
not measured harmonic signals were due to the atom or
the ion [26]. For HHG by a one-color field with elliptical
polarization we have obtained in I a satisfactory descrip-
tion of the data of Ref. [6]. Expressions specifying the ro-
tation of the axis of the polarization ellipse of the emitted
harmonic radiation versus that of the incident field can
also be found in I, but have not yet been evaluated nu-
merically for a comparison with the recent experimental
results [8]. The results of this paper have already been
compared to the results of an experimental study of two-
color high-harmonic emission for a frequency ratio of 2:1
for various polarizations of the incident fields [10]. Gen-
erally, the agreement was good.

The layout of the paper is as follows. In the second
section, we derive expressions for the emission rates of
two-color harmonics for several polarization
configurations of the driving fields. The formalism that
we use is a rather straightforward extension of the earlier
methods used in I, and we will frequently refer to this pa-
per. However, all of the nomenclature is explained in the
present paper, too. In all cases, the resulting transition
amplitudes have the form of one-dimensional quadratures
which are very similar to those encountered in I. The
calculation of the emission rate for a given two-color har-
monic is more time consuming than in the one-color case,
however, since many of these integrals have to be
summed over. We present formulas for two linearly po-
larized incident fields which may enclose an arbitrary an-
gle, and, in particular, for two perpendicular polariza-
tions where the expressions assume their simplest form.
If the frequencies of the incident fields are commensurate,
a given harmonic frequency can be reached via different
pathways and all of the corresponding transition ampli-



2264

tudes must be summed up before the transition rate is
evaluated. Specifically, we write down explicit results for
a 2:1 frequency ratio. Another polarization configuration
that we investigate extensively is the case of two circular
polarizations which are co-rotating or counter-rotating in
the same place. The emitted spectrum consists of com-
paratively few lines in this case, owing to particularly
simple angular momentum selection rules. With the ex-
ception of one particular case, the emitted harmonics are
always circularly polarized. This provides for a con-
venient method to generate circular polarization in a fre-
quency regime where this is not straightforward.

In the third section we display the results of numerical
computations of the emission rates for representative sit-
uations. We cover the case of two incommensurate fre-
quencies with perpendicular polarizations and discuss the
emitted spectra in terms of the sidebands induced by one
field on the harmonics of the other, the extent of the pla-
teau, and the semiclassical model for various intensity ra-
tios of the driving fields. For two incident circular polar-
izations co-rotating or counter-rotating in the same plane
we compare the emitted spectra with each other and the
previous case. For the experimentally important case
where one incident field is the first harmonic of the other
there are data to compare with [9,10]. We look at the
various polarization configurations including the impor-
tant case of parallel polarizations and provide examples
of the strong dependence of the harmonics on the relative
phase between the two fields. We also discuss the scaling
of the harmonics when one driving field is weak com-
pared to the other and investigate the harmonic spectrum
for incident fields which are almost, but not exactly, per-
pendicular. Finally, we consider two incident perpendic-
ular polarizations for a frequency ratio of 3:1 which al-
low, in principle, for the generation of harmonics with ar-
bitrary elliptic including circular polarization. Con-
clusions are given in the end.

II. HIGH-HARMONIC EMISSION RATES

Our starting point is the expression [I, Eq. (3.7)] for the
Fourier transform of the expectation value of the dipole
moment of the quasienergy ground state which we repeat
here for convenience:
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The quantity E is the complex quasienergy of the ground
state and w(t) is defined via Egs. (2.14) and (2.26) of I,

lim 2 rW(r,)=e () (2.4)

r—0 or

with W(r,?) the quasienergy wave function of the ground
state. We will replace w(¢) by a constant throughout this

paper,

w(t)—ag=Q2m) V22m|E,|)3"*, (2.5)

where a, is determined from the normalization of the
ground state according to Eq. (2.40) of I. The validity of
this approximation has been discussed in I.

We will evaluate the dipole moment (2.1) for a super-
position of two monochromatic fields either both linearly
polarized or both circularly polarized in the same plane
with equal or opposite handedness.

A. Two linear polarizations

We consider a field with vector potential

A(t)=a €cos(wt +8;)+a,e,cos(w,t +8,), (2.6)

where €, and €, are arbitrary unit vectors. In this case
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(2.9)
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The generalization of these expressions to an arbitrary number of monochromatic fields is obvious.
The integration over ¢ in the expression (2.1) for the dipole moment d({2) can now be carried out if we expand the
terms in exp(—iJ) that depend on ¢ in terms of Bessel functions. The result is
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On the way from Eq. (2.1) to Eq. (2.15) we have

transformed variables according to
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anii rleplaced the quasienergy E by its field-free value
—|E,|.

The summations in Eq. (2.15) extend over all integer
values of ny,n,,n,, and n_. Consequently, both p;+u,
and u;—u, in Eq. (2.16) are even. Hence p; and p, must
be either both even or both odd. Equation (2.15) then
shows that the total number of photons absorbed from
both fields must be odd. It also displays the appropriate
powers of the phases exp(—i6;) for each case.
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Each term in the sum (2.15) involves an odd number of
photons from one field and an even number of photons
from the other. It is useful to rearrange the sum such
that the terms with Q=02m,+1)w,+2m,w, and
Q=2m,0,+(2m,+1)w, are displayed explicitly. Rear-
ranging the summation as described and performing the
above integrations we can write the dipole moment as
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It can be checked that this expression is symmetric with respect to the interchange of the parameters of the two fields,
ie., (€,,a,,0,8,)<>(€y,a,,0,,8,). In the limit where one field is turned off, Eq. (2.22) agrees with Eq. (3.14) of I.

Lengthy as the expression (2.22) for the dipole moment is, it reveals several features of the spectrum of higher har-
monics. As already mentioned, harmonic emission occurs at the frequencies Q=(2m;+1)w;+2m,0, and
Q=2m,0,+(2m,+ 1)w,, so that the total number of photons absorbed from the field is odd as required by parity con-
servation. If w; and , are incommensurate, then all of these frequencies are different and the corresponding rates of
emission are given by the squares of the coefficients of the respective 6 functions in Eq. (2.22). These coefficients consist
of twofold series of products of Bessel functions. In the incommensurate case, nothing observable will depend on the
phases 8; and 8,. If »; and w, are commensurate, then different values of m, and m, may yield the same emitted fre-
quency Q and all contributions to one particular  must be summed up before the square is taken. In this case the rate
of emission will depend on some linear combination of the phases 8, and §,. We will discuss some commensurate cases
in more detail below. The polarization of the emitted harmonics will, in general, be elliptic, since each § function has
one coefficient proportional to €, and another one proportional to €, and their ratio will, in general, be complex. More
specific statements cannot be made without evaluating d(Q) explicitly. The expression (2.22) shows that each field gen-
erates even sidebands to the odd harmonics of the other. '

For numerical purposes, it is convenient to rewrite the expression (2.22) for the dipole moment d() such that the in-
tegration extends over positive values of 7 only. The resulting form is
32
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A significant simplification occurs when the two linearly polarized fields are perpendicular so that z, =z_ =0 [cf.
Eq. (2.14)]. In this event the fourfold sum reduces to a twofold sum (where n, =m | and n, =m,) and the terms propor-
tional to G' ™ do not contribute. Hence for €,-€,=0,
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In this case and only in this case is the polarization of the emitted harmonic photon identical with the polarization of
that incident field from which the odd number of photons was absorbed.
When o, and », are commensurate the two 8 functions in Eq. (2.27) may specify the same frequency Q. This hap-
pens when (2m |+ 1)w;+2m,0,=2m w,+(2m} + 1)w,, that is, when
o, 2(my—m,)+1
s (2.28)
©, 2lm;—m})+1
is the ratio of two odd integers. The simplest case is w;/w,=3. If in such a case the ratio of the coefficients of the two
6 functions in Eq. (2.27) (where €,-€,=0) is equal to *i, the respective harmonic is emitted with circular polarization.
Since for given frequencies three real quantities are at our disposal, viz. a,a,, and the applicable combination of the
phases 8, and &, [such as given, for the case where w,=2w,, in Eq. (2.32) below], it appears likely that this is possible.
Hence, there is a prospect of generating circular polarization in a frequency range where this is difficult to achieve by
other means.
From the point of view of experimental feasibility the case where

01=20,=2w (2.29)
is distinguished. In this case the dipole moment (2.23) reduces to
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where
N=2(2n,+n,—n), (2.31)
86=986,—25,, (2.32)

and we have defined the generalized Bessel function

Jn(ul’u27¢)=2‘,3s+n(ul)Js(uZ)eiS¢ . (2.33)

The dipole moment (2.30) displays even as well as odd harmonics of the frequency @ =w,. The odd harmonics can be
emitted without participation of field 1 (with @;=2w). In the same way the even harmonics with odd » can be emitted
without participation of field 2. For the emission of the even harmonics with even n, however, at least two photons of
field 2 must have been emitted or absorbed. Thus we expect three series of harmonics (odd Q /w, even Q/w with odd n,
even {1 /w with even n) with distinctly different scaling behavior with respect to the intensities of the two fields. It is im-
portant to notice that the harmonic emission rates calculated from Eq. (2.30) depend on the phases 8, and §, of the field
(2.6) only through the combination 6 in Eq. (2.32) (which is not equal to the phase difference 8, —8§,).

Again, the simplest case occurs when the two polarizations are perpendicular. Only the first and the last terms on
the right-hand side (rhs) of Eq. (2.30) survive and yield
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B. Two circular polarizations

We consider the case of two monochromatic fields with different frequencies rotating in the same plane, either in the
same direction or opposite to each other, so that
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In Eq. (2.35) and throughout this section the upper (lower) sign corresponds to the fields rotating in the same (opposite)
direction. We will refer to these two cases as equal (opposite) polarizations.
We now have in terms of the variables (2.18)

P - Ay —iwt| ielor2) @ L
Ft;t'st —7§—e+ 1;1—9 Vle™ ‘frcos—z—r—zo sin—-7 | =7
Ay Filw,t+8) | tiw(o/2) @y L, o
+—2e PR rcos—rFiosin—r | —1 }%—c.c. (2.38)
CL)Z 2 2
and
M2t )= =30, Vi(r)—z(r)cos |A t——‘z’— == (2.39)
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with
e’a?
e 2maw; ’
A=(o1:Fw2 ’
2
€’a,a, . . @y . )
z(7)= T |sinc(3A7)—sinc —2—7' sinc —2—7-
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(2.40)

(2.41)

(2.42)

and V;(7) still defined by Eq. (2.11). In comparison to Egs. (2.12)-(2.16) notice the factor-of-2 difference in the
definitions of 77; and z(7) and the fact that z(7) is proportional to either z (7) or z_ (7).
The dipole moment can now be computed in complete analogy with the above case of two linear polarizations. The

result is
a0’ | i 32
e im
d(Q)= — lag|?
Q% | m 0
X f‘” dr e"fon|e(i/2m|rle"EmVx(f)

— (T+i6)5/2

XY i"et"® le §(Q—nA—w,)
n

—e_8(Q—nA+w,)

The function g(7,w) was defined in Eq. (2.20). It is easily
checked that when either field is turned off (a,=0 or
a,=0) no harmonics are emitted, as it should be. One
may also check that for w,=w, and opposite polariza-
tions, the dipole moment (2.43) agrees with the result ob-
tained in I, Eq. (3.14) for one field with appropriate ellip-
tic polarization.

Comparing the dipole moments (2.22) and (2.43), the
most pronounced difference is that for two linear polar-
izations a two-parameter set of harmonics is emitted
while for two coplanar circular polarizations it is a one-
parameter set with the harmonics spaced by A=w,; F 0,.
The fact that for equal polarizations the spacing is given
by the frequency difference while for opposite polariza-
tions it is given by the sum is physically appealing since
in the first case the fields are corotating while they are
counter-rotating in the second. A more rigorous explana-
tion uses conservation of angular momentum. Consider
the component J, perpendicular to the plane of polariza-
tion and the case of equal polarizations. The ground
state of our model atom has J,=0. For each photon ab-
sorbed from either field, J, changes by one unit in the
same direction, say AJ,=+1. For each photon emitted
into either field, J, is then diminished by one unit,
AJ,=—1. The emitted harmonic photon carries away
one unit of J,, AJ,==1. In order that the atom be left in
its ground state after emission of the harmonic photon, it
must have absorbed the same number n of photons from
the high-frequency field that it emitted into the low-
frequency field, plus one additional emission or absorp-

al az
—g(r, 0, (z(T)xi—g(1,Lw, ), _(z(T))
(23] 2]

2 a3
—g (1, —o W, (2(7))Li——g (7, Fw, ), +1(z(T))
(1 20)}

] . (2.43)

—

tion from either field, i.e., the allowed frequencies are
Q=n(w,—wy)Tw; or Q=n(w;—w))tw,=(nF1)w,
—w,)tw, as predicted by Eq. (2.43). For opposite polar-
izations, the analogous argument yields the spacing of
A=w,tw,.

For incommensurate frequencies, the 8 functions in
Eq. (2.43) define different frequencies £ so that no emis-
sion rate will depend on the phase 8. If w; and w, are
commensurate the situation is different. For opposite po-
larizations, closer inspection reveals that the two terms in
Eq. (2.43) still define different frequencies. In all of these
cases the polarization of the emitted harmonics is circu-
lar. For equal polarizations, however, the two series
overlap provided that

o k

P, (2.44)

for some integer k. If this is the case the emitted har-
monics are no longer circularly polarized but have, in
general, elliptic polarization depending on the phase 5.
Their intensities, on the other hand, are still independent
of this phase. An example, for the case where w;=2w, so
that k =4, will be considered explicitly below.

Again, it is convenient for numerical evaluation to con-
vert the integration over 7 to positive values. The dipole
moment then assumes the form
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e T 2
Q)= L
) = lal
© dT__(i/0r
fo 7,5/2‘3t
el . a a _ )
X 3 etind le+8(9.—nA—ml) —w—lg(r,—wl)J,,(z(T))cosa,,(T):Fw—zg(r,+w2)Jn+1(z(T))sma,,(T)
n=—oc0 1 2
a a
—e_8(Q—nA+w,) ——l—g(T,wl)Jn(z(T))cosa,,(T)?Z)ig('r,i(oz)Jn*](z('r))sinan(T) ]
1 2
(2.45)
with
2
a,(1)=|Eylr+ S 9, Vi(r)+n—1 . (2.46)

27 4

i=1
The (commensurate) case where w;=2w,=2w illuminates the characteristic differences between equal and opposite

polarizations. For equal polarizations A=w and the two § functions in Eq. (2.45) generate the same series of frequen-
cies. The dipole moment reduces to

) 4 3/2
e T 2
d(Q)=— — a
Q% 2|
© dT i T i
x [ e S e —nw)
) a )
X e %% TIg(T,*260)]"~2(Z(T))COS(1,,(T)_02§(T,—w)Jn—l(Z(T))Slnan(T)
) a .
—e2ide TIg(‘r,Za))J,,+2(z(‘r))cosan(r)—azg(‘r,co)J,,H(Z(T))sma,,(f) }
with (2.47)
e’aja, %) .
z(7)= Tsine | =7 [1—sinc(ewT)] . (2.48)

Even as well as odd multiples of w,=w are permitted with comparable intensities. The polarization of the emitted har-
monics will in general be elliptic and dependent on the phase 8. The intensities, however, are independent of the phase.
This becomes clear if one notices that the exponentials exp(12i8) can be absorbed in the definition of the polarization
vectors.

On the other hand, for opposite polarizations, A=3w, and the two & functions generate different series. The emitted

frequencies are Q =(3n*1)w (i.e., the frequencies Q=3w,60, . . ., 3nw are forbidden) and the polarization is always cir-
cular. The rates are clearly independent of the phase 8. The dipole moment is
3/2
e? 47
d(Q)= — 2
(@) Ko | m a0l

x fow :sljz /AT oi® Ie15e+5(9—(3n —1w)

S (r, = 20), _(z(r))sina, (r) — a3 (r,0)J, (2(r))cosa, ()

+e Be_8(0—(3n+1)w)

X

X

ﬂg(T,Zw)J,,+1(z(f))sina,,(r)—a2g(r,—co)J,,(z(r))cosa,,(T) } (2.49)

2
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with

e’a,a,

z(r)= 2T

rsinc |27 l—sinc(wr)—isin
3 2

III. RESULTS

In what follows we will present the results of numerical
evaluations of the expressions derived in the preceding
section. In place of just one integral of the type (3.15) of
I which determined the emission rate in the one-color
case we now have, in general, to deal with two-
dimensional sums of these integrals such as written down
in Egs. (2.23) and (2.30). Simultaneously, the size of the
parameter space has increased tremendously owing to the
addition of the second field. In the one-color case the
spectrum depends on two dimensionless parameters, the
scaled binding energy |E,|/w, and field strength
n= Up /. In addition, we now have one more scaled in-
tensity, the frequency ratio, the relative phase (in case the
frequencies are commensurate), and the polarization of
the second field. Short of any systematic exploration of
this parameter space, we will present here selected nu-
merical results that shed some light on the rich and
colorful properties of the two-color harmonics.

In all of the plots of this section the quantity L()
defined by

172
d(Q)=2 || I8Q—(2k+1olL*Q)  (3.1)
k

will be represented.

A. Incommensurate frequencies and perpendicular polarizations

All of the following graphs provide illustrations of Eq.
(2.27). When the two frequencies w; and w, are incom-
mensurate, any frequency () can be arbitrarily closely ap-
proximated by (2m,+1)w,+2m,w, or 2m,w,+(2m,
+1)w, with suitable m; and m,, that is, the spectrum of
the emitted harmonics is, in principle, a quasicontinuum.
This is a purely academic statement since most of these
frequencies will be emitted with very low intensities. Fig-
ure 1 depicts a typical spectrum. Here |E,|/w,=10,

0,=V20,, m;=2, and 7,=1/10V2 so that
U,,=®,1,=0.1w,. The intensity ratio of the two fields is

I,/I,=0.1. This figure displays those frequencies that
are emitted with polarization €, corresponding to the
first term on the rhs of Eq. (2.27). One recognizes the
odd harmonics of w,(1<m, <15) along with their side-
bands (—5=<m, <5, provided they are within the range
of the graph). Many more frequencies are predicted by
Eq. (2.27) corresponding to values of m; <1 and large m,
which are not included in Fig. 1 since their intensities are
very low. The open squares give the intensities of the odd
harmonics of @, in the absence of the second field. A
most noticeable effect of the second field is that the inten-
sities of those harmonics Q=(2m | + 1)w,; that are part of
the plateau are diminished by about one order of magni-
tude. We have found this to be a very common effect.
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(2.50)

Only in few cases have we observed that the intensities of
the odd harmonics were brightened by the addition of the
second field, and then only by insubstantial amounts.
Figure 1 allows for the identification both of the side-
bands (m, fixed) of the odd harmonics of the first field as
well as the series (m, fixed) where the second field con-
tributes a definite number of photons. These latter curves
exhibit (for not too large values of |m,|) plateaus much
like the one-color plateaus in the presence of just the first
field. In particular, the m, =0 series largely agrees with
the one-color results except for the harmonics within the
plateau which are dimmed by the second field as men-
tioned above. This effect may not come as a surprise: in
a classical picture [4,5] that has been shown to incorpo-
rate a good deal of physical reality, harmonics are emit-
ted when the electron returns to the center of the ion and
drops back into the ground state. For incommensurate
frequencies and perpendicular polarizations, a second
field just impedes this process. The argument does not
explain, however, why the harmonics outside the plateau
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FIG. 1. log(|L(2)|*) vs harmonic order for @,=V20,,
|Ey| =10w,, 7,=2, ,=(1/10)V'2. The open squares are the
one-color, 7, =0, harmonic spectrum. (a) The other symbols are
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are unaffected by the second field. The sidebands of some
harmonic with fixed m, (i.e., the set of harmonics with
m | =const, all m,) are, for m,;w; beyond the plateau, al-
most symmetric with respect to m,— —m,. If m,0, lies
within the one-color plateau there is some tendency of
the second field to contribute a few photons, that is, the
sidebands drop much faster for negative m, than for pos-
itive m,.

Figure 2 shows the same situation, but with the intensi-
ty of the second field increased by a factor of 10, so that
1,=1/V2, I,=I,. In comparison, the most obvious
feature of Fig. 2 is that now many frequencies are radiat-
ed with intensities stronger than in the one-color case.
However, this is not so for =(2m;+1)w,: the odd har-
monics of the first field are still suppressed by the addi-
tion of the second field. Otherwise, for example, next to
Q=170,(m;=8, m,=0) there is emission at
0=16.660,(m =5, m,=2) and Q=17.48w,(m, =4,
m,=3) with intensities higher by almost two orders of
magnitude. We notice that now within the plateau the
second field has a very pronounced tendency to donate
photons. This is most visibly expressed by the fact that
in Fig. 2 the series with positive m, are much more in-
tense than the one with m, =0, and the sidebands to fixed
m, are no longer symmetric with respect to m, —m,. In
general, the addition of a second field with I,=1I, and
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FIG. 2. logo(|L(Q)|?) vs harmonic order for w,=V2w,,
|Eq|=10w,, 7,=2, 5,=1/V2. The open squares are the one-
color, 7,=0, harmonic spectrum. (a) The other symbols are for
the two-color case, each symbol is for a constant m, with
—5=m, =5. The lines connect harmonics of constant m,; (b)
In order to facilitate orientation in (a) only a subset of the sym-
bols is given here, viz., m;=3,6,11 and the lines m, = —2,0,2.
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®,=V 2w, has multiplied the number of emitted frequen-
cies and the most intense ones exceed the one-color har-
monics by one to two orders of magnitude. The extent of
the plateau, however, has hardly changed at all as com-
pared to the one-color case. Moreover, doubling the in-
tensity of the first field rather than adding the second
generates more intense harmonics and at the same time
extends the plateau.

B. Incommensurate frequencies and two coplanar
circular polarizations

One single circularly polarized driving field generates
no harmonics in dipole emission. This is no longer so if
the driving field consists of two circularly polarized fields.
In the preceding section we considered the case of two
such fields such that the electric field vector of both fields
rotates in the same plane. In what follows we will present
explicit results for this situation, on the basis of Eq.
(2.43).

Figure 3 shows the harmonic spectrum for the case
where @,=(w;/10)V'2 case. This case might represent
an experiment where the low frequency field is from a
CO, laser and the high frequency field is produced by a
deep red, or near IR laser. Alternatively, the CO, laser
could be the high-frequency source and the low-
frequency field a microwave background. The binding
energy is |Ey|=5w; and the intensities are such that
11=m,=2. Both the equal and opposite polarization
cases are shown. The harmonics show the same plateau
structure that is seen in the one-color case. In each case
harmonics beyond the plateau that have the same polar-
ization as the high-frequency field are more intense than
those having the opposite polarization. Also in the
falloff region the harmonics from fields of opposite polar-
ization are more intense than those from fields with equal
polarization. Harmonics in the plateau region occasion-
ally violate these rules but in most cases they still hold.
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FIG. 3. log,o(|L(Q)|?) vs harmonic order for the two-color
circular case; w,=(w;/10)V'2, |Ey| =5w,, 7,=7,=2. Field 1is
right circularly polarized. The open (solid) symbols are the har-
monics produced when field 2 is right (left) circularly polarized.
The polarization of the harmonics is right circular (circles) or
left circular (squares) depending on the order.
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These rules can be deduced from Eq. (2.43). This equa-
tion tells that for fixed n two frequencies are emitted,
Q=nA+w,;, with the polarization of the incident high-
frequency field (€, ), and Q=nA—w,; with the opposite
polarization (€_). The two spectral lines of such a pair
are separated in frequency by 2w, and have roughly the
same intensity. Within the plateau, the intensities do not
depend on 7 in a regular fashion. Beyond the plateau, the
intensities decrease by about one order of magnitude
when n increases by 1. Hence, in this region Fig. 3
displays these pairs neatly separated, extending from the
approximate center of the figure down to the lower right.
For given frequency, the lines with the polarization of the
incident high-frequency field (€ ) are brighter than those
with the opposite one (€_). Since A is larger for opposite
than for equal polarizations, beyond the plateau a given
frequency is more intense for driving fields with opposite
polarizations. Notice that all harmonics are circularly
polarized. This provides for a comparatively straightfor-
ward way of generating circular polarization at high fre-
quency.

C. Commensurate frequencies (0, =2w,)

The two-color commensurate case nearest at hand is
the case with the frequency of one field twice that of the
other. Experimentally this is the most accessible case,
and the one where most data are available at this time.
The driving fields can be generated by doubling part of
the output of a laser and then combining the doubled
beam and the fundamental.

Eichmann et al. [10] published results of an experi-
ment with frequencies w,=2w;. The intensities of the
two fields were comparable. They measured the harmon-
ic spectra in argon for the polarization conditions investi-
gated in this paper, i.e., for two linearly polarized driving
fields which were either perpendicular or parallel, for two
circularly polarized fields corotating or counterrotating
in the same plane, as well as the one-color spectra of each
individual field. The experimental results were compared
to the results of the §-function potential theory. We have
argued [22] that it is reasonable to adjust the binding en-
ergy of the model atom to the difference between the
ground state and the first excited state of the real atom.
Hence, for these calculations we will use 11.6 eV in place
of the atomic binding energy of argon (15.6 eV). Figure 4
shows the harmonic spectra for this binding energy with
intensities slightly less than those in the experiment. Fig-
ure 4(a) is a plot of the one-color spectra from the fields
taken separately. Figure 4(b) shows the spectra for
linearly polarized fields with perpendicular and parallel
polarizations. Figure 4(c) shows the spectra when the
two fields are circularly polarized. The spectra from both
co- and counter-rotating driving fields are shown. Here
we use parameters that are slightly different from the ex-
periment. A direct comparison between the experimental
data and the results of the -function potential has been
carried out in Ref. [10]. The agreement was generally
quite good except for the case of the co-rotating circular
polarizations where the theoretical results were several
orders of magnitude below the data. This could be at
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least partially explained by taking into account that in
the experiment the circular polarization was not perfect.
In Fig. 4(a) the familiar features of one-color harmon-
ics will be noticed. The fundamental pump field gen-
erates odd harmonics of w;, Q=(2m +1)w,. The second
harmonic field generates odd harmonics of the 2w, field,
Q=(2m +1)2w,. The one-color spectrum from the fun-
damental alone has a plateau but, since 77, is relatively
small, the one-color spectrum produced by the second
harmonic field does not have a plateau. When both fields
are present there are both odd and even harmonics of ®,.
The intensities of the lower harmonics in Fig. 4(b) are
enhanced over those in the same region in Fig. 4(a). This
is possible since there is a great increase in the number of
nonlinear processes that can generate a given harmonic.
The harmonics generated by the parallel fields are, in
general, stronger than those from perpendicular fields.
The plateau is also longer in the parallel case. Several ex-
planations can be put forward. First, there are a greater
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(b) Two linear fields with parallel field vectors (solid circles) and
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larized fields with counter-rotating (solid diamonds) and co-
rotating (open diamonds).
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number of possible nonlinear processes (pathways) when
the fields are parallel [compare Egs. (2.23) and (2.27)].
The detailed argument can be found in Ref. [10]. Second,
the classical theory discussed in the introduction suggests
that for nonparallel polarizations the electron almost nev-
er returns to the center of the ion. With this model no
harmonics can be produced in the nonparallel cases
without introducing arguments based on the wave nature
of the electron, or allowing the electrons to be released in
the continuum with nonzero initial velocities.

Figure 4(c) shows the harmonics generated by two cir-
cularly polarized co- or counter-rotating fields. With two
circularly polarized fields the number of photons ab-
sorbed from either field must differ by 1 in order to con-
serve angular momentum. For counter-rotating fields a
given harmonic frequency can be generated by the pro-
cess m(2w,)+(m=*1)w,=(3m=*1)w,. Therefore the fre-
quencies 3mw, are not allowed. Since to lowest order in
the driving fields only one pathway exists for each har-
monic the harmonics are circularly polarized in the direc-
tion of the field which contributes the larger number of
photons. (To higher order, there are more pathways
which, however, only differ by additional pairs of emis-
sion and absorption of photons from one or the other
field which does not affect the polarization.) Using the
same angular momentum arguments when the driving
fields are corotating the mixing processes are
(m=*1)20,—(m*+2)o,=mw,;. All integer harmonics of
the low-frequency field are possible. For co-rotating
fields processes of higher order are required to generate
the same frequency (recall A=w,;—w,). Therefore, for

similar frequencies the intensities of the harmonics gen- .

erated by co-rotating fields are lower than those from
counter-rotating fields. In the co-rotating case there are
(again to lowest order in the driving fields) two pathways
to each harmonic and the polarization of the harmonics
is different from that of either incident field.

Figure 5 exhibits a typical example of the phase depen-
dence of the harmonics for the case where the driving
fields are linearly polarized and perpendicular to each
other and 8,=0 so that §=—2§, [cf. Eq. (2.32)]. Equa-
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FIG. 5. log,o(|L(£)|?) vs the relative phase of two perpendic-
ular linearly polarized fields ,=2w,, 7,=4.0, 7,=0.5,
|Ey|=7.240,, 8,=0.
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tion (2.34) shows that the phase dependence of the inten-
sities is caused by the existence of several pathways (num-
bered by the summation index n,) which all contribute to
the same harmonic. Each pathway involves a different
number of emissions and absorptions of photons from ei-
ther driving field. Hence each term enters the coherent
sum (2.34), which makes up the dipole moment, with a
different phase which latter is a function of the phases 8,
and §, of the driving fields. In short, the different path-
ways interfere constructively or destructively, depending
on the phases of the driving fields. The effects are sub-
stantial: as a function of the phase &, the ratios of the
harmonics displayed in Fig. 5 differ by up to two orders
of magnitude. This provides an impressive example of
the possibilities of coherent control of the emission of
high harmonics through the use of two driving fields.

One can see from Fig. 5 that the intensities are invari-
ant against 8,—8,+. Formally, this is easily inferred
from Eq. (2.34). The underlying reason can be traced to
the vector potential (2.6) where 6,—8,+m corresponds
(for perpendicular polarizations) to reversal of the 2
direction. Obviously, this has no effect on the emitted in-
tensities. Notice that there is no symmetry with respect
to 8,— —¥&, which (for §,=0) would be compensated by
time reversal (t— —t¢). It is clear that the harmonic
spectra due to two fields that are related through time re-
versal will, in general, be different. In the context of the
semiclassical model already mentioned repeatedly where
the harmonics are due to recombination of the electron
returning to the ion, time reversal interchanges the tem-
poral order of the time where the electron is released in
the continuum and the time where it returns. For two-
color fields such as the field (2.6), the energies of the re-
turning electrons are different in these two situations.

In Fig. 4(b) the plateau in the perpendicular harmonics
ends before the one for the parallel harmonics. Figure 6
shows how the intensities of the harmonics in this region
change as the angle between the two fields changes from
perpendicular to parallel. The expression for the har-
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FIG. 6. logo(|L(Q)]?) vs the angle between the polarization
vectors of the two fields, @, =20, |E,| =7.24w,, 7,=4, 1,=0.5,
8,=8,=0. The solid symbols represent the portion of the har-
monic polarized in the direction of the first field. The open
symbols are the portion of the harmonic polarized in the per-
pendicular direction.
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monic, Eq. (2.23), has two terms: one polarized in the €,
direction and the other in the €, direction. The plot
shows the projections of the dipole moment on the X
direction, defined to be in the direction €;, and the
direction which is perpendicular to X. When the fields
are perpendicular €,=%. In this case the odd harmonics
are completely polarized in the X direction and the even
harmonics are completely polarized in the  direction.
When the fields are parallel, €, =€,=ZX, and the harmon-
ics are completely polarized in this direction. The $ com-
ponents of the odd harmonics and the X components of
the even harmonics turn on rapidly as the second field is
turned from perpendicular. By the time €;-€,~0.1 the
component of the odd harmonic has risen to the same
magnitude as the $ component of the even harmonic.
The magnitude of the perpendicular components is also
nearly equal. From this point on the intensities of the
components do not change by more than an order of
magnitude until the  components vanish when the fields
become parallel. The experimental consequences for har-
monics generated by perpendicularly polarized driving
fields will be discussed below.

The harmonics of parallel and perpendicular fields
have distinct characteristics. When the driving fields are
perpendicular, the even harmonics are polarized in the
same direction as the first field, the odd harmonics are
polarized in the same direction as the second field, and at
and beyond the edge of the plateau the harmonics polar-
ized in the direction of the weaker field are less intense
than the others. In the parallel case all harmonics are po-
larized in the same direction as the two driving fields and
the intensities of the even and odd harmonics in the
falloff region do not alternate. As the angle between
the fields changes the characteristics of the harmonics
change from one type to the other. The change is more
abrupt than gradual. The harmonics have the charac-
teristics of perpendicular fields when the X () com-
ponents of the even (odd) harmonics are much less than
the X (9 ) components of the odd (even) harmonics. This
condition is met when the maximum value of
|z4(7)| << 1, which means €,-€,}/ M, <<1. Otherwise,
the characteristics of the harmonics are more like those
of harmonics from parallel driving fields. The harmonics
of driving fields that are neither perpendicular nor paral-
lel have one characteristic that sets them apart from ei-
ther of the extremes: their polarization can have com-
ponents in both the X and P directions. That is, they can
potentially have any polarization. In order to investigate
these effects experimentally the relative polarization of
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FIG. 7. log,lL(Q)*> vs harmonic order, w,=2w,,

|Eq| =16.82w,, 11,=5.0, 1,=0.5, §,=5,=0. Both the parallel
and perpendicular driving field cases are shown.

the two fields must be controlled with a high degree of ac-
curacy.

Perry and Crane have performed experiments with the
high-frequency field stronger than the low-frequency field
[9]. This change in relative intensities from the situation
of Ref. [10] dramatically alters the characteristic features
of the harmonic spectrum. Figure 7 shows the spectrum
calculated using the &-function potential model for the
experimental parameters of Ref. [9]. As in the previous
case the plateau for harmonics of the perpendicular driv-
ing fields ends before that for parallel driving fields. In
the falloff region a clear pattern can be seen in the per-
pendicular harmonics. The odd harmonics are much less
intense than the even harmonics. Also, the brightness of
even harmonics alternates in a regular fashion as does the
brightness of the odd harmonics. There is some variation
in the brightness of the parallel harmonics, too, but with
a smaller amplitude. The calculated spectrum of Fig. 7 is
in qualitative disagreement with the experimental results
of Perry and Crane [9], notably for perpendicular driving
fields [cf. Fig. 2(b) of Ref. [9]]. Below we will pinpoint a
possible reason of this discrepancy.

These patterns in the intensity of the perpendicular
harmonics are a result of the behavior of only a few pro-
cesses which dominate at these intensities. When one of
the fields is much smaller than the other the dominant
processes are the ones with the lowest number of weak
field photons. The scaling behavior of the various har-
monics when 7, <<1 is given in Table I. It can be ex-

TABLE 1. Frequencies and scaling laws for the lowest order channels when w,=2w;, 7, <<7, << 1.

Type Frequency @, photons ®, photons Power law
I Q=(4m+ 1), 2m 7" M
II Q=202m+ 1w, 2m +1 mm !
11 Q=(4m —1)w, =1 2m "M
v Q=(4m)w, 2m —1 73"

2m +1 i tin
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tracted from Eq. (2.34) or just be written down by inspec-
tion keeping in mind that the total number of photons ab-
sorbed from both fields must be odd. For w,=2w, there
are four different classes of harmonics based on their
behavior when 7, <<1, 1, <<7),: type-I harmonics with
frequencies Q=(4m +1)w;, type-II harmonics with
Q=(2m +1)2w,, type-III harmonics with frequencies
Q=(4m —1)w;, and type-IV harmonics with frequencies
Q=4mw,. Figure 8 shows the dependence of the intensi-
ties of the four different types of harmonics on the inten-
sity of the low-frequency field when the high-frequency
field is strong. Type-II harmonics go over to the one-
color, strong field only, case as the weak field goes to
zero. Type-IV harmonics are the even harmonics of the
strong () field. They vanish when the weak field goes
to zero. At least two weak-field photons are required to
generate a type-IV harmonic photon. Type-I and type-
IIT harmonics are the odd harmonics of the weak field.
They require at least one weak-field photon. They differ
in the behavior of the term that is lowest order in the
weak field, type-I harmonics take 2m photons from the
strong field and emit one weak field photon, type-III har-
monics take 2m photons from the strong field and take
one photon from the weak field. Each type-IV harmonic
is bracketed by a type-I and a type-III harmonic both
with the same value of m,. Since these two odd harmon-
ic processes are of the same order in both fields it is not
surprising that their magnitudes are similar. See, for in-
stance, the 51w, and 53w, harmonics in Fig. 7 or Fig. 8.
Table I summarizes the frequencies of the four types of

harmonics and lists the photon numbers of the lowest-
order processes for the weak, low-frequency field case.
The power law relationships are also shown for the case
where 7, <<7,<<1. The m, power laws fail when the
high-frequency field strength increases, 7,2 1. However
the 7, power laws hold even when 7,21 as long as
n,<<1. If 7, is turned down so that 7, <7, then the
weak field is the high-frequency field and a new set of
lowest-order processes dominate. The lowest-order chan-
nels and power laws for the weak, high frequency field
case are summarized in Table II. In this case there are
only two types of harmonics, the odd harmonics which
remain as the one-color harmonics when the second field
is turned off, and the even harmonics which require at
least one high-frequency photon.

We have already seen that the characteristics of the
harmonics change rapidly as the angle between the polar-
ization vectors approaches perpendicularity. Figure 9
shows the harmonic spectrum for the same field parame-
ters as Fig. 7 except that the angle between the polariza-
tions has been adjusted so €;-€,=0.1. This small change
from perpendicular has a dramatic affect on the spec-
trum. In the falloff region the perpendicular harmonics
in Fig. 7 show a characteristic pattern. The intensities of
the odd, type-I and type-III harmonics are an order of
magnitude or more below the intensities of the even,
type-IV harmonic between them (for example the 63rd
and 65th harmonics are below the 64th). When the angle
between the fields is changed by just 6° the intensity of
the type-I and type-III harmonics has risen to the same

TABLE II. Frequencies and scaling laws for the lowest order channels when w,=2w;, 7, <<7, << 1.

Type Frequency ®, photons @, photons Power law

I, III Q=02m +1)w, 2m +1 0 nim

II, IV Q=02m)w, 2(m—1) 1 2m —1)
2(m+1) —1 Y
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FIG. 10. The components of L(}) polarized in the ¢,
(squares) and the €, (diamonds) directions from two linear, per-
pendicular fields, w,=3w;, |Ey|=20.88w,, 7,=5.0, 7,=0.5,
8,=86,=0. The open circles are the one-color spectrum of field
2 alone.

level as the intensity of the neighboring type-IV harmon-
ic. Figure 9 is in much better agreement with the experi-
mental results of Perry and Crane [9] than Fig. 7 which
was calculated for the case of exactly perpendicular
fields.

D. Commensurate frequencies (©,=3w,)

Above, in connection with Eq. (2.28), it was discussed
that for two perpendicular linearly polarized driving
fields the €; and ¢, series in Eq. (2.27) overlap whenever
the ratio of the two frequencies equals the ratio of two
odd integers. If this is the case then harmonics with arbi-
trary polarization, in particular circular polarization, can
be generated, in principle, out of two perpendicular
linearly polarized driving fields. Figure 10 shows the
components of L(L) along both unit vectors for perpen-
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FIG. 11. The relative phase between the 1-component and
the 2-components of L(() for the conditions of Fig. 10.
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dicular fields with frequencies @, =3w, and for §=0. For
most of the harmonics one of the components dominates
and the polarization is essentially linear, regardless of the
phase of the other component. However, some of the
harmonics have components with similar magnitudes. In
particular the €; and €, components of the 27th and 55th
harmonics are nearly identical in magnitude. The com-
ponents of the 27th harmonic are nearly in phase, there-
fore its polarization is almost linear. However, Fig. 11
shows that the phase of the €, component of the 55th
harmonic leads that of the €, component by 0.837. The
55th harmonic is therefore, elliptically polarized. It
should be kept in mind that there are various parameters
that can be varied in order to achieve exactly the same
magnitude for the two components. We reserve judg-
ment here as to whether or not this is a practical way to
generate harmonics with a specific polarization. The po-
larization will be critically dependent on the parameters
of the driving field. Small changes in the intensities,
phases, or polarization angles of the driving fields may
affect the polarizations of the harmonics dramatically. In
the laboratory these parameters are not constant in time
or space and this will affect the quality of the polarization
of the harmonics.

IV. CONCLUSIONS

We have, in this paper, extended the §-function poten-
tial model in order to calculate the properties of high-
harmonic emission due to a superposition of two mono-
chromatic driving fields for various polarization
configurations. The justification for using such a highly
simplified model atom is the growing conviction that
many of the properties of the harmonics are governed by
the propagation of the freed electron in the continuum
subject to the driving fields rather than by the structure
of the atom. We have been able to compare our results
with two recent measurements [9,10] and found good
agreement, given that we only compared the single-atom
spectra and used plane-wave fields in the calculation and
that the intensities of the experiments are not very well
known. At this point we are tempted to draw the con-
clusion that results derived from this model can provide a
useful guide to future experiments. The comparison with
the data thus far available [9,10] has already taught some
valuable lessons. For example, in the superposition of
circularly polarized driving fields small deviations from
perfect circular polarization may have a dramatic effect
on the observed spectrum. Similarly, for linearly polar-
ized driving fields, small deviations from perfect perpen-
dicularity may completely alter the spectrum. Equally
important, for commensurate frequencies variation of the
relative phase can easily affect the intensity ratio of near-
by harmonics by two orders of magnitude. These effects
are likely to make the interpretation of experimentally
observed spectra very tricky, in addition to the collective
effects which are understood in principle, but neverthe-
less not easy to identify in practice. On the other hand,
the single-atom polarization and phase effects offer great
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potential for coherent control of high-harmonic emission.
We have discussed the possibility of generating elliptic
and circular polarization by perpendicular linearly polar-
ized driving fields with a frequency ratio of 3:1 [or, more
generally, (odd):(odd)]. However, if circular polarization
is the goal, then it is easier to generate it via two circular-
ly polarized incident beams such that the fields rotate in
the same plane. We have not attempted to generalize the
semiclassical model of the electron revisiting the core to a
more than one-dimensional situation.
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