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Nonvariational calculation of the sticking probability and fusion rate for the pdt molecular ion
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The sticking probability for the ddt molecular ion is estimated with the help of directly calculated
nonvariational wave functions obtained by the correlation function hyperspherical harmonic method.
The method generates an accurate, locally correct pdt wave function which leads to precise estimates of
the partial-wave sticking coefficients and the fusion rate. Our calculations are compared with other pre-
cision computations.

PACS number(s): 36.10.Gv, 31.15.Ja

In the past few years the muon-catalyzed fusion reac-
tion

(o)
: (np+ n+ A)

: (a. + p+n+4)
where 6= 17.6 MeV is the energy release, has attracted
considerable attention. In (1) the sticking coefficient co,' '

is the probability of the first reaction, when the muon in
the final state is bound to the a particle. The value of
co,' ' plays an essential role in the number of fusion reac-
tions a muon can produce before it decays. This quantity
limits the number of synthesis reactions that a muon can
catalyze during its lifetime, and thus determines the pos-
sibility of using this reaction in energetics.

Calculation of the muon-a-particle sticking coefficient
is, therefore, of special importance in muon-catalysis
problems. Also, there is an uncertainty in the experimen-
tal estimation of this coefficient that makes an accurate
theoretical determination of this quantity to be of great
significance.

The measured quantity in experiments is not co,' ', but
the effective sticking coefficient co, =(1—R)coI ', where R
contains the effect of the stripping, i.e., the reactivation
of muons by collisions. Some experimental values [1—3]
of co, (in %) are 0.45+0.05, 0.35+0.07, and 0.59+0.07;
R =0.35+0.05 [1,2]. The corresponding estimates of
co,' ' (in %) are 0.7+0. 13, 0. 54+0. 15, and 0.91+0.18, re-
spectively. For recent results, see Ref. [4].

In recent years, many different calculations
[4—15, 17, 18,34] of co,' ' were performed that give appre-
ciably larger values of the sticking coefficient. Some
values from the literature [4—9] (in %) are 0.8824, 0.886,
0.897, 0.895, 0.845, and 0.858. These theoretical esti-
mates are based on taking into account the Coulomb in-

where y is the "correlation factor" and P is expanded in
the usual hyperspherical harmonic (HH) functions. If the
correlation factor y is chosen to describe the singular
features of 4 (like cusps) as well as its asymptotic
behavior, the function P will be compact, that is, little ex-
panded in space and the HH expansion for it should be
rapid. The solution for P proceeds as in the usual HH
method, except that the potential V is replaced by an
effective velocity-dependent potential V,

V'= V —— —(Vlny)V,
1 VX
2 x

(3)

where V' is the six-dimensional gradient operator and V is
the sum of the interparticle potentials.

In the first CFHH calculation of the lt, dt system [28],
the correlation factor y =exp( f) with a simple linear
correlation function

teraction between the constituents and do not account for
corrections due to nuclear interaction in the dt subsys-
tem. These corrections are of the same order of magni-
tude [4] as the discrepancies in the literature.

The sticking coefficient co,' ' was calculated by many
different methods such as adiabatic [17,18], variational
[4—6, 9—14], and statistical [7] (Green-function Monte
Carlo). However, a direct nonvariational approach to the
problem using three-body techniques was not yet em-
ployed. The purpose of this work is to apply the correla-
tion function hyperspherical harmonic (CFHH) method
[19—31] of solving the Schrodinger equation, which is
geared to provide not only precise estimates of energy but
also wave functions accurate in the whole range of inter-
particle distances. Use of these wave functions leads in
turn to precise estimates of the expectation values of the
Hamiltonian and of different operators, including the
sticking coefficient.

In the CFHH method [19—31], which is described in
Ref. [22], one writes the wave function as a product of
two factors,

(2)
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3f=g b;r; (4) H4
E4

was employed. Here b, are adjustable parameters, chosen
to describe the cusp singularities,
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m~+mk
(5)

3

f= g [a;+(b;—a;)exp( c, r, )]r, —. . (6)

geared to reproduce both all the cusps and the asymptot-
ic behavior of the wave function. This guarantees
smoothness of the factor P in (2) and correspondingly a
fast convergence of the hyperspherical expansion both at
small and large interparticle distances r, . Indeed, at
r, ~0 f has the form

3f= g [b, r, +8(r,)].

where m and Z- are the mass and the charge of the par-
ticle j, and r; are the interparticle distances in the odd-
man-out notation, with Id, t, p} corresponding to parti-
cles I 1,2, 3},respectively. However, such a choice of the
parameter b3, which is positive, leads to wrong asymptot-
ic behavior of the correlation factor. For systems with
large m&m2, this prevents the CFHH method from con-
verging. Therefore, the linear form (4) forces one to use a
different value of this parameter. This corrects the
asymptotic behavior of the wave function but destroys
the proper description of the dt cusp. The recent more
sophisticated p,dt calculation [31] employs a nonlinear
correlation function

0.1 0. 1

FIG. 1. Values of H+/EV —1, in percent, for the linear
correlation function f (paranmtrization A) and K =40. The
coordinate r3 is the distance between d and t, and s3 is the dis-
tance between p and the center of mass of d and t. The angle
between the corresponding Jacobi vectors is 175' so p is close to
d if r3 and s3 have a fixed ratio.

from the precise wave function) are presented. Note that
the scales of Figs. 1 and 2 differ by an order of magni-
tude.

For the present calculation of the sticking probabilities
and fusion rates we, therefore, use the wave functions
with the nonlinear correlation function f obtained in our
work of Ref. [31]. In this work, the following values of
the deuteron, triton, and muon masses and of the Ryd-
berg constant (%) most commonly employed in muonic
molecules binding energy calculations were used,

so the parameters b; have to describe the cusp singulari-
ties, while at r, ~ oo f has the form

m& =206.769m„md=3670.481m, ,

m, =5496.918m„%= 13.605 8041 eV . (9)

ai pi (8)

The choice of parameters a;, b;, and c; is discussed in
Ref. [31]. The parameters b; are given by Eq. (5) while
the parameters c; equal 0.0990, 0.0943, and 0.519

and the parameters a; can be used to provide a proper
asymptotic description. Usually a; are de6ned by con-
straints obtained from known cluster asymptotics. Pa-
rameters c; determine the start of the asymptotic region.
Use of such a correlation function allows a precise esti-
mate of the wave function for all interparticle distances
including the dt coalescence point where the knowledge
of the wave function is essential for an accurate calcula-
tion of the fusion rate and of the muon sticking probabili-
ty. In addition, calculation shows [31] that the use of the
nonlinear correlation function (6) improves the overall
convergence patterns of the expectation values of
different operators, including the Hamiltonian, decreas-
ing, for example, the error in energy by an order of mag-
nitude, if the same number of hyperspherical harmonic
functions are used. The advantage of the nonlinear
correlation function (6) vis a vis a linear one is especially
obvious from the comparison of Figs. 1 and 2, where
values of H%/E% 1(which are identi—cally zero for the
exact wave function and whose values at different points
characterize, therefore, the extent of the local deviation
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FIG. 2. Same as in Fig. 1, but for the nonlinear correlation
function (parametrization C}. The vertical scale is different
from that of Fig. 1.
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TABLE I. Correlation function parameters a; {in d.a.u. , deuteronic atomic units, where mass of the
deuteron is set to unity) for different parametrizations A, B, C, and D. Each parametrization may be
used with different values of e;. A refers to linear f. 8 is defined by the constraint that the asymptotic
conditions are imposed on exp(f). C is such that the asymptotic conditions are imposed self-
consistently on the full wave function 4 at K =0. (This is a simple nonlinear problem that can be
solved before the actual calculation. ) D refers to choices without constraints.

A'
B
Cb

D

a&

—0.054 290 772 4
—0.017485 511 192 784
—0.054 290 772 402 005

0.0

—0.053 328 776 8
—0.012 356 005 126 688
—0.053 328 776 812 877

0.0

a3

—0.281 664 72
—0.05
—0.29

0.0

'Listed are the values of b;, cf. Eq. (4); b3 differs from the cusp value, 0.599 615 878, as required for the
CFHH method to converge.
"The value of a3 is taken approximately equal to the b3 of A (first entry). In both A and C parametriza-
tions this parameter is defined by the same constraint.

p.a.u. (muonic atomic units where mass of the muon is
set to unity) for i = 1, 2, and 3, respectively. (Only c3 ap-
pears in the parametrization C.) The parameters a, are
presented in Table I.

The sticking probability co,' ' is the sum of the partial
sticking probabilities m„&defined by the equation [7,11]

co„&=4m(21+1) J dr r R„&(r)j&(Qr)g(r) (10)
0

in which averaging over the direction of the outgoing
neutron and summation over magnetic quantum numbers
is performed.

Here f(r) is the three-body wave function 4 at the
point where d and t are located on top of each other, nor-
malized so that the integral of ~g(r)~ in the muonic coor-

dinate equals unity, R„I(r)is the radial function of muon-
ic helium, j&(Qr) is the spherical Bessel function, and Q
equals 5.844 in the p.a.u. (although sometimes a slightly
different value of Q =5.846, obtained from relativistic ki-
nematics, is used [10,11]).

The results of our calculations of the partial ground-
state sticking probabilities and their comparison with
previous precision computations are presented in Table
II. One can see that the values of the sticking probability
are very stable and change very little with the increase of
K . E is the maximum global angular momentum and
the number of the HH used is —,'(X /2+1)(I(. /2+2).
The dependence on the parametrization off is also negli-
gible and is shown in Fig. 3. From comparison of the
values for K =40 and 48 one concludes that the uncer-

TABLE II. Cxround-state sticking probabilities co„& for Q=5. 844 calculated with the nonlinear
correlation function f. Prescriptions 8, C, and D give the same values of eo„& to the number of quoted
digits. The second line for I(. =40 is for Q =5.846.

1s 2$ 3$ 4s 2p 3p 4p 3d 4d

32
40

48
Ref. [6]
Ref. [7]

Ref. [10]'

Ref. [11]

Ref. [12]'

Ref. [4]d

0.6822
0.6820
0.6807
0.6819
0.6932
0.689
0.6846
0.6826
0.6817
0.6800
0.6842
0.6825
0.6802

0.0978
0.0978
0.0976
0.0978
0.0992
0.099

0.0297
0.0297
0.0297
0.0297
0.0302
0.030

0.0127
0.0127
0.0126
0.0126
0.0128
0.013

0.0238
0.0238
0.0237
0.0238
0.0241
0.024

0.0086
0.0086
0.0085
0.0086
0.0087
0.009

0.0039
0.0038

0.0038
0.0039

0.0002
0.0002

0.0001
0.0001

0.0002 0.0001

0.0979 0.0297 0.0127 0.0238 0.0086 0.0039 0.0002

0.0978 0.0297 0.0127
0.0975 0.0296 0.0126

0.0238 0.0086
0.0237 0.0086

0.0039
0.0039

0.0002
0.0002

0.0975 0.0296 0.0126 0.0237 0.0085 0.0038 0.0002

'Q =5.8460 (second line). Authors state that the change of the total sticking fraction if Q is increased
to 5.847 is about —0.001. For our value (5.844) the change would be +0.002 (this extrapolation is
shown in the first line, giving even larger disagreement with our value).
Authors quote values for Q =5.846 (second line). They also compare with values for Q =5.844; the

latter values are said to be larger by 0.0017 (in our calculation this difference is 0.0013). The first line
was obtained by adding 0.0017.
'Q =5.846 (second line); the first line was obtained by adding 0.0017.
Q =5.844. Quoted are the purely Coulombic results corresponding to an R-matrix formulation impos-

ing the nuclear boundary condition.
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0.684—

TABLE III. Probability of d and t being at the same point,
po=(5(rd, )) (in units of 10 ' fm '), for the ground state of
pdt for different parametrizations B, C, and D, and its compar-
ison with variational calculations.

('Fo)

0.682—

D +
+

32
40
48

Ref. [13]
Ref. [14]'

Ref. [15]"
Ref. [32]'

0.5204
0.5250
0.5269

0.5250
0.5273
0.5280
0.5296
0.5502
0.5294
0.594
0.6

0.5285
0.5290
0.5287

0.680—

D

'Given are fusion rates. We calculated po by dividing by the
quoted constant, A„=2.042X10 ' cm'/sec. The first line is
for the adiabatic case, the second line for the nonadiabatic case.
Misquoted in Ref. [13] as 7.47X10 ' (should be divided by

4m).
'Extrapolation to nuclear interaction radius zero from Ref. [32],
using the quoted coefficient AL —p= 1.3 X 10 ' cm'/sec. Refer-
ence [32] takes into account the nuclear interaction to estimate
po.

24
I

32 48

FIG. 3. Ground-state sticking coefficient co,p (in percent) for
different parametrizations and its comparison with variational
calculations. Upper values correspond to Q=5. 844 and lower
values to Q=5. 846. Pairs of points on the right are crosses
(nonextrapolated variational values) and diamonds (extrapolat-
ed variational values). The variational results in sequence from
left to right on the graph correspond to Refs. [10, 11, and 12],
respectively.

0.70—

(b(r3))

tainty of our co,o=0.6819 value (for Q =5.844), for exam-
ple, is 0.0001 and is less than the differences in the litera-
ture for a given value of Q. In particular, the values of
Ref. [10] adjusted for Q deviate more from our results
than the published values. The recent results of Ref. [4]
also deviate appreciably, in the opposite direction.

Table III displays the dependence of the ground-state
probability pc (see Ref. [16]) of the deuteron and triton
being together at the same point on K (in units of 10
fm ). This probability determines the fusion rate [33]:

po. We present po rather than A,& because the
convention and value of A, vary in the literature. The
value is [13,32] A, =1.3X10 ' cm sec '; Ref. [14] uses

k& = A„po, where A„=—,'1.361 X 10 ' cm sec ', Ref.
[34] used likewise —,

' A, =
—,'1.36X10 ' cm sec ', the

factor —,
' coming from spin symmetry.

The dependence of po on K is also shown graphically
on Fig. 4. Again, one can see that different parametriza-
tions 8, C, and D for the nonlinear correlation function
converge to the same value with the increase of K and
that the uncertainty of our po=0. 5280+0.0011 value for
K =48 is much less than the discrepancies in the litera-
ture.

0.60—

D

B

~ ~ ~ ~ y ~

0.50
40

FIG. 4. Expectation values of the 5-function operator of the
distance between the deuteron and the triton, proportional to
the fusion rate according to the Jackson formula [33], in units of
10 ' fm, for the linear (parametrization A) and nonlinear
(parametrizations B, C, and D) correlation functions. Separate
points on the right display the results of variational calcula-
tions. The variational results in sequence from left to right on
the graph correspond to Refs. [13 and 14], respectively, with the
upper (lower) points corresponding to the adiabatic (nonadia-
batic) values.
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FIG. 5. Ratio of the CFHH wave function 4 with the non-
linear correlation function (parametrization C, K =40) at the
dt coalescence point (where %=/) and the Green-function
Monte-Carlo wave function +Mc of Ceperley and Alder [7].
r„d,is the distance between p and the center of mass of d and

FIG. 6. Divided differences (approximate derivative) of the
logarithm of the wave function at the dt coalescence point. The
differences correspond to intervals of 0.5 for r„d,~ 5 and to in-
tervals of 1 for r„d,) 5 (in p.a.u.). The solid curve is the
CFHH wave function calculated with the nonlinear correlation
function (parametrization C, K =40) while the dashed curve
represents the Green-function Monte-Carlo wave function of
Ceperley and Alder [7]. The Born-Oppenheimer wave function
(an exponential) would give a constant value.

It is interesting to compare our wave function with the
Green-function Monte-Carlo wave function of Ceperley
and Alder [7], which was also used in a nonvariational
calculation of the sticking probabilities. The result of the
comparison is presented in Figs. 5 and 6, where the ratio
of both wave functions and the divided differences of the
logarithms of both wave functions at the dt coalescent
point are calculated. Figure 5 shows unexpected quasi-
periodic deviations from unity. Therefore, we estimated
the derivative (Fig. 6) and found that the deviations are
caused by the roughness of the Ceperley-Adler wave
function.

We have calculated the partial wave sticking probabili-
ties co'„I' and the probability of d and t being at the same
point po and compared them to values in the literature.

There are significant discrepancies in the literature on
the sticking probability and po (more so for fusion rates
which also depend on the constant A, adopted), from the
point of view of the reliability of various precision com-
putation methods.

Using the CFHH method with a nonlinear correlation
function, we have obtained results that have converged
much better than discrepancies between different calcula-
tions in the literature, both older and recent. Since the

expectation values in the CFHH method converge to the
correct limits, uncertainty of the results can be deduced
from the convergence patterns (Figs. 3 and 4).

No modifications of the method were necessary to get
precise wave function at coalescence points; accuracy of
the various expectation values is uniform. In variational
calculations, it is usually necessary to modify the basis to
better describe certain expectation values; frequently,
quadruple precision arithmetic has to be used.

The work also confirmed that different parametriza-
tions of the correlation function f give insignificantly
different results, as in the case for other expectation
values [31). Also, it is sufficient to use the one parame-
trization (B) for which the correct cluster asymptotics is
imposed on exp(f). This is the most straightforward of
the various prescriptions for choosing the parameters of
f (see Table I).

This work has been partially supported by the Ministry
of Science and Technology of Slovenia, Grant No. P1-
5056-0106. The calculations have been done on the Con-
vex C3860 of the J. Stefan Institute.
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