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Unitary transformation and the dynamics of a three-level atom
interacting with two quantized field modes
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Starting from a three-level atom coupled to two modes of radiation field, we derive a Raman-coupled
Hamiltonian by a unitary transformation, evaluated perturbatively in coupling constants. The Rabi os-
cillation frequency and the collapse and revival times of the atomic coherence are found to have striking-

ly different photon-intensity dependence than those found previously.

PACS number(s): 42.50.Hz, 42.50.Ar

I. INTRODUCTION

The Jaynes-Cummings model [1] of a two-level atomic
system coupled to a single-mode radiation field is known
to exhibit interesting optical phenomena, such as the col-
lapse and revival of Rabi oscillations of the atomic coher-
ence. Experiments with Rydberg atoms in microwave
cavities [2] and optical systems [3] have confirmed the
basic ideas of the Jaynes-Cumming model. The model
continues to be extensively studied, and various exten-
sions have been proposed [4].

In the presence of intense near-resonant single or mul-
timode fields, nonlinear photon interactions become im-
portant. Phenomenological Hamiltonians which include
two-photon couplings have been introduced by a number
of authors [5]. The description of two-photon transitions
in Rarnan-type scattering requires the introduction of an
intermediate level, i.e., one considers a three-level system
interacting with two modes, a pump, and a Stokes mode.
Models describing Raman processes have been proposed
by Gerry and Eberly [6] and Cardimona et al [7]. The
Raman interaction Hamiltonian is obtained by using
"adiabatic elimination" of the intermediate level, which
produces an effective two-level system having two-photon
coupling s.

In this paper we show that an effective two-level Ra-
man coupled model of the kind obtained by Gerry and
Eberly and Cardimona et al. by adiabatic elimination
can instead be obtained by a suitable unitary transforma-
tion, evaluated perturbatively in the coupling constants.
This procedure also yields intensity-dependent Stark shift
terms in the Hamiltonian, which are included in the cal-
culation of the atomic population dynamics. The in-
clusion of the Stark effects produces a strikingly different
Rabi oscillation frequency than the usual In, (n2+1)] '

behavior for the two-mode case. The collapse and revival
times when the Stark effects are taken into consideration
exhibit different intensity dependences than those found
by Gerry and Eberly.

The paper is organized as follows. In Sec. II, we derive
the two-level Raman-coupled model by unitary transfor-

mation. In Sec. III, we find the "dressed-state" eigen-
functions and eigenvalues of the full Hamiltonian. In
Sec. IV, we present calculations of the population inver-
sion and the transition probability of the atom from the
ground to the excited state. The details of these calcula-
tions are given in the Appendix. In Sec. V, we discuss the
effects of higher-order coupling terms in the Hamiltoni-
an. Finally, we summarize our results and make conclud-
ing remarks in Sec. V.

II. HAMILTONIAN
AND THE UNITARY TRANSFORMATION

We consider a three-level system of energies E&, Ez,
and E3 in the so-called A configuration as shown in Fig.
1. The system interacts with two modes of the radiation
field —a pump mode of frequency co& and a Stokes mode
of frequency cu2. The Harniltonian of the system can be
written as

H = y E;cr;; +Aco/a ]a]+fico2a pa2+Ag]2(a, cr~]+a ]0 ]2)

+~g23( 2~32+ 2~23)

where cr,tare a.tomic operators given by cr;1=i)(j~,
i,j=1,2, 3. The creation and annihilation operators of
mode 1 are denoted, respectively, by a ~& and a

&

—the cor-
responding operators for mode 2 are denoted by a 2 and

FICx. 1. Three-level atom in the A configuration.
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—
—,'«3+E] 2Ez)(ozz

We now introduce a unitary transformation

U= exp(S),

where

S=a(a]crz] —a lo ]2)+p(azcr23 Qzcr32) (4)

and a,p are constants which will be specified later.
The unitary transformation acting on the atomic and

photon variables will lead to a picture of "dressed"
operators, which is appropriate for the description of an
atom in intense fields. The transformations cannot be
found exactly; instead, we will evaluate these perturba-
tively and keep contributions to second order in coupling
constants in the transformed Hamiltonian. Denoting the
transformed operator of Xby X', we have

X'=e'Xe s=X+[S,X]+(1/2!)[S,[S,X]]+ (5)

Following this procedure we obtain the following expres-
sions for the transformed operators:

a ap
1 1+ O]2+ l(O22 O]]) 2O]32 2

p' ap
2 2+PO32 2(O33 Ozz) ] O3]2 2

(6)

az. Levels 1 and 2 are coupled by a dipole-coupling con-
stant g,2, similarly g23 is the coupling constant for the
2—+3 transition. There is no direct coupling between lev-
els 1 and 3. It is convenient to write the first term of Eq.
(1) as

3

Q E;cr;; =—,'(El+Ez+E3)+ —,'(2E3 El —Ez)(—o 33
—o 11)

g]2/~] P g23/~3 (12)

where 61 and h3 are the two detuning parameters defined
by

AA 1 E2 E1 Ac01 fiLaL3 E2 E3 Ac02 (13)

we find that the terms which are linear in the field opera-
tors vanish. It is interesting that a similar result, albeit
for a single-mode field, was obtained by Puri and Bullu-
ough [5] by adiabatic elimination of bilinear products of
field and atom operators. With the above choice of a and
p, the Hamiltonian becomes

Olz O]2+ ](Ozz O]]) PQ2O]3

O23 O23 ] O]3 P 2( 33 Ozz)

o zz
—o 11 =(o zz

—o») —2c].a]o zl
—2aa 1

o. lz
—Pazcrz3

—Pazcr3z —(2a +P )cr

2~ a ]Q](ozz

oil�)+p

zaz(o33 ozz)
2 2

+ ap(aza]cr3]+a ]azo ]3)3 (10)
I I

O33 Oll (O33 O]]) ]Oz] O ]O]2+P 2O23

+pazo32+(p —a )ozz —a a]a](azz —o „)2

2
2Q2(o33 ozz)

The remaining iransformations a1 a2 o.
21 and 032 can

be obtained from the above by Hermitian conjugation.
Note that o.

,'2 and o.
23 need to be evaluated only to first

order in coupling constants. Using Eqs. (6)—(11) in Eqs.
(1) and (2), we obtain the transformed Hamiltonian in the
"dressed" form.

We now choose the constants a and p appropriately.
If these are chosen as

2 2
'

2 2
g12 g23 g12 g'23

o]]E]+o33E3+ozz Ez+~ g +~ g +~
g

a ]a 1 ~22 o ll )+~ g zaz(ozz o33)
1 3 I 1 3

~g 12g 23
+AQ), a 1a, +AQ)2a2a2—

2
1 1+

g (a]azo]3+aza]o3]) .
1 3

(14)

2 2
023H =O11 E1 f2 Q1 1 +O33 E3 ~ 2~2

+AC01a 1a1+fiC02a 2a2

&g12g23
(a lazcr]3+Qza]cr3]) (15)

If we assume that level 2 is very far off resonance and set
the occupation number operator equal to zero, i.e.,
cr22=0, and consider only one detuning parameter, i.e.,
61=63=h, we obtain

In our calculations, we need not make the assumption
that cr22=0, since these terms do not contribute when
acting on atomic states ~1) and ~3). We note that the
intensity-dependent Stark efFect terms o»(]r]g]2/6)a, a]
and cr33(]]!g23/4)a zaz have emerged from our procedure.2

Except for a factor of 2 in the last term and the Stark
effect terms, the above Hamiltonian is the same as that
obtained by Gerry and Eberly with their adiabatic elim-
ination procedure. The discrepancy of the factor of 2 will
be resolved later in the text. In the subsequent discus-
sion, the effective two-level Hamiltonian, representing a
Raman-coupled model, is treated as an exact Hamiltoni-
an.
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III. DIAGONALIZATION
OF THE EFFECTIVE HAMILTONIAN

The efFective two-level Hamiltonian obtained in Eq.
(14) is now written as

H,~=Kq+HF+HqF ~ (16)

where Hz, HF, and HzF are, respectively, the Hamiltoni-
ans of the atom, the field, and the interaction. We write

where

0 =—(b, —b, )
2 1 3

2 2

+2(b, , —63) —(n~+ 1)
1 3.

+ tn, g,z+(nz+1)gz
2 1/2

X n, +(nz+ 1)
g12 g23
Q2 Q2

(23)

HA ~11E1+~33E3 ~

HF =Ac01a,a1+fic02a 2a2,

(17)

(18)

We also have

tanO„ li 2

2 2
12 t g23

HgF = f1 a 1a10 11 A a 2a20 33
1 3

g23 1 1
~g12 g + g ( 1 2~13+ 2 1~31)

1 3

(19)

We denote the initial and final states of the uncoupled
system by i 1;ni, nz & and i3;n, —l, nz+1 &, respectively.
Here i 1;n, , n z & represents a state in which the atom is in
the state il&, while the photonic state is represented by
in i, nz &, n 1 and nz being the photon numbers in the two
modes. Similarly, i 3;n 1

—1,n 3+ 1 & represents the state
in which the atom is in the state i3 &, while there is one
less photon in the pump mode and one more photon in
the Stokes mode. The eigenstates of the efFective Hamil-
tonian are represented by the linear combinations

~1t+ „&= —sin8„„ i 1;n „n, &

2 2
—A'(4, —b3) —iri n, +Pi (n~+1)+20„

1 3
1' 2

1 1
~glpg23 + V n1(n2+ 1)

1 3

(24)

E„+„=E1+'Rc01n1+Ac02n 2 (25)

2 2
g12 g 23E„„=E1+A'co,ni+ficoznz —iri n, —

111 (nz+1),

and

(26)

Q„„= [n,giz+(nz+1)gz3] . (27)

Furthermore, we have

Let us look at the results if we set A, =63=6. In this
case we obtain

+cos8„„~3;n,—i, nz+1 &,

„&=c so„8„~1;n n1z&

(20)

r n2+1
sinO„

[n, +r (n +1)]'i

Qn1
cosO„

[n +r (n +1)]'

(28)

(29)

+sin8„„ i3;ni —l, ni+1& .

These can be easily inverted to give

i 1;n, n, &
= —sin8„„~&„„&+cos8„„~&„„&,

i3;n, —i, nz+1&=cos8„
(21)

where r =gz3/g, z. 0„„ is identified as the Rabi oscilla-
1 2

tion frequency which has an altogether difFerent intensity
dependence than the [n ( 1zn+1)]'i dependence in the
two-mode case. We may note, however, that Knight [5],
as well as Puri and Bullough [5] have also found devia-
tions from the n ' dependence of Q in single-mode two-
photon processes.

+sin8„ IV. DYNAMICS OF POPULATION INVERSION

The eigenvalues of K,&. are given by

iri(b, , —b.3) gq3 g12E„*„=E1+ —A +An1 cu1—
2 263 1

We use the density matrix to investigate the dynamics
of our system. Since at t =0 the states are "bare, " we
write for the density operator

p(0)= g C „„i 1;m1, mz &(1;ni,nzi . (30)
1 m2+1n2

2
g23+Rn 2 A@2

— +0„ (22) The time-dependent density operator of the system is cal-
culated in a straightforward manner. The result is
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p(t) =
P

2 2
g12 g23C „„exp it (ni —mi ) toi — +(nz —mz) coz-

2h3

where

X[B (t)~1;mi, mz)+A (t)~3;mi —l, mz+1) j

X [(1;n„nz(B„„(t)+(3;n, —1,nz+1( A„' „(t)j, (31)

A~ (t)=i sin
1 2

B (t) =cos
I 2

sin(28 ),
1 2

Qm t
1 2 +l Sln cos(28 ) .

1 2

(32)

We now calculate a general expression for W(t), the population inversion, for b, 1&6,3. W(t) is given by

W(t) =p33(t) —pii(t),
where p33 and p, 1 are reduced density operators of the atom, i.e.,

(33)

W(t)= g (3;l„lz~p(t)~3;l„lz) — g (1;l,, lz~p(t)~1;l„lz) .
1),12 =0 I ),12 =0

(34)

The evaluation of Eq. (34) is rather involved. We quote the result here and the details are provided in the Appendix.
W(t) is given by

W(t) = —1+ g C„„„„
n&, n2=0

1 1
~glzg23 g

+
g +n 1 2+

1 3

2Q„„
scn

Q„„t
1 2

(35)

Let us look at the result for 61=53=6. In this case 0„„ is given by Eq. (27). We obtain
1 2

8g izgz3ni(nz+1) z
n ig 12+(nz+1)g23

W(t) = —1+ g C„„„„
=0 [ lg12+( 2+ )g23 )

(36)

The Polynomial factor in Eq. (36) assumes its maximum value of 2 for n, g, z =(nz+1)gz3. For field modes in coherent
states, C„„„„is given by the product of Poissonian distributions with a maximum at n, =n„n2=n2. Therefore,

1 2 1 2

these maxima coincide if nig, z =(nz+1)g23.
Finally, the probability of finding the atom in the state

~
3 ) given that at t =0 it was in the state

~
1 ) is found to be

1 1
P3 ( t) = g C„„„„112g,zg23 +

ll ) Pl 2
=0 1 3

Qn, (n +21)

2Q„„
scn

Q„„ t
1 2

fi
(37)

V. HIGHER-ORDER EFFECTS

H'=—
3

g12 l g12 t g23
a 1a1+

g23 g23 y g 12

3 2 2 2

3 1

3 1

a 2a 2 a 1 CT 21

a1a1 a2CT23

+H.c. (38)

We have carried out the evaluation of H' to third order
in the coupling constants with the aid of Eq. (5). The
second-order expression for H' is given by Eq. (14), and
the third-order term is

The constants a and P, chosen to eliminate linear field
operator terms in the transformed Hamiltonian, are given
by

2 3 2
g12 g12g23 4 g12 1 g12 g23

1Q1Q33g1351Q3

b,3

2 3 2
g23 g 12 4 g 23 1 g 12 g23
g2 Q 3 g3 3 g2

(39)

The higher-order terms in the transformed Hamiltonian
give intensity-dependent coupling constants in the 1~2
and 2~3 transitions. The intensity-dependent coupling
constants have been phenomenologically introduced ear-
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lier by Buck and Sukamar [5]. To fourth order in the
coupling constants, 0' contains an intensity-dependent
transition between levels 1 and 3 brought about by four-
photon processes.

VI. CONCI. UDING REMARKS

In this paper, we have derived an effective two-level
Hamiltonian having two-photon interactions, starting
from a three-level system interacting with two modes of
the radiation field and having one-photon interactions,
using a perturbative unitary transformation. Our model
describes a very general situation in which the system ad-
mits two detuning parameters 51 and A3. The unitary
transformation also generates intensity-dependent Stark
shifts. Our method of obtaining an effective two-level
system is different from the adiabatic elimination pro-
cedure usually resorted to and used by Gerry and Eberly.
In further contrast, we retain the dynamic Stark-shift
terms in deriving the population dynamics of the atom.
The Rabi oscillation frequency in our work given by Eq.
(23) has a significantly diFerent structure than that ob-
tained previously. In the limit of A, =63 5 0„„
given by Eq. (27) shows a remarkably different depen-
dence on field intensity than [ni(n2+1)]' . This
difference is entirely due to the Stark-shift terms. In the
limit of 61=53=A and the neglect of the Stark-shift
terms, Q„„ is found to be similar to that obtained by

1 2

Gerry and Eberly, i.e.,

0„„= Qn, (nz+1),

where A, =2g, 2gp3/A.
Let us comment on the "collapse" and "revival" times

that arise from our calculations. Equation (36) shows
collapse and revival as expected; however, tz, the interva1
between revivals, and t„ the collapse time, behave quite
differently from those found in Ref. [6]. An analysis of
collapse and revival, following the arguments of Ref. [6],
gives for 5,=h3 =5 and for the one-mode case
(n2=0)t, '=I, 'n i~ and ttt =2'/A', where 1,'=, gi2/h.
The above behavior of t, and t~ is just the opposite of
what was found by Gerry and Eberly, whose results are
t, '=A, and t~ =(2n/A)n i .. O,nce again, the contrast-
ing behavior has its origin in that we take the Stark shifts
into account while Gerry and Eberly drop such terms.
We also note that if g, 2 and g 23 are commensurate, then
Eq. (36) implies that W(t) is a periodic function of t.
There is total revival, viz. , W(t)= —1, with a revival
time tR =2n.d/a independent of n1 and n 2, with
g12=aI1 and gz3 =aI2, where I1 and Iz are positive in-2 2

tegers with no common factors.
Although obtained by two entirely different methods,

the effective interaction Hamiltonian of the Raman-
coupled model, arrived at using a unitary transformation
by us and by adiabatic elimination procedure by Gerry
and Eberly, has the same structure in the limit of 51=53,
except for a factor of 2. Under the unitary transforma-
tion, both the free and the interaction parts of the Hamil-

tonian make contributions to the "effective interaction. "
The contribution from the interaction part is twice, and
opposite in sign, to that coming from the free Hamiltoni-
an making the effective interaction coupling constant
g i2g23 /5. In Gerry and Eberly's work, the "effective in-
teraction" was obtained by adiabatic elimination using
the interaction Hamiltonian alone. We have redone the
calculation of Gerry and Eberly for the effective Hamil-
tonian by obtaining the equations of motion for the
operators a „a2,o.», o ii, cr 33 with the aid of Eqs. (A9) and
(A10) of Ref. [6]. We deduce the eFective Hamiltonian
which gives rise to those equations. The resulting
effective Hamiltonian is in complete agreement with that
obtained by us and given by Eq. (15). In fact, this is the
procedure followed by Puri and Bullough in Ref. [5] for
the treatment of the one-mode case where the effective
coupling constant comes out to be the same as ours. Ger-
ry and Eberly obtained their effective interaction Hamil-
tonian [Eq. (2.4) of Ref. [6]] by simply substituting (A9)
and (A10) into their interaction Hamiltonian [Eq. (2.2b)
of Ref. [6]] without regard to the equations of motion of
the system. Herein lies the reason for the appearance of
the extra factor of 2 in the work of Gerry and Eberly.

Gerry and Eberly assumed that the Stark-shift terms
are small and hence can be neglected. Puri and Bullough
[5] pointed out that these cannot be neglected if g, z and

g23 are comparable since g, 2 /5, g 23 /5, and g, zg 23 /b
then become of comparable magnitudes. Indeed in the
case of Rb Rydberg atom the 405, /2~39P3/2 and
39P3/2 —+39S1/2 dipole matrix elements are very nearly
equal and very large [8] (1500 a.u. ); the value of b, is also
small, -39 MHz. Further, the Stark shifts also depend
upon the photon intensities n1 and n2. In the experiment
of Kaluzny et al. [2], as well as the recent experiment on
the microlaser [9], average photon numbers of 10 or more
were achieved. Under these circumstances, the optical
Stark shifts would indeed become significant. We would
like to point out that optical Stark effects are well known
in the theory of effective Hamiltonians describing
coherent multiphoton processes for the case of semiclassi-
cal fields interacting with a three-level system [10].

It can be shown that Gerry and Eber1y's theory, upon
the inclusion of the Stark-shift terms in the effective
Hamiltonian, gives a Rabi frequency which is linear in
the field intensities if g,2=g23. To show this, let us
rewrite Eq. (15) as

H cT11E1+0 33E3 +Am1a 1a 1 +Aco2a 2az —B BI

where

(40)

1/2
&g 1Z

0 11Q1+

' 1/2
Ag 23

+13a2

These simplifications make the time-development opera-

The interaction term B B commutes with the sum of the
first four terms in Eq. (40). Also BB"is diagonal in field
and atomic variables,

2 2
&g 23BB = 0 11Q1Q 1 + 0 11Q2Q 2
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tor factorize, i.e., U(t)=UO(t)Ut(t), and a straightfor-
ward calculation of the atomic inversion operator can be
carried out from which the Rabi oscillation frequency
can be obtained. The resulting Rabi frequency has a
linear dependence on the field intensities and gives rise, in
general, to quasi-periodic time behavior of the dynamical
variables rather than the irregular time evolution which
occurs when b, ,&b.3 [see Eqs. (23), (3S), and (37)].

It is interesting that a similar simplification occurs in
the Gerry and Eberly Hamiltonian if the Stark-shift
terms are retained. Denoting the Gerry and Eberly
Hamiltonian by HGE, we have

This behavior of their Hamiltonian was not discussed by
Gerry and Eberly.
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APPENDIX

where

Ho=&ii Ei—&g i2
2

+~33 E3—

(43)

2

+%co,a ia i

We sketch here the derivation of Eq. (35) which gives
the population inversion as a function of time. The re-
duced density operator p33(t) is

p,",(t) = y (l, , l2;3~p(t) ~3;l„l2)
/1, 12 =0

+A~2a 2a2,

and B is given by Eq. (41). Now,

(44)

Similarly,

l2
11+1, /2

—/, /1+ l, l2 —i /1+/, 12—i
/1, /~

(A 1)

2
g i2g23 2 2[B B,HO]=

Q2 (g12 g23 )( 1 2~13 2 1~31)

(4S)

p,",(t) = g (l„l» 1 ~p(t) ~l, , l2;1)

Therefore, if g,2=g23, then [Bt,B,HO]=0. The result-
ing Rabi frequency will be linear in photon intensities. Using Eq. (32), we get

CI) +1,!2—1, l) +1,12
—1

&/, +i, l, —it
s1n (281 +l, 1)

g Cl l l l eos
1' 2

0/ lt1' 2 +sin 2
0/ lt

cos (28l, )
' . (A3)

We rewrite the first sum in Eq. (A3) by replacing l1+ 1 =n „12—1 =n 2 This ean .be east into

g C„„„„sin
=0 n2 =0

o „sin
n&=1

00„ t

n =0
1

sin (28o „).

0„ it
sin (28„1)

(A4)

The two last terms in Eq. (A4) vanish in view of sin28„, =0 and sin280 „=0as can be seen from Eq. (24). Hence,
W(t) is given by

~(t)= g C„„„„'sin sin (28„„)—cos2 —sin cos (28„„)' . (AS)

Equation (AS) can be written as
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W(t) = —1+2 g C„„„„sin28„
ni, Ply =0

X sin

From the identity

~ 2„sin 28=
(tan 6) —1) +4tan 8

(A6)
we obtain, using Eq. (A7),

From the eigenvalue equations satisfied by H,~, we can
derive the following result: 20n n

4
B +4 (A9)

tan On n 1+tanOn n B =0, (A7) Finally, we can write

where

2 2

(h3 —b, i)+ (n~+1)—
3 1

(AS)

sin 28„j' 2

4 gi~~3 + n, ( n~ +1)2 2 2

1 3

4Q„
(A 10)

1 1
g12g23 g

+ g +n 1(n2+ 1)
1 3

Substituting Eq. (A10) in Eq. (A6), we obtain Eq. (35) of
the text.
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