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A theoretical nonperturbative study of the coherent excitation of a two-state system by N consecutive
equally spaced identical pulses is presented. General relations between the evolution matrix elements in
the cases of one and N pulses are obtained in a closed form. For pulse envelopes allowing analytical
solutions, these relations enable analytical treatment of pulse-train excitation; for pulses that can only be
treated numerically, they shorten the computations by a factor of N. The relations show that the
multiple-pulse excitation of a two-state system can be considered as a quantum analog of the diffraction
grating. The interaction dynamics substantially depends on the way the train is produced because the
phase shift that is accumulated by the probability amplitudes due to the free evolution of the system dur-

ing and between the pulses differs. In the limit of weak excitation, the results recover earlier conclusions
based on perturbative treatments. Simple formulas are derived for the conditions for complete popula-
tion inversion (CPI) and complete population return (CPR), which differ from the single-pulse ones.
These general results are applied to four particular cases that allow analytical solutions: resonant, rec-
tangular, Rosen-Zener, and Allen-Eberly pulses. A common feature in all these cases is that the number
and the amplitude of oscillations in the state populations increase with the number of pulses, while their
width decreases. For rectangular pulses, CPI is possible below a given value of the ratio between the de-

tuning and the pulse area; this value increases nearly linearly with the number of pulses. For the Rosen-
Zener model, CPI is found to be possible for two and more pulses, while it is impossible for a single non-
resonant pulse. It is shown that for a given number of pulses there is an upper limit on the detuning for
which CPI can be observed; this limit increases logarithmically with the number of pulses. For the
A11en-Eberly model, CPR is established to be possible for more than one pulse, while it is impossible for
a single pulse. The cases of even and odd number of pulses are shown to lead to substantially different
results. The limitations imposed on the detuning by the conditions for CPR and CPI are derived and
discussed.

PACS number(s): 42.SO.Hz, 32.80.Bx, 33.80.Be

I. INTRODUCTION

Many processes in optics, magnetic resonance, and
slow atomic collisions can be considered as involving only
two states. Despite its simplicity, the two-state approxi-
mation provides a useful and frequently realistic descrip-
tion of these processes. Detailed discussions and exten-
sive reference lists devoted to the two-state problem can
be found in Refs. [1—4]. To be specific, we will use the
optical terminology, relating the system to an atom, the
field to a laser pulse, and the interaction to excitation, al-
though most of the results are valid in general.

In contrast to the numerous publications concerning
interaction of a two-state system with a single pulse there
are only a limited number of studies of atomic excitation
by pulse trains. In terms of applications, pulse-train exci-
tation provides a route to high-resolution spectroscopy
exploiting interference to generate narrow lines. In this
connection, we should mention the work devoted to the
observation of Ramsey fringes [5] in the optical domain
[6—13]. Bergquist, Lee, and Hall [6] have observed Ram-
sey fringes in the saturated-absorption signal from Ne
atoms crossing three and four equally spaced spatially
separated standing-wave laser beams. A variant of this
method has been implemented by Chebotayev and co-
workers [7]. Ramsey fringes have also been observed by

Doppler-free two-photon spectroscopy [8—11]. Bak-
lanov, Chebotayev, and Dubetsky [8] have used two spa-
tially separated interaction zones while in the experi-
ments of Salour [9,10] the atoms have interacted with
two time-delayed phase-coherent laser pulses. Hansch
and co-workers [11] have utilized a train of phase-
coherent pulses produced by multiple rejections of a sin-
gle pulse injected into an optical resonator. Pulse trains
have been used for high-resolution spectroscopy by other
authors as well [12]. Optical Ramsey fringes induced by
a train of Gaussian pulses have been analyzed theoretical-
ly by Thomas [13]. In these studies, the pulse intensity
has been small and the theoretical results have been de-
rived by perturbative methods [6—11] and by the first-
order Magnus approximation [13]. Recently, excitation
by a train of intense laser pulses has been treated by
several authors in the case of a general two-level atom
[14,15] and in the case of mesospheric sodium in connec-
tion with its use as a synthetic beacon in adaptive optics
[15—19]. In these studies relaxation has been accounted
for and the response of the atom has mainly been calcu-
lated numerically either by matrix multiplication of the
single-pulse solution [14,17] or by direct numerical in-
tegration of the optical Bloch equations [15,16]. Analyti-
cally, basic attention has been paid to the steady-state
solution of the Bloch equations [14—16,18,19]. Pulse

1050-2947/95/52(3)/2245(17)/$06. 00 52 2245 1995 The American Physical Society



NIKOLAY V. VITANOV AND PETER L. KNIGHT

shapes have included rectangular [14], Gaussian [15—18],
and general [15,18]. In Refs. [14—18], the detuning has
been assumed constant while Peterson and Gavrielides
[19] have discussed the steady-state solution for chirped
pulses. The power spectrum of the light scattered by a
two-level atom in the presence of a pulse-train driving
field has been analyzed by Newbold and Salamo [20].
Furthermore, theoretical treatment of multiple-pulse ex-
citation of three-level systems has been carried out by
Knight and co-workers [21]. Experimentally, Ramsey
fringes with three-level sodium atoms have been ob-
served, e.g., by Thomas et al. [22]. Pulse-train excitation
of multilevel systems has been studied by Greenland [23],
who has applied the precise Magnus solution to a train of
delta-function pulses, and by Thomas [24] who has treat-
ed perturbatively the case of Gaussian pulses.

In the present work we develop a general analytical
description of coherent excitation of a two-state system
by a set of X consecutive equally spaced identical pulses.
The formalism allows us to describe multiple-pulse exci-
tation given the single-pulse solutions. In what follows
we will assume that relaxation effects are not present or
can be neglected. On the one hand, this restricts the ap-
plicability of our results to the case of short pulses and
high repetition rates compared with the relaxation times
of the system. In fact, this is not an overly restrictive
limitation regarding the recent advances in laser technol-
ogy [25] and the existence of dipole-allowed transitions
with relatively long relaxation times in some atoms [26].
On the other hand, the absence of relaxation means that
the excitation is coherent, which leads to interesting in-
terference features in the transition probability. It also
admits analytical treatment of pulses of smooth shape
and nonzero constant or chirped [27] detuning. This is
particularly attractive regarding the recent advances in
pulse shaping [28].

The paper is organized as follows. In Sec. II, we
present the general closed-form relations between the ele-
ments of the evolution matrix for interaction with X
pulses and the elements of the single-pulse evolution ma-
trix. These relations allow us to utilize the existing
single-pulse analytical solutions to the two-state problem
in the general case of X pulses. The evolution matrix
treatment is very convenient because the matrix contains
information about the interaction only but not about the
initial conditions; hence, the pulse-train evolution matrix
can be obtained by matrix multiplication of the single-
pulse one provided the pulses are identical, equally
spaced, and nonoverlapping, which will be assumed in
what follows. The remarkably simple closed-form ex-
pressions are derived in the Appendix. In Sec. IIE, we
discuss the general properties of the transition probabili-
ty. In Sec. IIF, we present the conditions for complete
population inversion and return, which in general differ
from those for a single pulse. In Secs. III and IV, we con-
sider multiple-pulse excitation in the cases of exact reso-
nance and rectangular pulses. In Secs. V and VI, we treat
the application of our results to two more sophisticated
and physically distinct cases: Rosen-Zener [29] and
Allen-Eberly [1] pulses. The rectangular and the Rosen-
Zener pulses involve constant detuning, which means the

transitions are nonadiabatic while in the Allen-Eberly
model the pulses are chirped, the transitions being of adi-
abatic nature. As for single pulses, the two cases lead to
considerably oifferent results for N pulses. It should be
noted that the Rosen-Zener and the Allen-Eberly pulses
can be treated together as shown by Demkov and Kunike
[30] and later by Hioe [31] in the case of a single pulse.
However, it is more instructive to consider them sepa-
rately as they represent different physical situations. It is
also interesting to compare the rectangular and the
Rosen-Zener pulses: although both represent excitation
by symmetric pulses of constant detuning they have rath-
er different envelope shapes, the Rosen-Zener pulse being
smooth and hence, much more adiabatic. This fact
makes the transition probabilities quite different for sin-
gle pulses and consequently, for pulse trains. Finally, in
Sec. VII we summarize our results.

We will work in the interaction representation in which
the wave function of the two-state system is given by

q= C, (t)e ' I»+ C&(t)e '
12 &,

where C, (t) and C2(t) are the probability amplitudes of
states

l
1 ) and l2) while A'coi and A'co2 are their energies.

The atomic transition frequency is given by co, =m2 —cu,

(co2 )co, ). The Hamiltonian has the form H ( t)
=Ho+ V(t), where Ho is the unperturbed Hamiltonian
in the absence of external fields, that is, Ho lk ) =iiicok

l
k )

(k =1,2). The operator V(t) describes the interaction of
the atom with the pulse train, which in the electric-dipole
approximation is given by V(t) = —d E(t) where d is the
transition dipole moment operator and E(t) is the electric
field of the train. For electric-dipole —induced transitions
among bound states of an isolated atom the matrix repre-
sentation V „(t) of V(t) in the basis of the states

l
1 ) and

l
2 ) usually has no diagonal elements [2], i.e.,

V& &

= V22 =0, which will be assumed in what follows.

B. The Seld

The electric field E(t) of the train of X equally spaced
identical pulses depends on the way the pulse train is pro-
duced. When the individual pulses are not frequency-
swept (chirped) two possible forms of the field are

W —1

E(t) =Re g eED(t kT)e'"'+'~ (co=—const),
k=0
X—1

E(t)=Re g eEo(t kT)e' ' ' +'~ —(co=const) .
k=0

(3a)

(3b)

II. EVOLUTION-MATRIX DESCRIPTION
OF PULSE-TRAIN EXCITATION

A. The atom

When relaxation is not present or can be neglected, the
time evolution of a two-state quantum system is governed
by the Schrodinger equation
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The unit vector e, which is generally complex, deGnes the
polarization direction. We will assume that the Geld
phase P is constant; then it does not infiuence the interac-
tion dynamics and without loss of generality will be set
equal to zero. Eo(t kT—) describes the slowly varying
(on the scale of the carrier laser frequency co) electric field
amplitude of the kth pulse and T is the repetition time
(the period) of the pulse train. Field (3a) corresponds to a
train of pulses that are portions of the same sinusoid, e.g.,
a train produced by pulsed lasers [14—19] or by pulsed
amplification of a cw laser wave [9,10]. Field (3b) de-
scribes, for example, a sequence of phase-locked pulses
produced by the same laser pulse [9—11,13], e.g. in an op-
tical delay line [9,10] or by injecting a single pulse into an
optical cavity formed by two mirrors [11] with high
reQectivities.

Both fields (3a) and (3b) correspond to co=const. To
allow the pulses to be frequency-swept (chirped), instead
of cot we introduce the function gk(t) defined by

C)(t~ —oo )=1, C2(t~ —oo )=0, (9)

which imply the system is initially in state ~1). The
problem is to find the probability amplitudes C, (t) and
Cz(t) provided Q(t) and b(t} are known. In the case of
coherent pulsed excitation, of particular interest are the
values of C)(t) and C2(t) at t~+ oo, i.e., after the pulses
have turned ofF.

A„(t)= J b,(t' k—T)dt'

and h(t)=co, —cu(t) is the atom-field detuning. For an
interaction corresponding to the electric field (4b) the
equations are similar to Eqs. (7) with Ak(t) replaced by
Ak(t) Ak—(kT)+ken, T. To arrive at Eqs. (7) in the case
of linearly polarized light (5) in optics, the rotating-wave
approximation [1,2] is invoked. We will impose the stan-
dard initial conditions

gk(t)= f co(t' kT)d—t' .
0

The electric Geld is

E(t) =Re g eEO(t kT)e-igk(t)

k=0
(4a)

D. The evolution matrix

It is convenient to study the interaction of a system
with X consecutive equally spaced identical pulses in
terms of the evolution matrix S, which is a 2 X 2 complex
matrix deGned by

N —1

E(t)=Re g eEO(t kT)e-
k=0

(4b) C(+ oo )=SC( —oo ), (10)

and it generalizes Eqs. (3a) and (3b), respectively.
Chirped are the Allen-Eberly pulses [1], which will be
considered in Sec. VI.

For field (4a) the atom-field coupling V)2(t) is given by
(see Ref. [2], Sec. 3.3)

N —1

V,2(t) =i)t'g Q(t —kT)cosgk(t)
k=0

for a linear polarization,

V,2(t) =
—,
'A' g Q(t kT)e-igk(t)

k=0

(5)

for a circular polarization, (6)

where Q(t)= ~d.e~Eo(t)/i)i is the single-pulse Rabi fre-
quency, Q(t —kT) being the envelope of the kth pulse.
For field (4b), gk(t) should be replaced by g„(t)—g„(kT)
in Eqs. (5) and (6).

and in a similar way for Xpulses

aN + l&N CN + ldN
SN —cN+&dN aN

where C(t)=(C, (t), C2(t)) . The supposed absence of re-
laxation efFects leads to the probability conservation at
any time: ~C, (t)~ +~C2(t)~ =1. This condition implies
that the evolution matrix is unitary, i.e., S =S ' and its
determinant is equal in modulus to 1. The fact that in the
absence of interaction the probability amplitudes do not
change [which is the case in the interaction representa-
tion (2)] imposes the choice detS=1. Then it can be
shown that S&& =S22, S&z = —Sz&, and hence, for a single
pulse, the S matrix can be parametrized as follows

r

aj+ib, c, +id&
—c&+id, a&

—ib,

(a +b +c +d =1)

(ax+bw+cx+d~= 1) . (12)
C. The equations

—E'W, (~)
i =

—,
' g Q(t kT)e Cz(t}—,
k=o

+;~„(~)i =-,' g Q(t kT)e " C, (t),—
k=o

where

(7)

With the interaction (5) or (6) the Schrodinger equation
(1) transforms into two coupled equations for the proba-
bility amplitudes

S)v=[S,] (13)

To Gnd the S& matrix, we consider the two-state equations

All the parameters in Eqs. (11) and (12) are real. We will
assume that the consecutive pulses do not overlap, which
requires that the repetition time T is sufBciently large to
allow the individual pulses wings to vanish before the
next pulse comes. Then since the probability amplitudes
after the interaction of the atom with the kth pulse serve
as initial conditions for the (k + 1)st pulse, the S& matrix
is given by
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(7) in the time interval [—T/2, T/2] in which the atom
interacts with the first pulse only. They have the form

i A—o(t)
i =—'Q(t)e ' Cz(t),

dt
(14)

dC~( t) +;Ao(, )
i = 'Q(—t)e Ci(t)

dt
( ——,'T&t &

—,'T). Since the pulse wings are assumed to
vanish outside [—T/2, T/2], we can formally extend this
interval to ( —~, ~ ) and utilize the available single-pulse
analytical solutions which are normally given in the form
(10) for the sake of mathematical convenience. This is
justified because in the interaction representation (2) the
probability amplitudes C, (t) and Cz(t) do not change in
the absence of external fields, neither in modulus nor in
phase. Given the single-pulse solution, one can construct
the single-pulse interaction matrix

a +ib c +id
(a +b +c +d =1) . (15)

It should be stressed that this is not the Si matrix (11) in-
volved in Eq. (13). The latter is a product of S;„, and a
matrix Sf„„which describes the phase shifts accumulated
by the probability amplitudes during the repetition time
T due to the free evolution of the system. To Snd Sf„„let
us consider the time interval [T/2, 3T/2] in which the
atom interacts with the second pulse only. The two-state
equations (7) in this time interval are

.dC)(t}, A,(t)—
i = 'Q(t —T}e — ' C2(t),2

(16)
dC, (t) +iA)(t)

l
dt

=-'Q(t T)e ' C—(t)1

( —,'T&t & —', T). Since A, (t)=AD(t —T)+A, (T) [see Eq.
(8)], by making a translation t = t'+ T and a substitution

4 2 iA)(T)
C', z(t') =C, z(t'+ T)e

where the phase shift is given by

9)(T)=—,'Ai(T) for pulse train (4a) . (18a)

When co(t) =const, i.e. for nonchirped pulses, the phase
shift y is equal to , hT—. For an interaction corresponding
to field (4b), a similar analysis shows that the phase shift
is

q&(T)= ,'co, T—forpulse train (4b) (18b)

for both chirped and nonchirped pulses. Therefore, the
S1 matrix is given by

S1 SfreeSint '

From Eqs. (11), (15), (17), and (19) we obtain

a, =a cosy —b sing b1=a siny+b cosy,

c1 =c cosy —d sing d1 =c sing+ d cosy,

(19)

(20)

where

P(1) &2+b2 a2+b2
1 1 1

P"' =c +d =c +d =1—P"'
2

—C1 1
—C —

1

are the single-pulse —induced populations of levels ~1)
and ~2), provided the initial conditions are given by Eqs.
(9}. P(2" represents the transition probability as well.

Since there are a number of analytical solutions to the
two-state problem it is very useful to express the matrix
elements of SN in terms of those of S,. This would allow
analytical treatment of the excitation by N identical
pulses given the single-pulse solutions. Using Eq. (13)
and the unitarity of S, and SN, in the Appendix we have
derived the relations between the elements of SN and S1
which have the form (A 1)

sin%8
aN =cosX8, bN =b1 sln8

we find that Eqs. (16) are transformed into the same form
as Eqs. (14} [which is required in order for Eq. (13) to be
valid] but with amplitudes shifted in phase by —,Ai(T) for
C, (t) and —

—,'A, (T) for C2(t). This shift can be de-
scribed by multiplication of C(t) with the free-evolution
matrix

sin%8 smlV 8
CN —C1 ~1 ~ y ~ N 1 ~

where

8=arccosa, (0& 8&m. ) .

(21)

(22)

eiy(T)

e
—

imp( T) (17)
It can be shown that the quantities cosN8 and
sin(NB)/sin8 are polynomials of a( given by [32]

siniYB
sin8

n —1
( +k)!

(n —k —1)!(2k+ 1)!
)n+k —i

i k=O

(n —k)!(2k)!

n

( )"+, ', (2a ) (N =2n),
(n —k)!(2k)!

}n+k
k=0

N=2 +1
(n —k)!(2k + 1)!
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Inasmuch as the parameters (21) of the Sz matrix depend
on the phase shift y through sing& and cosy only [Eqs.
(22) and (20)], for simplicity and without loss of generali-
ty we will assume that O~qv ~2m in what follows unless
otherwise specified.

2
P(Q) 2 +g2 ) P( I) Mn

z
sin 8

2
P( ) = +d =P(I) s1n X8

2 =CÃ 1V 2
sin 8

(23a)

(23b)

The population PP' of the upper state ~2) equals the
transition probability. Relation (231) shows that PP' is
equal to the single-pulse transition probability Pz" times
a factor that represents the interference efFect of the pulse
train. It is worth discussing some general properties and
limiting cases of P2 '.

We should point out that in the case of a single pulse,
the free evolution of the system before and after the in-
teraction with the pulse does not inhuence the popula-
tions. For more than one pulse, however, although the
free evolution before and after the pulse train is of no im-
portance, the free evolution during and between the
pulses explicitly afFects the populations via the repetition
time T. In fact, this is the physical basis of the theory of
Ramsey fringes [5]. It should be pointed out that it is the
phase shift y that makes the transition probabilities for
fields (4a) and (4b) different. In the case of (4a), y de-
pends on the laser frequency co through the detuning
b, =to, —to via Eqs. (18a) and (8). In the case of field (4b),
the phase shift y= —,'~, T does not depend on co. There-
fore, the populations regarded as functions of 5 (and
thence, of co} are expected to show much more complicat-
ed features for field (4a) than for field (4b). On the other
hand, regarded as functions of the pulse area A, the pop-
ulations induced by trains (4a) and (4b) do not differ in

principle because y does not depend on A; the same
phase shift can be obtained by appropriate choice of the
repetition time T [generally different for fields (4a) and
(4b)]

When the excitation is weak (small pulse area), that is
when a=1, ~b~, ~c~, ~d~ &&1, from Eqs. (20) we obtain
a, =a cosy =cosy Then Eq.. (22) suggests that 8 =p and
the train-induced transition probability is

p(+) p( $ ) sin
(24a)

sin y
For the particular case of Gaussian pulses with the elec-
tric field (41) when p= —,'tv, T, this result is reduced to for-
mula (4c) of Thoinas [13] (apart from a factor of —' mis-

printed in Ref. [13]). We should stress that the train-
induced factor (the fraction) in the approximate formula
(24a) depend on the free-evolution phase shift y only
while in the exact formula (231) it also depends on the in-
teraction dynamics, i.e. on a& (20), through 8 (22). Sim-

K. General properties of the transition probability

Provided the system is prepared initially in state ~1),
the populations of the two states induced by the pulse
train are given by

pie results are obtained when the y=mn. (where m is an
integer). Then

P(N) P( & )~2
2 2 (241)

F. Conditions for complete population inversion and return

It is particularly interesting to consider the cases of
complete population inversion (CPI), when PI ' =0 and
P2( '=1, and complete population return (CPR), when
P' '=1 and P' '=0

1

Complete population inversion requires a& =0 and
bN=O Since sin(N. B)/sin8 should not be zero [else
e~=d~=0, which contradicts P2 =c~+d~= 1; see(N) 2 2

Eqs. (21) and (23)], the second of these conditions is
equivalent to b

&
=0. Hence CPI occurs when both condi-

tions

a, =cos (k =1,2, . . . , N),(2k —1)m (25a)

b, =O (25b)

i.e., in the limit of weak excitation and for a free-evolution
phase shift equal to an integer multiple of m; the transition
probability is proportional to the squared number ofpulses
N, in agreement with earlier conclusions based on per-
turbation theory [9—11,13].

It is worth noting that formula (24a) contains Salour's
results [9,10] for weak excitation with two pulses. Really,
for N =2, Eq. (24a) gives

P2 '=4P2 'cos lp

and with phases (18a) and (18b), corresponding to pulse
trains (4a) and (4b), we obtain Salour's formulas (13) and
(25) in Ref. [10],respectively.

Another interesting observation is that Eq. (23b)
resembles very much the intensity distribution for a
diffraction grating. That is, the interaction of a two state-
system with a train of pulses is a quantum analog of the
diQraction grating in optics. Qualitatively, such a conjec-
ture has been made earlier [8—10] in the case of weak ex-
citation. Eq. (23b) is the rigorous form of this property.
It is a general result for any pulse shape, pulse area, and
detuning. It should be pointed out that the analogy is not
absolute because, in contrast to the case of a difFraction
grating, P2'" in Eq. (23b) depends on the same parameters
as 8-, i.e., on the detuning, the pulse area, and the pulse
shape. The most important difFerence is the absence of
the large peaks at 8 =me (where m is an integer), charac-
terizing the difFraction-grating pattern. Really, in the
present case 8=me. means that ~a&~ =1 [see Eq. (22)],
which implies P',"=1 and P2" =0 and hence, P2 '=0,
i.e., at 8=ma the transition probability Pz ' equals zero
but not a maximum.

Finally, it should be pointed out that small changes in
the interaction parameters, and consequently, in S& (11}
and in turn in 8 (22) via a &, are enhanced N times in the
train-induced populations (23). In other words, PP' is
much more sensitive to such changes than the single-
pulse probability P2".
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are satisfied. They are to be considered as a system of
two equations for the pulse-train parameters: detuning,
pulse area, pulse shape, and repetition time.

Complete population return requires c~ =0 and d~ =0.
These conditions are satisfied when 0.4z

ci =0 and di =0

or when

km
a, =cos (k =1,2, . . . , N —1) .

(26)

(27)

6$

O
CL

O

CD

0.3z

0.2z

The former is the condition for CPR in the case of a sin-
gle pulse [see Eq. (11)]. This is the trivial solution that
suggests that if CPR occurs for a single pulse it will occur
for N pulses as well. The latter condition, which results
from quantum interference, generates additional nodes in
p(N)

In Secs. III-VI we apply the general results obtained
above to four specific important cases: resonant, rec-
tangular, Rosen-Zener, and Allen-Eberly pulses, respec-
tively.

HI. EXACT RESONANCE

In the case of exact resonance the detuning is zero,
6—:0, and the parameters of the single-pulse matrix S&

(11)are given by

a ) =cos—,
' A cosy, b ) =cos—,

' A sing,

c i
=sin —,

' A sing, d i
= —sin —,

' A cosy,

where A is the pulse area

A = J Q(t)dt

and Q(t) has an arbitrary shape with rapidly vanishing
wings. The single-pulse transition probability is

0.Oval

I I I I I I I i i I I I I I I I I I I

.5 1.0 1.5 2.0

%'hen this condition is not fulfilled the populations are
given by Eqs. (23) with t) (29). In Figs. 1 and 2 the transi-
tion probability is plotted against the pulse area for a
number of values of the phase y= —,'co, T between 0 and
—,'m in the cases of 5 and 6 pulses. In the interval [—,'m, fr]
the situation is similar, as P'2 ' is invariant under the
change of y by m. —tp. The region 0~ A ~2~ is only
shown because the transition probability is a periodic

Pulse Area (units of z)

FIG. 1. The transition probability against the single-pulse
area A in the case of a train af 'N =5 resonant pulses with an
electric field given by Eq. (4b) for several difFerent values (denot-
ed by numbers on the right of the figure) of the free-evolution
phase shift q between 0 and 2~. The probability is a periodic
function of the pulse area with a period of 2m. For each curve,
the adjacent horizontal dotted lines indicate the values of zero
and unity probability.

P'" =sin 2 A2 (28)

The elements of the S& matrix (12) are given by Eqs. (21)
with 8 being

I I I I
I

I I I I
I

I I I I
I

I I I

8=arccos(cos ,' A cosy)—(0~t) (m ) .

For field (4a), rp= ,'b, T =0; then—
(29)

0.5z

0.4n

p' '=cos —'~g p' '=sin
1 2 ~ 2 (30)

Equations (30) hold for field (4b) only provided
y= —,'co, T =me. (where m is an integer); this can be ex-
plained in terms of constructive interference. Equations
(30) show that the number of oscillations in the popula-
tions induced by N pulses is N times larger than the num-
ber of oscillations for a single pulse, the transition proba-
bility being a sinusoid with a period of 2n /N. The popu-
lations oscillate between zero and one and CPI occurs at
A =(2k —1)n IN (k =1,2, . . . ) while CPR at
A =2kmlN (k =1,2, . . . ). These results can be easily
generalized for resonant pulses of nonequal areas.

However, one should keep in mind that for the field
(4b) this simple picture is only valid if —,ui, T=mm. .
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FIG. 2. The same as Fig. 1 but for N =6 pulses.
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function of A with a period of 2m. . When p=0 we obtain
pure sinusoids with periods of 2m. /5 and 2m. /6 as dis-
cussed above. At y=m. /2 we have 8=m. /2 and hence,
PP' =sin ( —,

' A)sin ( —,'Nn. ). Thus, for N even and

y=m /2, the transition probability is identically equal to
zero as seen in Fig. 2, which can be explained as a result
of destructive interference. For N odd and qr=m/2, it
equals the single-pulse one (28) as shown in Fig. 1. Be-
tween p equal to 0 and m. /2, Pz passes from one limiting
case to another.

IV. RECTANGULAR PULSES

the pulse area A, Pz" oscillates between zero and certain
values below unity, CPR being a typical feature while
CPI appears to be impossible, at least in the models stud-
ied so far. It turns out that this limitation is removed
when a two-state system interacts with more than one
such pulse. In this section, we consider rectangular
pulses and in the next, Rosen-Zener pulses. It is interest-
ing to compare the excitation spectra induced by trains of
such pulses because the Rosen-Zener pulses are smooth
and hence, much more adiabatic. We will see that the
two kinds of pulses lead to quite different results at large
detuning.

In the case of a single symmetric pulse of constant
nonzero detuning the transitions are of nonadiabatic na-
ture and the excited-state population Pz" generally de-
creases when increasing the detuning. As a function of

A. The transition probability

The Rabi frequency and the detuning of a train of N
rectangular pulses are given by

A for kT,'~~t &kT+ —,'v (k =0, 1, . . . , N —1},Q(t)=. ~

0 anywhere else, (31a}

b (t)=5/r, (31b)

where ~ is the pulse width, which also plays the role of a time-scale parameter, T is the repetition time ( T)~), A is the
single pulse area, and 5 is a dimensionless constant detuning. The elements (20) of the S& matrix (11) are

a, =Q 1 —P,'" cosg, c, = A
sin —,'+A +5 sing,

V'A '+5'

5& =+1—P~z" sing, d&
=- A

sin —,'+A +5 cosy,
&A'+5'

where

(32)

g= —
—,'5+arctan 5

tan —,'+A +5 +q) .
&A z+5z

(33)

The free-evolution phase p equals 5T/2r for train (4a)
and —,'co, T for train (4b). The single-pulse transition prob-
ability is given by [33]

(32) it occurs whenever

Ql —P~z" cosg=cos (k =1,2, . . . , N)
(2k —1)n.

AP(&)— sin 't/A +5
A +5

(34) (35a)

The parameters of the S~ matrix (12) can be obtained
from Eqs. (21) with 8 (22) and a& (32). The populations
P', ' and Pz ' induced by a train of N rectangular pulses
are given by Eqs. (23).

B. Complete population inversion

sing=0 .

Substituting Eq. (35b) into Eq. (35a) gives

z z~
(2 —1)m.

&A'+5' 2N

(35b)

As a function of the pulse area, the single-pulse transi-
tion probability (34) oscillates with an amplitude that in-
creases with A. As a function of the detuning 5, it oscil-
lates with a Lorentzian modulation of the amplitude.
Pz" is always less than unity provided 5%0, although it
can be very close to 1 when A »5. For two and more
pulses CPI becomes possible. According to Eqs. (25) and

(k =1,2, . . . , N) .

It is easy to see that for any detuning and for any number
of pulses N & I, this condition is satisfied by an infinite
number of values of the pulse area. On the other hand,
since the sin factor on the left-hand side (LHS) is always
~ 1, one can show that this equation imposes an upper
limit on

~
5

~
/A for CPI
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At large N the right-hand side (RHS) increases approxi-
mately linearly with ¹ This means that for a given de-
tuning 5, CPI is possible for a sufficiently large pulse area
A or for large enough N.

C. Dependence on the detuning

0
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For field (4a) the transition probability is an even func-
tion of the detuning 5 because lp=5T/2~ [see Eqs.
(32)-(34)]. In Figs. 3 and 4 the transition probability for
train (4a) is plotted against the detuning for pulse areas of
m. and 2~, respectively, and a train repetition time of
T =10~. The difference between the two figures is most
noticeable near resonance, 5=0. As is well known, at
5=0 the single-pulse transition probability has a max-
imum equal to unity for 3 =~, while for 3 =2m it is
zero. Consequently, for A =277 Pz is equal to zero at(E)

resonance [see the discussion of Eq. (26)]. For A =m,
P2 ' equals unity for odd N and zero for even N; this is
because any consecutive m pulse swaps the atomic popu-
lations. Off resonance, the two figures do not dier sub-
stantially. For N ~ 2, the transition probability oscillates
rapidly due to the sin (N8)/sin 0 factor in Eq. (23b) and
because 8 depends on 5 through g [see Eqs. (22), (32), and
(33)]. These oscillations are modulated in amplitude by
the single-pulse transition probability P2", which is clear-
ly seen in the figures. Furthermore, we should note the
overall increase of the amplitude of the oscillations, the
rise in their complexity, and the narrowing of the struc-
tures when the number of pulses increases. Finally, the
situation is generally similar to Figs. 3 and 4 when 3 is
equal to an odd or even multiple of ~, respectively.
When A is between these values the picture is not sub-
stantially different far from resonance while near 5=0 it
is somewhere between Figs. 3 and 4.
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FIG. 4. The same as Fig. 3 but for a single-pulse area of 2m.

D. Dependence on the free-evolution phase shift
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The situation differs markedly for the pulse train (4b)
when y= —,'m, T. First, plotted against the detuning 6, the
transition probability P'2 ' is generally an asymmetric
function due to the explicit dependence of g' (33) [and in
turn, of a, (32) and P~z ' (23b)] on lp. Second, P2 ' exhib-
its much fewer oscillations compared to the case of train
(4a) considered above because y does not depend on 5.
For fiel (4a), it is the term y=5T/2~ in g which changes
most rapidly with 5, thus generating lots of oscillations in
P2 '. En the same time, P2 ' strongly depends on y. Et is
plotted in Fig. 5 for various values of y from 0 to m for
N =5 pulses each of area of m.. The figure shows that the
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FICs. 3. The transition probability against the dimensionless
detuning 5 for a train of one to four rectangular pulses (31)
each of area A =~. The numbers of the pulses are indicated in
the figure. The electric field is given by Eq. (4a) and the train re-
petition rate is T = 10' where ~ is the pulse width.

FKx. 5. The transition probability against the dimensionless
detuning 5 for a train of five rectangular pulses (31) each of area
of m. for several diferent values of the free-evolution phase shift

y between 0 and m (the numbers on the right of the figure). For
each curve, the adjacent horizontal dotted lines indicate the
values of zero and unity probability. The electric field is given
by Eq. (4b).
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V. ROSKN-ZENER PULSES

A. The transition probability

In the model of Rosen and Zener [29] the Rabi fre-
quency and the detuning of a single pulse are given by

A t
Q(t) = sech —, h(t) =—,

%"r 1 7
(37)

where v & 0 is a tine-scale parameter, A & 0 is the single-
pulse area, and 5 is a dimensionless scaled constant de-
tuning. Our choice of this model is due to the fact that
first, it ofFers a realistic and smooth pulse shape and
second, it provides a simple analytical solution. The pa-
rameters (20) of the S& matrix (11)are given by

a
&

=Q 1 —Pz'" cosg', c
&

=sech —,
' m5 sin —,

' 2 sinIp,

b
&

=+I—Piz" sing, d
&

= —sech —,
I

m 5 sin —,
' A cosy,

with

r'[, +,'i.5]
I [—,'+ ,'a+ I i5]—r[,' —I a+ I—i5—]— —

(38)

(39)

where a=A/m. and r(z) is the gamma function. The
free-evolution phase shift y equals 5T/2r for train (4a)
and —,Ice, T for train (4b). The single-pulse transition prob-
ability is [29]

transition probability is symmetric for p equal to 0, n /2,
and m. In the case of y=O the explanation is trivial. For
y=m, the symmetry is kept simply because y=~ gives
the same P'2 ' as y=O, which is easily proved. For
y=m. /2, the change 5~ —5 leads to changes g~m —g,
a

&
~—a &, 8~m 8—and P2 ' (23b) does not change.

metric in general.
In Fig. 6, the transition probability is plotted against

the detuning for a pulse area of m., at which the single-
pulse transition probability (40) is maximum, and a train
repetition rate of T =10m. As Eq. (40) suggests the
single-pulse transition probability is a bell-shaped func-
tion of the detuning without any oscillations, in contrast
to the case of a rectangular pulse. At resonance, P2 '

equals unity for odd N and zero for even N because any
consecutive m pulse swaps the atomic populations. The
number of oscillations increases with the number of
pulses while their width decreases. Outside the shown
detuning range P2 ' is very small. The picture is general-
ly much simpler than for the rectangular pulses (Fig. 3).
This is due to first, the absence of a dependence on the
detuning in the oscillating sine factor in Eq. (40), and
second, the rapidly vanishing wings of P'2", which modu-
lates Pi2+' through Eq. (23b). The latter property does not
allow large-detuning oscillations such as the ones in Figs.
3 and 4. We should mention that the situation is similar
to Fig. 6 when the pulse area A equals an odd multiple of

When A equals an even multiple of m., according to
Eqs. (23b) and (40) the transition probability is identically
equal to zero for any detuning and any number of pulses.
This is a substantial difFerence compared to the rectangu-
lar pulses (Fig. 4). Between these values, the situation is
similar to Fig. 6, the oscillations being generally smaller
in amplitude.

As for the rectangular pulses, the situation is markedly
different for train (4b) when p= —,Ice, T. First of all, plot-
ted against 5, Pi2 ' exhibits fewer oscillations compared to
train (4a) because Ip does not change when varying the

I I I I i I I I I i I I I I i I I I I
i

I I I I i I I I I

P2"' =sech —'m.5 sin —'A .
2 2 (40)

The parameters of the S& matrix (12) can be obtained
from Eqs. (21) with 8 (22) and a& (38). The populations
P', ' and P2 ' induced by a train of X Rosen-Zener pulses
are given by Eqs. (23).

An important difference between Eq. (40) and transi-
tion probability (34) for a single rectangular pulse is that
the former decreases much faster against the detuning,
namely, exponentially, compared with the Lorentzian de-
crease of the latter. This is because the Rosen-Zener
pulses (37) are smooth and hence, much more adiabatic
than the rectangular ones (31). We will see that this leads
to quite difFerent results in the case of pulse trains as well.
Furthermore, an interesting peculiarity of the Rosen-
Zener probability (40) is the factorization of the depen-
dences on the pulse area A and the detuning 5. This fact
greatly simplifies analysis of the effects induced by
Rosen-Zener pulses.

B. Dependence on the detuning

As for the rectangular pulses, the transition probability
is an even function of the detuning 5 for train (4a) be-
cause y=5T/2r. For train (4b), however, Pz' ' is asym-
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Detunin9

FIG. 6. The transition probability against the dimensionless
detuning 5 for a train of one to six Rosen-Zener pulses (37) (in-
dicated by the numbers on the right of the figure) each of area of

The electric field is given by Eq. (4a) and the train repetition
time is T =10m. Note the difference in the detuning scale corn-
pared to the corresponding Fig. 3 for rectangular pulses. For
each curve, the adjacent horizontal dotted lines indicate the
values of zero and unity probability.
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area of m, for various values of y from 0 to m.. Values of
y from 0 to ~ are only shown because P~z ' is a periodic
function of cp with a period of m. The figure shows that
the transition probability is symmetric for y equal to 0,
m. /2, and m.. The explanation is similar to that for rec-
tangular pulses.

C. Dependence on the pulse area

As a function of the pulse area A, the single-pulse tran-
sition probability (40) oscillates between 0 and its con-
stant maximum value sech ( 2 m5) & 1 (5%0), which

shows that complete population inversion is not possible
unless 5=0 (exact resonance). In the case of two and
more pulses, however, CPI becomes possible. Because of
Pt2" & 1 for 5%0 [see Eq. (40)], the second CPI condition
(25b) is satisfied when [see Eqs. (38)]

Detuning

FIG. 7. The same as Fig. 6 but for field (4b) with y=0.

sing( A, 5)=0 .

Then the first CPI condition (25a) transforms into

(41a)

I I I I I I 1 I I I I I I I I I I I
I

I I I I
I

I I I I

1.0z
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detuning 5. Such a case is shown in Fig. 7 where Pz' ' is
plotted against the detuning, which is assumed to vary
through the laser frequency co, for y=0. Figure 7 is
markedly simpler than Fig. 6 corresponding to train (4a).
For field (4a), it is the term qr=5T/2r in g (39) that
changes most rapidly with 5, thus generating lots of small
oscillations in P2 '. On the other hand, for arbitrary y,
P2 ' is an asymmetric function due to the presence of the
(constant) phase q= —,'co, T in g (39) (y does not change
with 5 and hence, breaks the symmetry). In Fig. 8, the
transition probability is plotted for 1V =5 pulses, each of

(2k —1)m
~sin —,'A~ =cosh —,'~5 sin (k =1,2, . . . , N) .

(41b)

CPI conditions (41a) and (41b) are to be considered as a
system of equations for A and 5. This system is easily re-
duced to one equation by solving Eq. (41b) for 5 and sub-
stituting the value into Eq. (41a). A number of pairs
( A, 5) for which CPI occurs are presented in Table I. In
Fig. 9, the transition probability for train (4b) with y=0
is plotted as a function of the pulse area A for 5=0.9774.
For this choice, CPI occurs for N =4 at A =3.2403m. (see
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FIG. 8. The transition probability against the dimensionless
detuning 6 for a train of five Rosen-Zener pulses (37) each of
area of m for several difFerent values of the free-evolution phase
shift y between 0 and m. (the numbers on the right of the figure).
For each curve, the adjacent horizontal dotted lines indicate the
values of zero and unity probability. The electric field is given
by Eq. (4b).

FIG. 9. The transition probability against the pulse area A
for a train of one to six Rosen-Zener pulses (37) (indicated on
the right of the figure) for a detuning of 5=0.9774. The electric
field is given by Eq. (4b) and the free-evolution phase shift y is
equal to zero. For this detuning, complete population inversion
is realized for N =4 pulses at A =3.2403~. For each curve, the
adjacent horizontal dotted lines indicate the values of zero and
unity probability.
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TABLE I. Some approximate CPI solutions for 2, 3, 4, and 5 Rosen-Zener pulses (37) for pulse train (41) with p=0.
2 pulses 3 pulses 4 pulses 5 pulses

2.7957m
4.9727m'

7.05657T

9.107177

0.5126
0.5603
0.5575
0.5482

3.0829m
5.2539&
7.3295&
9.3735m

0.8321
0.7774
0.7324
0.6988

3.2403m
5.4026m
7.4715m
9.5106m.

0.9774
0.8767
0.8116
0.7665

3.3430m
5.4972m
7.56067T
9.5960m.

1.0700
0.9385
0.8602
0.8076

Table I). It is seen from the figure that the number of os-
cillations in P2~ ' increases with the number of pulses.
Furthermore, the amplitude of these oscillations in-
creases too, which in fact makes CPI possible. One also
finds that the oscillations are clearly modulated in ampli-
tude by the single-pulse probability Pz", as expected from
Eq. (23b).

An important conclusion from the CPI condition (41b)
is that it imposes an upper limit on the detuning Sinc.e
~sin —,

'
A~ & 1, after simple calculations one can show that

Eq. (4lb) leads to the following restriction on ~5~:

~5~
& —ln cot (42)

This upper limit increases nearly logarithmically with the
number of pulses.

According to Eqs. (26) and (27) coinplete population
return with N Rosen-Zener pulses occurs when

sech —,'m5 sin —,
' A =0

property of the single Rosen-Zener pulses while CPI is
impossible.

VI. CHIRPED PULSES: ALLEN-EBERLY MODEL

In this section we consider chirped-pulse excitation
when the transitions occur due to crossing of the diabatic
energy curves (Landau-Zener transitions). We have to
note that the Landau-Zener model itself [34] does not
represent a case of pulsed excitation since Q(t)=const
there. Typically, as a function of the pulse area A, the
excited-state population increases monotonically until
some value of A and then oscillates between one and a
given nonzero value with an amplitude that rapidly de-
creases when increasing the detuning.

A. The transition probability

%e wi11 consider multiple-pulse excitation by A11en-
Eberly pulses [1,30,31] in which the Rabi frequency and
the detuning of a single pulse are given by

or when A t B
Q(t) = sech —,h(t) = tanh —,

7T'r 7 gran 'r
(43)

Q 1 —sech —,
' m.5 sin —,

' A cosg( A, 5)=cos

(k =1,2, . . . , N —1) .

The former is just the condition for single-pulse CPR:
A =2m@ (m =1,2, . . . ). The latter condition results
from quantum interference. A number of cases of CPR
can be seen in Figs. 6—9. Of course, these cases are not
as interesting as those of CPI because CPR is a typical

I

where ~ is a positive parameter defining the time scale,
A )0 is the single-pulse area, and the real dimensionless
parameter B determines the detuning slope at t =0 as
well as the detuning value at t ~+ 00. Our choice of the
Allen-Eberly model (43) is due to the fact that first, this
model represents a realistic chirped pulse and second, it
provides relatively simple expressions for the parameters
(20) of the S, matrix (11). These parameters are given by

a& =sech ,'B cos—,'+—A —B cosy, c& =Ql —P'i" sing,

b, =sech ,'B cos—,'+—A —B sing, di = —Ql —&'i" cosy,

where

I [ ,'+iP]—
g =arg +P ln2+ ya2 p+ip]p [ ' —i/a p+ip—]— —

(44)

(45)

with a= A/2n. and p=B/2m. . According to Eqs. (18), the phase shift y equals —pin[cosh(T/~)) for train (4a) and
—,co, T for train (4b). The square roots in ai, bi, and g are real provided A ~B~ (we call this the high-intensity region)
and iinaginary if A & ~B~ (we call this the lotto intensity region-) Since cos(ix) .=coshx, the single-pulse —induced popula-
tions are

sech 'B cosh —,'+B——A (A & ~B~),
p(&) —~

sech 'B cos —'V A— B(A ~
~
B

~ ), — (46a)



2256 NIKOLAY V. VITANOV AND PETER L. KNIGHT
\

52

p(1) 1 p(1)
2 1

1 —sech —,'8 cosh —,'+8 —A (A & ~B~),

1 —sech —'8 cos —'V A~ —8 (A & ~8 ) .

The parameters of the Sz matrix (12) can be obtained
from Eqs. (21) with 8 defined by Eq. (22) and a, given by
Eq. (44). The populations PP' and P~z ' induced by a
train of N pulses are then given by Eqs. (23). It is worth
noting that the populations do not depend on the phase g
(45), neither for a single pulse nor for a pulse train.

As a function of the pulse area 3, the single-pulse tran-
sition probability (46b) increases monotonically in the
low-intensity region (A & ~B~) and then in the high-
intensity region (A & ~8~) oscillates between one and
[P~@"];„=1 —sech ( —,'8) & 0, regularly reaching complete
population inversion. The oscillations amplitude,
sech ( ,'8),—decreases exponentially when increasing the
detuning slope B, the excitation becoming increasingly
adiabatic. It is clear from Eqs. (46) that complete popula-
tion return is not possible in the case of a single Allen-
Eberly pulse unless 8 =0 (exact resonance) or A =0 (no
pulse). However, for two and more pulses CPR becomes
possible as the amplitude of the nonadiabatic oscillations
increases due to quantum interference.

fulfilled by an appropriate choice of T. For other values
of k in Eq. (47b), CPR solutions exist as well.

Odd number of pulses, N =2n + 1. Now
cos(km/N)%0 for any k and since the LHS of Eq. (47b) is
always ~ 1 the CPR condition imposes an upper limit on
cosh( —,'8), i.e., on B. The weakest restriction is when

~cos(km/N)~ is smallest, i.e., when k =n T.hus, we find
that CPR is possible if

~8~ & —ln cot2 77
( A & ~B~, N =2n +1) . (48)

C. Complete population inversion

The results (25) in Sec. II suggest that in the low
intensity region ( A & ~8

~
) CPI with N Allen-Eberly pulses

occurs when both conditions

Moreover, whenever CPR is possible it occurs for an
infinite number of values of the pulse area determined
from Eq. (47b).

B. Complete population return

The CPR conditions are given by Eqs. (26) and (27).
The former is the condition for single-pulse CPR, which
is impossible unless B =0 or A =0 as discussed. The
latter condition originates from quantum interference
and can be written down more explicitly as

km
cosh —,

' +8 —A cosy =cosh —,'8 cos

(A & lBI, k =1,2, . . . , N —1), (47a)

(2k —1)n
cosh —'+8 —A cosy =cosh —'8 cos

2iV
, (49a)

cosh ,' +8—A—sing =0

(A & IBI, k =1,2, . . . , N) (49b)

are satisfied. Equation (49b) requires sing=0 and hence
cosy=+1. After substituting this value into Eq. (49a)
one concludes that for any detuning slope B CPI is
achieved for n values of 2 where X =2n or N =2n + 1.

In the high intensity r-egion (A & ~B~), the CPI condi-
tions have the form

km.
cos—,'+ A Bcosy =cosh——,'8 cos

( A & lBI, k =1,2, . . . , N —1), (47b)

(2k —1)n
cos—'+ A Bcosy =cosh——'8 cos

2N

cos —,'+A —8 sing=0 .

(50a)

from where A can be expressed directly as a function of
B because y does not depend on A. It is easy to see that
for any detuning slope B and any number of pulses N Eq.
(47a) can always be satisfied by an appropriate choice of
the pulse area A and/or the train period T (which is in-
volved in tp), i.e., in the low intensity region (-A & ~8~)
CPR is always possible.

Much more interesting is Eq. (47b), which represents
the CPR condition in the high intensity region-( A & ~B~ ).
Inasmuch as the cases of even and odd number of pulses
are quite different we will consider them separately.

Euen number of pulses, N=2n. Since cos(km/N)=0
for k =n, CPR solutions always exist: one group of them
is given by A =[8 +(21+1)~ ]'~ (l =0, 1,2, . . . ) and
another by q&(T)=(l+ —,')m. (l=0, 1,2, . . . ). The former
condition requires A —B +m while the latter can be

( A & IBI, k =1 2,N) (50b)

We will consider the cases of even and odd number of
pulses separately again.

Odd number of pulses, N =2n + 1. Since
cos[(2k —1)~/2N]=0 for k =n+1, CPI solutions al-
ways exist and one group of them is given by
A = [8 +(2l + 1) m ]' (l =0, 1,2, . . . ), which suggests
that CPI requires A —B ~m. . The value of y is unim-
portant. Another group of CPI solutions is obtained for
sing=0, which is an easily satisfied condition for T.
Then cosy=+1 in Eq. (50a) and the solutions are deter-
mined by solving this equation with respect to A. These
additional solutions exist under some restrictions on B
similar to Eq. (48).
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Even number of pulses, N =2n . Now cos[(2k—l)m. /2N]%0 for any k and the RHS of (50a) is always
%0. Equation (50b) requires sing&=0; then cosy'=kl in
Eq. (50a) and the solutions, if any, are easily determined
by solving this equation for A. Since the LHS of Eq.
(50a) is always 1, it is straightforward to show that this
equation imposes an upper limit on cosh( ,B—),i.e., on B,
for existence of CPI solutions. The weakest restriction is
when ~cos[(2k —1)~/2N]

~
is smallest, i.e., when k =n or

k =n + 1. Thus, we obtain that CPI is possible if

~B~ ~ —ln cot2 'jj
(51)

Moreover, whenever CPI is possible it occurs for an
infinite number of values of the pulse area determined
from Eq. (50a).

I 1 I
I

I I 1 I I I I
I

I I I
I

I I I

10

D. Dependence on the pulse area

In Fig. 10, the transition probability Pz ' is plotted as a
function of the pulse area A for one to ten pulses with
B =4. The field is assumed to be given by Eq. (4b) with a
phase shift pe=0. It is seen that whenever an odd pulse
transfers the population to the excited state in the high-
intensity region (on the right from the vertical dotted
line) the next even pulse returns it to the ground state and
vice versa. CPR is not possible for one, three, and five
pulses in the hig¹intensity region while CPI is not possi-
ble for two and four pulses there. For a su%ciently large
odd number of pulses CPR becomes possible as does CPI
for an even number of pulses. Note that conditions (48)
and (51) require N ) 5 for B =4. This is explained by the

fact that besides adiabatic contributions, the transition
probability always contains some nonadiabatic contribu-
tions that give rise to oscillations in the populations.
Adiabaticity increases when increasing the detuning slope
B and consequently, the nonadiabatic contributions and
the oscillation amplitude decrease. That is why CPR for
a given odd number of pulses as well as CPI for a given
even number of pulses are not possible above a certain de-
tuning determined from Eqs. (48) or (51). Increasing the
number of pulses for a Axed detuning enhances the effect
of nonadiabatic contributions and in fact leads to the
same result as decreasing the detuning for a fixed number
of pulses: a growing amplitude of oscillations.

We have to note that, as discussed in Sec. IIE, the
train fields (4a) and (4b) do not lead to qualitatively
different results when considering the dependence of P2 '

on A because the free-evolution phase y does not depend
on A. The same values of cosy, and thus, the same tran-
sition probabilities, can be obtained for both Eqs. (4a) and
(4b) with appropriately chosen (generally diiferent) train
periods T. The dependence of P2 ' on y, however, is very
substantial. In Fig. 11, the transition probability is plot-
ted against the pulse area for a train of seven pulses with
field (4b) for various phase shifts y. Values of p from 0 to
m/2 are only shown because Pz' ' is a periodic function of
y with a period of ~ and because a phase shift of m. =y
gives the same results as a phase shift of y. An important
value is qr=m. /2 because then a& =0 [see Eq. (44)] and
8=ir/2 [see Eq. (22)]. As a result, according to Eq.
(23b), for N odd, P2 ' is equal to the single-pulse proba-
bility P2" while for N even, P2 ' is equal to zero irrespec-
tive to the detuning slope B, which resembles the case of
resonance (Sec. III, Figs. 1 and 2). Another interesting
feature seen in Fig. 11 is that in the high-intensity region
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FIG. 10. The transition probability against the pulse area A

for a train of one to ten Allen-Eberly pulses (43) (the numbers
on the right of the figure) for a detuning slope of 8 =4. The
electric field is given by Eq. (4b) and the phase shift is y=O.
For each curve, the adjacent horizontal dotted lines indicate the
values of zero and unity probability. The vertical dotted line
separates the low-intensity region (on the left) from the high-
intensity region (on the right).

Pulse Area

FIG. 11. The transition probability against the pulse area A

for a train of seven Allen-Eberly pulses (43) with a detuning
slope of 8 =4 for several different values (the numbers on the
right of the figure) of the free-evolution phase shift y between 0
and m. /2. The electric field is given by Eq. (4b). The dotted
lines have the same meaning as in Fig. 10.
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(A ~ ~B~) CPI occurs at the same values of the pulse
area, A =[B +(21+1) tr j' (l =0, 1,2, . . . ), regard-
less of y, in agreement with the results in Sec. VI C.

E. Dependence on the detuning

In contrast to the rectangular and the Rosen-Zener
pulses, the transition probability Pi2 ' is an even function
of the detuning slope B, both for train (4a) when
p= —Pin[cosh( T/~)] and for train (4b) when y= —,'co, T,
because, as mentioned above, the dependence of P2 ' on

p [through at (44)) is factorized in cosy and Pp' does
not depend on the phase tl (45). In Figs. 12(a) and 12(b),
the transition probabilities for trains (4a) and (4b)
(T=10~ is assumed for the former and y=O for the

I I I I I I I I I I I I I I I I I I i I I I I i l I I I
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I I 1 l I 1 I I I I

I I I I
I

I I I I I
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I
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I
I I I I I I I I I

10

latter), respectively, are plotted against the detuning
slope B for a pulse area of 3m. We have only shown the
high-intensity region (~B~ ~ A) because it is physically
the more interesting one. Outside it, in the low-intensity
region, P'2 ' oscillates mainly between zero and one, the
number of oscillations being proportional to the number
of pulses. The structures in Fig. 12(b) that originate from
the sin (N8)/sin 8 factor in PP' (23b) modulate the os-
cillations in Fig. 12(a). The latter are generated by the
factor cosy in a t (44) since in Fig. 12(a),

(B/—2m ) 1n(coshT/v) changes with B in contrast to
p=O in Fig. 12(b). The amplitude of the oscillations in-
creases with the number of pulses both in Fig. 12(a) and
Fig. 12(b) due to the enhanceme'nt of the nonadiabatic
e8'ects as discussed in Sec. VI D. This means that any de-
viation from zero and unity in P2" is greatly enhanced in

P2 '. It is clearly seen that at large detuning the oscilla-
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FIG. 12. The transition probability against the detuning
slope B for a train of one to ten Allen-Eberly pulses (43) for a
pulse area of A =3m. The dotted lines have the same meaning
as in Fig. 10. (a) Field (4a), repetition time T=10~; (b) Geld
(4b), phase shift y=0.
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FIG. 13. The same as in Fig. 12 but for a pulse area of
A =4m.. (a) Field (4a), repetition time T=10v.,' (b) field (4b),
phase shift y=0.
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tions are suppressed because the adiabaticity improves.
Furthermore, this suppression gets less effective as the
number of pulses increases. At resonance (B =0), P2'

equals unity for odd N and zero for even N because any
consecutive 3m pulse swaps the atomic populations. It
should be noted that the absence of oscillations near
B =0 is not because the excitation is adiabatic but be-
cause the single-pulse probability is equal to unity at
B =0 and to almost unity in some vicinity of this value.
Multiple-pulse excitation enhances the nonadiabatic
effects only provided the excited-state population is not
too close to one or zero.

The situation is markedly different in Figs. 13(a) and
13(b) where the transition probabilities for trains (4a) and
(4b), respectively, are plotted against B for a pulse area of
4m. at which the transition probability equals zero at reso-
nance (B =0) for a single pulse as well as for N pulses.
Off resonance, however, the single-pulse probability rises
from zero to one as the detuning slope increases and this
large change generates oscillations for two and more
pulses. The oscillations are more complicated for train
(4a) than for train (4b) for the same reasons discussed in
connection with Figs. 12(a) and 12(b). The oscillations
are damped as the detuning slope B increases, the transi-
tions becoming increasingly adiabatic. Again, this damp-
ing gets less efFective as the number of pulses increases.

VII. CONCLUSIONS

We have presented a nonperturbative analytical study
of coherent excitation of a two-state system by a train of
X consecutive equally spaced identical pulses. We have
found in a closed form the general relations (21) between
the evolution matrix elements in the cases of one and N
pulses. Equations (23), which provide the state popula-
tions, represent one of the basic results in the paper.
They allow us to utilize the available single-pulse analyti-
cal solutions in describing pulse-train —induced transi-
tions; for pulses that can only be treated numerically,
they shorten the computations by a factor of X. The pop-
ulations depend on the individual pulse parameters as
well as on the repetition time of the train through a phase
shift y accumulated in the course of the free evolution of
the system during and between the pulses. The relations
show that the multiple-pulse excitation of a two-state sys-
tem can be considered as a quantum analog of the
diffraction grating through the analogy is not absolute.
The transition probability reduces to the correct limits in
several particular cases studied perturbatively earlier.
Simple formulas (25)—(27) are derived for the conditions
for complete population inversion and complete popula-
tion return.

The general results have been applied to four impor-
tant particular cases: resonant, rectangular, Rosen-
Zener, and Allen-Eberly pulses. A general feature in all
these cases is that the number and the amplitude of the
oscillations in the state populations increase with the
number of pulses as a result of quantum interference.
The train-induced probability strongly depends on the
way the train is produced as the phase shift y is different.
The populations regarded as functions of the detuning 6

show much more complicated features for field (4a), when

y depends on 6, than for field (4b), when y does not de-
pend on A. On the other hand, regarded as functions of
the pulse area A, the populations induced by trains (4a)
and (4b) do not difFer in principle because y does not de-
pend on 3; the same phase shift can be obtained by ap-
propriate choice of the repetition time T. Because of the
phase shift y, the transition probability in the case of ex-
act resonance is not simply given by the single-pulse prob-
ability with the single-pulse area A replaced by the total
area NA. For rectangular pulses, the excitation spectrum
has long wings because the single-pulse transition proba-
bility, which modulates the pulse-train probability via Eq.
(23b), decreases slowly (I.orentzially) versus the detuning.
CPI is possible below a given value (36) of the ratio be-
tween the detuning and the pulse area. This value in-
creases nearly linearly with the number of pulses. For
the Rosen Zener p-ulses (37), which represent a typical
case of excitation by a smooth symmetric pulse with a
constant nonzero detuning, CPI becomes possible for a
pulse train while it is impossible for a single pulse. Fur-
thermore, there is an upper limit (42) on the detuning for
which CPI can be observed. This limit increases logarith-
mically with the number of pulses. The excitation spec-
tra are much simpler than for the rectangular pulses since
the Rosen-Zener pulses are much more adiabatic and the
single-pulse transition probability decreases much faster
(exponentially) against the detuning. For the A/len
Eberly pulses (43) which are chirped, CPR becomes possi-
ble for more than one pulses while it is impossible for a
single pulse. There are two distinct cases of even and odd
number of pulses and two distinct regions of values of the
pulse area compared to the detuning slope: the low-
intensity (small area) and the high-intensity region (large
area). In the low-intensity region, the difference between
the odd and. the even number of pulses is not very large
while in the high-intensity region it is quite pronounced.
This is a region where the transitions are mainly adiabat-
ic for large detuning. Any odd pulse transfers the popu-
lation from the ground state to the excited one while any
even pulse returns it to the ground state. As a function of
the pulse area, for an odd number of pulses the excited-
state population oscillates between one and a nonzero
value (for a sufficiently large detuning), the CPI being a
typical property. For even number of pulses, the
excited-state population oscillates between zero and a
value less than one, the typical property being CPR. The
amplitude of the oscillations in both cases increases with
the number of pulses, which can be explained as due to
constructive interference of the nonadiabatic contribu-
tions to the populations from the consecutive pulses. In
fact, this increase makes CPR possible for large enough
odd number of pulses (48) and CPI for large enough even
number of pulses (51).

To conclude, we should point out that most of the re-
sults obtained in the present paper can be observed exper-
imentally, particularly in view of the recent advances in
laser technology, including efFective pulse shaping [28]
and producing trains of equally spaced identical pulses
with repetition tiines of the order of 10—100 ps [25].

Finally, interesting further generalizations of the re-
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suits presented in this work could include nonidentical
pulses, relaxation e8ects, and three-level systems. It is
also worth considering trains of asymmetric pulses that
show some peculiarities [35] as compared to the sym-
metric ones.
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The eigenvalues A,
&

and X2 are given by

A, =e' A, =e
1 ~ 2

where

cosB=a&, sin@="y 1 —a
&

2

The matrix U, which can be chosen to be a unitary ma-
trix, i.e., U '=U, is easily constructed from the normal-
ized eigenvectors and is

b, —++1—af
C) ld)

APPENDIX

We will derive the relations between the elements of
the S& matrix and the S& matrix, which are connected via
Eq. (13), where

b, +—+1—a]
g

C) +ld1

U 'S)U=
0 A, ) 0

=U

—(S )N

by using some basic methods of matrix algebra [36]. Let
A,

&
and A,z be the eigenvalues of S& (11) and U be the ma-

trix that diagonalizes S„i.e.,

b)+Ql —a (

2+1—a',

and the argument of q is of no importance. Then after
simple algebra one obtains

Then
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+ .
b

sinNB
snab

+.d )
sin%8

1 1

.d )
stnNB

Ci E

s1ILV8'
l

(Al)

[1]L. Allen and J. H. Eberly, Optical Resonance and Two
Level Atoms (Wiley, New York, 1975).

[2] B. W. Shore, The Theory of Coherent Atomic Excitation,
Vol. I (Wiley, New York, 1990).

[3]E. E. Nikitin and S. Ya. Umanskii, Theory of Slow Atomic
Collisions (Springer, Berlin, 1984).

[4] A. E. Kaplan, Zh. Eksp. Teor. Fiz. 65, 1416 (1973) [Sov.
Phys. JETP 38, 705 (1974)]; ibid 68, 823 .(1975) [41, 409
(1975)]; see also V. S. Butylkin, A. E. Kaplan, Yu. G.
Khronopulo, and E. I. Yakubovich, Resonant Nonlinear
Interactions of Light with Matter (Springer, Berlin, 1989),
Chap. 3.

[5] N. F. Ramsey, Phys. Rev. 76, 996 (1949); 78, 695 (1950);
Rev. Mod. Phys. 62, 541 (1990);Molecular Beams (Oxford
University Press, New York, 1956).

[6] J. C. Bergquist, S. A. Lee, and J. L. Hall, Phys. Rev. Lett.
38, 159 (1977)~

[7] Ye. V. Baklanov, B. T. Dubetsky, and V. P. Chebotayev,
Appl. Phys. 9, 171 (1976); V. P. Chebotayev, ibid. 15, 219
(1978).

[8] Ye. V. Baklanov, V. P. Chebotayev, and B. Ta. Dubetsky,
Appl. Phys. 11,201 (1976).

[9] M. M. Salour, Appl. Phys. 15, 119 (1978); M. M. Salour
and C. Cohen-Tannoudji, Phys. Rev. Lett. 38, 757 (1977).

[10]M. M. Salour, Rev. Mod. Phys. 50, 667 (1978).
[11]T. W. Hansch, in Tunable Lasers and Applications, edited

by A. Mooradian, T. Jaeger, and P. Sto&s~;h (Springer,
Berlin, 1976), Vol. III, p. 326; R. Teets, J. Eckstein, and T.
W. Hansch, Phys. Rev. Lett. 38, 760 (1977); J. N. Eck-
stein, A. I. Ferguson, and T. W. Hansch, ibid. 40, 847

(1978).
[12]J. Mlynek, W. Lange, H. Harde, and H. Burggraf, Phys.

Rev. A 24, 1099 (1981);B. Cagnac, Philos. Trans. R. Soc.
London A 307, 633 (1982); N. F. Scherer et al. , ibid. 93,
856 (1990); N. F. Scherer et al. , J. Chem. Phys. 95, 1487
(1991); E. Marega, V. S. Bagnato, and S. C. Zilio, Opt.
Lett. 18, 1751 (1993).

[13]G. F. Thomas, Phys. Rev. A 35, 5060 (1987).
[14] R. J. Temkin, J. Opt. Soc. Am. B 10, 830 (1993).
[15]E. Kriiger, Z. Phys. D 31, 13 (1994); J. Opt. Soc. Am. B

12, 15 (1995).
[16]P. W. Milonni and L. E. Thode, Appl. Opt. 31, 785 (1992).
[17]L. C. Bradley, J. Opt. Soc. Am. B 9, 1931 (1992).
[18]A. Gavrielides and P. Peterson, Opt. Commun. 104, 46

(1994).
[19]P. Peterson and A. Gavrielides, Opt. Commun. 104, 53

(1994).
[20] M. A. Newbold and G. J. Salamo, Phys. Rev. A 22, 2098

(1980).
[21] P. L. Knight and P. E. Coleman, J. Phys. B 13, 4345

(1980); P. E. Coleman, D. Kagan, and P. L. Knight, Opt.
Commun. 36, 127 (1981);B.J. Dalton, T. D. Kieu, and P.
L. Knight, Opt. Acta 33, 459 (1986).

[22] J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr. ,
R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867
(1982).

[23] P. T. Greenland, J. Phys. B 16, 2515 (1983).
[24] G. F. Thomas, Phys. Rev. A 41, 1645 (1990).
[25] O. Saether, B. E. Flaten, and O. Aaserud, Electron. Lett.

27, 1227 (1991);E. J. Beiting, Appl. Opt. 31, 2642 (1992);



52 COHERENT EXCITATION OF A TWO-STATE SYSTEM BY A. . . 2261

E. Yamada, K. Wakita, and M. Nakazawa, Electron. Lett.
29, 845 (1993); S. V. Chernikov, J. R. Taylor, and R.
Kashyap, ibid. 29, 1788 (1993);Opt. Lett. 19, 539 (1994).

[26] Y. S. Bai, A. G. Yodh, and T. W. Mossberg, Phys. Rev.
Lett. 55, 1277 (1985).

[27] B. Broers, H. B. van Linden van den Heuvell, and L. D.
Noordam, Phys. Rev. Lett. 69, 2062 (1992); D. Goswami
and W. S. Warren, J. Chem. Phys. 101,6439 (1994).

[28] C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland,
and W. S. Warren, Opt. Lett. 19, 737 (1994); W. S. War-
ren, in Atomic and Molecular Processes with Short Intense
Laser Pulses, edited by A.D. Bandrauk, NATO ASI Ser.
B, Vol. 171 (Plenum, New York, 1988), p. 1.

[29] N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).
[30] Yu. N. Demkov and M. Kunike, Vestn. Leningr. Univ.

Fis. Khim. 16, 39 (1969) (in Russian); see also K.-A. Suom-
inen and B.M. Garraway, Phys. Rev. A 45, 374 (1992).

[31]F. T. Hioe, Phys. Rev. A 30, 2100 (1984); F. T. Hioe and

C. E. Carroll, ibid. 32, 1541 (1985).
[32] Yu. A. Brychkov, O. I. Marichev, and A. P. Prudnikov,

Tables of Indefinite Integrals (Nauka, Moscow, 1986) (in
Russian); The formulas can also be obtained by transfor-
mation of relations 1.331 and1. 332 of I. S. Gradshteyn and
I. M. Rizhik, Table of Integrals, Series and Products
(Academic, New York, 1980).

[33] I. I. Rabi, Phys. Rev. 51, 652 (1937).
[34] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932);C. Zener,

Proc. R. Soc. London A 137, 696 (1932); E. C. G. Stueck-
elberg, Helv. Phys. Acta 5, 369 (1932).

[35] A. Bambini and P. R. Herman, Phys. Rev. A 23, 2496
(1981);C. E. Carroll and F. T. Hioe, ibid. 41, 2835 (1990);
N. V. Vitanov, J. Phys. B 27, 1351 (1994); ibid. 28, L19
(1995); N. V. Vitanov and P. L. Knight, ibid. 28, 1905
(1995).

[36] M. C. Pease III, Methods of Matrix Algebra (Academic,
New York, 1965).


