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Potential scattering T matrix in a strong static magnetic field
and a collinear low-frequency radiation field
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Several approximations to the T matrix for collisions by a static short-range potential in the presence
of a strong static magnetic Geld and a collinear polarized radiation field are considered. We discuss their
difFerent ranges of validity and compare the expressions of the T matrix in the different approximations.
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I. INTRODUCTION

For many years the physics of electron scattering in
the presence of strong electromagnetic fields has been a
topic of interest. Elementary processes occurring in the
presence of strong laser fields and/or strong magnetic
fields are expected to be important in several areas of
physics (astrophysics, solid state physics, laser-atomic
physics, etc.) [1,2]. In a number of cases, the infiuence on
the scattering process of the assisting strong external
fields is accounted for exactly (i.e., beyond any perturba-
tion theory scheme). In fact a number of exact electron
wave functions (both nonrelativistic and relativistic) in
the presence of a laser and/or a magnetic field are avail-
able in the literature, and often the external field affects
the scattered charged particle more strongly than the po-
tential. This allows the description of the field-assisted
collision as an event in which the field dressed states are
the unperturbed states and the scattering potential, as in
the conventional field-free theory, is the perturbation re-
sponsible for the transition from the one field dressed
state to another. Although, as a rule, it is not dificult to
derive formally the pertinent S or T matrix of the col-
lision event in external fields, because of computational
difBculties calculations are either restricted to first-order
(in the scattering potential) treatments or to the use of ad
hoc approximations. Thus, since the very beginning of
the investigations on collision processes in strong fields,
many efforts have been made to provide physically
significant and simple approximations to the pertinent S
and T matrices.

Several approximations covering different physical sit-
uations have been worked out on the S matrix of charged
particle potential scattering in the presence of a 1aser field
alone [3,4] (see below for details). Less work has been
done up to now on the T matrix of charged particle po-
tential scattering in a quantizing magnetic field. It is
worthwhile to remember that in this case, the first-order
cross section exhibits a divergent behavior, whenever the
final momentum of the one-dimensional free motion is

zero, and that such divergent behavior is expected to
disappear in more accurate treatments, going, for in-
stance, over first-order treatments. In this respect, a very
useful approximation to the exact T matrix is the so-
called higher-order modified Born approximation
(HOMBA) [5,6].

It is the aim of this paper to present a number of ap-
proximations concerning the charged particle scattering
T matrix when a radiation and a constant magnetic field
are present. To the best of our knowledge, no contribu-
tions seem to be available in the literature concerning this
argument, although several theoretical papers have been
devoted to this elementary process. Moreover, some ele-
mentary atomic processes occurring in the presence of
lasers and magnetic fields, which are presently of labora-
tory interest (as an instance, we quote the negative ion
photodetachment [7,8]), still require a deeper understand-
ing. We hope that some of the ideas and procedures re-
ported below may also prove useful for such atomic pro-
cesses.

In the following we will restrict our analysis to the sim-
ple case in which the em field is linearly polarized along
the direction of the magnetic field. The magnetic field
will be assumed to be homogeneous and constant along
the incident beam direction and strong enough to quan-
tize the electron motion in the plane perpendicular to it.
We will analyze the Born series of the T matrix in cylin-
drical coordinates, considering several approximations to
the T matrix and discussing their different ranges of va-
lidity. We will show that in the low-frequency approxi-
mation the T matrix may be factorized in terms of Bessel
functions, accounting for the interaction with the radia-
tion field times the T matrix for scattering in the presence
of a quantizing magnetic field only. This result permits
the use of the HOMBA for the radiation field-free T ma-
trix, obtaining a closed form for the total cross section
that does not diverge at the Landau resonances.

We also develop a quasistatic treatment of the col-
lisional process, assuming that the collision event takes
place in the presence of a quasistatic field with a fixed
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phase and then making an appropriate average of the to-
tal cross section. In this approximation, which may be
considered a generalization of the result derived by Fer-
rante [9] for laser-assisted scattering, the effect of the ra-
diation field becomes completely classical and corre-
sponds to the absorption or emission of a large number of
photons. Consequently the frequency of the radiation
will not enter into the derived formula from the begin-
ning. This approximation corresponds in practice to a
low-frequency one. Atomic units are used throughout.

II. TOTAL CROSS SECTION

Our starting point is the unperturbed state of the
charged particle in the presence of both fields. The mag-
netic field is assumed constant and homogeneous, direct-
ed along the z axis. The radiation field is linearly polar-
ized along the magnetic Geld and is taken in the form
A, = Aocoscot (dipole approximation).

In cylindrical coordinates (p, y, z) and in the Landau
gauge, the unperturbed wave functions may be written in
terms of radiation dressed Landau wave functions given
by

where n =0, 1,2, . . . indicate the principal quantum
number characterizing the nth Landau level, k is the par-
ticle momentum along z, and ~, is the cyclotron energy
in a.u. The energy eigenvalues are degenerate with
respect to the quantum number s, which represents the
distance of the center of the spiraling electron orbit along
B. Then, the unperturbed wave function [Eq. (1)] has a
factorized form given by the wave function of a particle
in the presence of a magnetic field only (Landau states)
times a Bessel function of order l. Such a simple struc-
ture, arising only in the case of a linear polarization of
the radiation field along B, represents a superposition of
states with energy E„+leo, l =0,+1,+2, . . . being the
number of photons dressing the charged particle embed-
ded in the magnetic field; the corresponding probability
of each state is Jf(A, ). Actually these states are virtual
because a free particle cannot exchange energy with an
homogeneous plane-wave filling all the space.

Using the above wave functions [Eq. (1)] as unper-
turbed states and following usual procedures [2], the ex-
pression for the total cross section for collisions in the
presence of a radiation field and a magnetic Geld with ab-
sorption of l = lf —l,. photons results:

)i ) =g ( —)'J, (A. ) )n, s;k; )
I

s
Xexp —— +(n +—')to +leo t ' . (1)i 2 c

I

The role of the radiation field dressing the Landau state is
played by the Bessel functions of order l; their argument
A, =sk;/co contains the parameters of the radiation field;
e is the intensity of the radiation field and co the photon
energy in a.u. ; and ~n;s;k; ) are the Landau wave func-
tions given by [10]:
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In the above expressions (+) corresponds to forward
scattering and (

—
) to backward scattering. The expres-

sion for the total cross section [Eq. (7)] has a general
meaning, and the T matrix T (E)+ assumes different
forms according to the particular scattering process con-
sidered. In the following we limit ourselves to the simple
process of potential scattering.

It is worthwhile to note that when the free-motion en-
ergy of the incident particle k; /2 matches exactly the
difference of energy between two Landau levels plus the
energy of the photon exchanged during the collision, the
final momentum kf ~0, giving rise to the so-called Lan-
dau divergences in the cross section. To remove these
unphysical divergences of the total cross section, it is
necessary to calculate the T matrix beyond the first Born
approximation; for instance, in the HOMBA [5].

where g=yp, y =)rtto, /2 in a.u. and L„' "(g) are associ-
ated Laguerre polynomials. The energy eigenvalues are
given by

k 1E = + n+ —cuil c

III. TMATRIX

With the help of the unperturbed wave functions (1) we
can construct the exact T matrix for the scattering of a
particle embedded in both a radiation and a magnetic
field by a static potential as
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An instructive diagrammatic representation of the exact T matrix is given in Fig. 1. The structure of the scattering
series is similar to the one obtained when we consider collisions of particles with internal structure. In our case, the
discrete structure (double line) represents the bound motion of the scattering particle in the plane perpendicular to the
magnetic field. The single line represents the free motion of the particle, dressed by 1 photons, along the direction of
the magnetic field. The Nth term of the Born series can be understood as a transition from the initial to the final Lan-
dau states, the result of a series of potential induced virtual transitions between Landau levels given by the quantum
numbers nia+n, &+, . . . , +n„+n«=n; —n&=n;& and the exchange of I real photons as a result of a series of ex-
changes of virtual photons l;, + l,b+, . . . , +l„+I«= I; —lf =l. In the T matrix, the sum over the intermediate states
labeled a, b, . . . must be intended as a sum over n, s„nbsb, . . . and an integration over dk„dkb, . . .. From the above
expression of the exact T matrix, it is easy to obtain the expressions of the T matrix for the case when only one Geld is
present.

A. Laser field-free T matrix

ay k,-
2

+(n, + —,')co, —

We note that by putting I; =1,=lb = =If =0 in the above expression for the T matrix [Eq. (9)], we recover the T
matrix for the case when only the magnetic field is present, as [11]
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8. Magnetic Seld-free Tmatrix
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The Landau radiation field dressed wave functions [Eq. (1)] do not reduce to the wave functions for a particle embed-

ded in a radiation field in the limit of B~0. Then, to recover the T-matrix expression for the case when only the radia-
tion field is present, we have to replace in Eq. (9) the Landau states I nf sf kf ), I n, s, k, ), I ni, sh kz ), . . . with plane waves

I kf ), I k, ), I ki, ), . . . and the energy for the particle in the magnetic field E„with the free-particle energy E =k /2, ob-

taining
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Kruger and Jung [3] and by Kroll and Watson [4] for a
collision assisted by a laser radiation field. The collisional
process in the presence of a radiation and a magnetic field
is ruled by three characteristic times: (i) the collisional
time t, = d /u, where d is the range of the potential and u

the particle velocity; (ii) the characteristic time of the sys-
tem involved in the collision, given in our case by
t'ai

= 1/co, ; and (iii) the radiation characteristic time
tz = I/ro. In our analysis we have considered the mag-
netic field to be strong enough to quantize the motion of
the scattering particle in the plane perpendicular to 8.
As shown in previous papers [6,12] this occurs if the
magnetic field and the energy of the particle have values
that allow transitions to the final Landau levels with the
quantum number nI is not very large, i.e., when the ratio
of the energy of the free motion along 8 and the cyclo-
tron energy R =k /2co, is a small number; this is con-
sistent with the condition

Bound part of the Landau states

radiatjon dressed free states along z
Moreover we can assume that

(15)

FIG. 1. Diagrammatic representation of the exact T-matrix
series for potential scattering in the presence of a magnetic field
and a radiation field.

(16)

i.e., the time scale of the variation of the radiation field is
much greater than the collisional time.

IV. FBA TMATRIX

The first born approximation (FBA) for collisions in
the presence of a magnetic field and a radiation field is
obtained by taking only the first term of the expansion
(9),

T(E)+ g Jl —i (~f )(nfsfkf I Vln;s;k; ) +Jl ( —~; ) . (»)
I

Using the addition theorem of the Bessel functions

g Jl l(A,f)Ji( —
A,;)=Jl(A,f ) (13)

with A,f;=(E/w )(kf —k;), we get for the FBA T matrix
the expression

T(E)~=Jl(A f )(nfsf kf ~
V~n;s;k; )+ . (14)

The FBA T matrix, and consequently the total cross sec-
tion also, show in this case a factorized structure, where
the interaction with the radiation field is accounted for by
the Bessel functions while the interaction with the rnag-
netic field resides in the Grst-order matrix element be-
tween the initial and the final Landau levels
(nf f f i Vin' 'k' )+

V. LOW-FREQUENCY APPROXIMATIONS

Because the T-matrix series [Eq. (9)] contains sums
over the discrete quantum numbers n, s, I and integrations
over dk„dkb, . . . , it is too involved to be used beyond
the first Born approximation. In this section we derive
two difFerent low-frequency approximations (LFA's) for
the T matrix, generalizing the two approaches used by

A. KJM Tmatrix

In this section we follow the approach given by Kruger
and Jung [3] for the simpler case of collisions in the pres-
ence of a low-frequency radiation field only. We call this
the Kruger-Jung magnetic-field approximation (KJM).

We split the collision process into three stages. In the
first stage, the electron is embedded in the magnetic field
and in the radiation field and is allowed to exchange I;
virtual photons with the radiation field, acquiring an en-
ergy E =E;+l;co=k; /2+(n;+ 2)ru, +l;co. Th—e proba-
bility that the electron will gain such energy is given by
the squared Bessel function J& ( —

A, ;). In the second
l

stage, the electrons collide with the potential in the pres-
ence of the magnetic field, and the radiation plays no
role. In the third stage, the electrons, leaving the region
of interaction with the potential, can again exchange pho-
tons with the radiation field, acquiring the final energy
Ef=E +(l —l;)co=E;+leo. The probability for the
electron to exchange ( l —l,. ) photons is given by
J& & (Af ). In other words, the KJM consists in assuming

l

that the field couples strongly with the scattering particle
only in the initial and final states, so that we can neglect
the radiation ~ (particle+ magnetic field) interaction
during the (particle+magnetic field) ~ potential scatter-
ing event. This assumption is supposed to be good if the
energy of the particle embedded in the magnetic field
E, =k,2/2+(n; +—')w, .is much larger than the photon en-

ergy co. The T matrix [Eq. (9)] will then be approxirnat-
ed, neglecting all the terms l, m, ibm, . . . appearing in the
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denominators. This allows us to sum the T matrix over
all the intermediate dressing photon numbers
l„lb~1, ~

Using the relation

g J( (A,, )J( (A,, )=JO(0)=l,
1

we obtain for the KJM T matrix the expression
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or in a more compact form

T(E)~=+J( ((A~)T(E')~J(( —A,;),
1.

t

l

(19)
k; k

+(n; —n )co, +(l; —l )co

where T(E')+ is the T matrix [Eq. (10)] for collision in
the presence of a magnetic field calculated only at the
shifted initial energy E'=E„,+1;co with E„,=k, /2
+(n;+ —,

' )co, .
If we make further assumption that the T matrix

T(E')+ is a sufficient smooth function of E', it may be
considered as essentially a constant. Then, using the ad-
ditional theorem [Eq. (13)], we find that the KJM T ma-
trix assumes, as in the FBA case, a completely factorized
form:

k;
2

k
+(n; n)co, —

(1;—1 )co

k

2
+ (n, n)co, —

Defining the shifted momentum

l cok' =k — k

(22)

(23)

T(E)~=J((A~; )&nfsfkflT(E„;)pin;s;k; &p . (20)
with l =/& —I, , we can rearrange the T matrix so that its
denominator no longer depends on the quantum numbers
1;, /„lb, . . ..

Moreover, using Eq. (13), we can again get a complete-
ly factorized expression for the KWM T matrix as

B. K&M T matrix

(l; —l )co

k, k
+(n; n)co, —

(21)

we can expand the denominators of the T matrix up to
the first order in co as

We use now a different approach to the LFA, proposed
first by Kroll and Watson [4], for electron collisions in
the presence of a radiation field. We call this the Kroll
Watson magnetic-field approximation (KWM).

Following Kroll and Watson [4], we assume that in the
generic denominator of the exact T matrix [Eq. (9)]

T(E)+ Jf(lf )&n&ok&I T(E*.)In;s;k; &g, (24)

where &n&s&k&IT(E')In, s;k; &+ is the T matrix for po-
tential scattering in the presence of a magnetic field eval-
uated at the energy

ki Ico ( 1co )

2(k~ —k, )

In both the KJM and KWM low-frequency approxima-
tions, the T matrix is completely factorized. We note
that by considering only the first term in the expansion
(22), the KWM expression reduces to the KJM. In the
KWM, we consider the shift of the momentum of the
scattering particle to first order in co, as well as for the in-
termediate states of the T-matrix series, and then it may
be considered a more accurate approximation. However,
the KWM may be used only for the cases in which the
scattering amplitude is a sufficiently slowly varying func-
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FIG. 2. Diagrammatic representation of the LFA T-matrix
series with k /2= k; /2+ I;cu and kf /2= kf /2+(l —I;)co.
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tion of the energy. This means that Eq. (24) does not
hold if the radiation field-free process in the absence of
the radiation field presents sharp resonances. The KJM
in the form given by Eq. (19) can be used also in the pres-
ence of resonances. A diagrammatic representation of
the LFA T matrix is given in Fig. 2. The contracted
symbol introduced in Fig. 2 is expanded in Fig. 3 and
represents the exact T matrix for potential scattering in
the presence of a strong magnetic field, where k' is the
e6'ective intermediate momentum in the KJM and has the
form given in Eq. (23) for the KWM.

Bound part of the Landau states

free motion along z

FIG. 3. Diagrammatic representation of the contracted sym-
bol introduced in Fig. 2 with k' =k for the KJ LFA T-matrix
series and k' =k —[Ico/(kf —k, )]k for the KWLFA T
matrix series.

VI. I FA-HGMBA

Once we have obtained the two factorized expressions
for the KJM and KWM T matrices we are left with the
evaluation of a suitable expression for the T matrix of
electrons scattering in the presence of a static magnetic
field. As we already anticipated in the Introduction, the
total cross section presents unphysical infinities at Lan-
dau thresholds at least in the FBA. To avoid the
infinities it is necessary to go beyond the FBA, using, for
example, the so-called higher-order modified Born ap-
proximation [5,6]. This approximation allows us to sum
all orders of the scattering series for collisions in the pres-
ence of a quantizing magnetic field, obtaining a closed

I

where

JI(~f' )(+f~fkf lT(&)ln;s;k; & z (26)

form for the total cross section not divergent at the Lan-
dau thresholds. In such an approximation the Nth term
of the Born series contains only contributions due to the
N —i elastic transitions between the same Landau level
and only one inelastic scattering from n; to nf, while all
the other contributions are neglected. Using the T ma-
trix derived in the HOMBA in the LFA expressions for
the T matrix [Eq. (19) or (24)], we obtain the LFA-
HOMBA T matrix as [6]

for n;Anf and

kf k,I;;;&g™~=(~ff f IVIES;s;k;&~k 2
. (

(27)

k;
(nfsfkflT«)ln, s, k, &", "'"=(n,s,.k, l vln, .s, k,. &,

k; 2m y n;s;k; ~ Vin;s;k; g
(2&)

for n; =nf.
In this approximation the interaction with the magnet-

ic field is taken into account exactly (the unperturbed
wave functions are Landau wave functions), and the in-
teraction with the potential in the presence of the mag-
netic field is considered at all orders. The derived T-
matrix element may be substituted directly in the KJ
FBA, while in the KWM it must be evaluated at the

I

shifted momentum given in Eq. (23). The total cross sec-
tion derived in the LFA HOMBA does not present
infinities at the Landau thresholds [13].

VII. QUASISTATIC FIELD APPROXIMATION

In this section we derive the T matrix and the total
cross section in the quasistatic field approximation
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i k
Ia &

= Insk &exp —— +(n+ —,')to,

+i csin(co. t+a) ', (29)

where Insk ) are Landau wave functions given by Eq. (2)
and a is the initial phase of the radiation field.

Assuming that the low-frequency conditions [Eqs. (15)

(QSA). We shall assume that in the time scale of the vari-
ation of the radiation field, the collision event takes place
instantaneously. This approximation corresponds to a
consideration of the collision event as taking place in the
presence of a quasistatic field with a fixed particular
phase. The fact that the field is actually not constant is
recovered by an appropriate phase averaging. Accord-
ingly, the frequency of the radiation field does not enter
the final results. Then the QSA may be considered a
simplification of the LFA at very low frequency.

%'e start again from the unperturbed wave function for
the scattering particle in the presence of both fields [Eq.
(1), which can be written in the equivalent form

and (16)] are satisfied and that the collisional event takes
place instantaneously, we can put cot &&7 in the wave
function [Eq. (29)] so that

sin(tot +a) =cot cosa+ sina (30)

and the unperturbed wave function becomes

Ia ) =
I nsk &exp ——'E„t (31)

representing a Landau wave function with energy eigen-
values shifted by A,co cosa:

k„E„= +(n+ —,
' )co, —A,co cosa . (32)

Then, in the QSA approximation, the colliding electron is

afFected by a static electric field characterized by the Geld

phase a.
Proceeding in the usual way, we find that the probabili-

ty transition per unit time will be

Pf2' I & n'is~k~I TIn, s, k, & ~I'5(E~ E; ),— (33)

which apart from the definition of the energy of the col-
liding particle [Eq. (32)] is the same as that obtained in
the radiation field-free case.

The T matrix is given by

a, b

&n~s~k~I VIn. s, k. )~&n, s, k. IVIn, s, k, )
~n~skII TI ns, k&~=&nts~kIIVIn, s, k, &~++

E; —E, +ig
& nfsf kf I VI n.s.k. & ~ & n.s.k. I VI nb sb kb & & n b sb k b I

V
I n; s; k; &

+g ''' +
(E; E, +ig)(E—, Eb+ig)— (34)

7
&oT&=—f crTda (35}

with

and is dependent through the energies E on the field

phase A. The expression for the total cross section is then
obtained by finding an average over all the values of the
radiation field phase

To obtain the total cross section, we are left in Eq. (35)
with two integrations over da and dkI. Because of the
presence of the 5 function in Eq. (36), we can get rid of
one of these two integrations by obtaining two equivalent
expressions for the total cross section.

We first derive the expression for the total cross section
obtained by integrating Eq. (36}over dk& and leaving the
integration over da.

Making use in Eq. (36}of the 5 function property
o.r= —„gg fdk~I &n~s~k~ITIn, s, k, &~I'

nf sf s,.

X5(Et E; ), —
5(E~ E;)=—

kf P COSA

(3g)

where

kf k,.
5(E E)= — ——co n ——(k —k )cosa .f i p p c if f i

where kf p is the solution of the equation Ef —E; =0
solved with respect to the unknown kf,

I/2

The phase averaging is required to remove any reference
to the particular field phase at which the collision event
takes place.

kf P= COSA+ cosa k; +26)c0;f
E

we get the total cross section as

(39}

E
kf p

——cosa
I&n~s~k~ITIn;s;k; &~Ik ~k da, (40)
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where we are left with an integration over d a.
To perform such an integration, we have to keep in

mind that the variable a can assume [see Eq. (39)] only
the values for which

The two expressions for the total cross section [Eqs. (40)
and (43)] are equivalent.

Total cross section in the QSA

coscx = kf o
—k; —2', n;f

2 2

kfo k 2e
(41)

The generic denominator of the T matrix in the QSA
[Eq. (34)] is given by

Another, more useful expression for the total cross sec-
tion, which can be easily compared with the LFA cross
section derived in the previous section, is derived by
starting from Eqs. (35) and (36) and integrating first over
da. To this aim we express the 5 function as

5(Ef E;)=—
5(a —ao)

I(kf —k; )—cosaoI
(42)

where ao is the solution of the equation Ef —E,. =O
solved with respect to the unknown o.. Substituting Eq.
(42) in Eq. (36), we get the new expression for the total
cross section,

E.k, Ek
E; —E = E; + cosao —E + cosao

CO CO

(47)

If the quantity s/co(k; —k )cosao may be considered
much smaller than E; —E, the T matrix becomes equal
to the T matrix obtained in the case of collisions in the
presence of the magnetic field only, i.e.,
& nfsfkf I TIn, s, k; ) =—&nfsfkf ITIn, s,.k, ), and the cross
section [Eq. (43)] may be written in a simple way as

(kf —k; )—sinao
E

(kf —k; )—sinao
E X I &nfsfkf ITIn;s;k; )+I dkf

(48)

&l&nfsfkfITIn's'k') J dkf

(43)

where we are left with the integration over dkf,' the vari-
able kf can assume [see Eq. (41)] only the values for
which the following relation is verified:

kf —k —2C0 nf (1 (44)
2E,

coscx0

E
kf(min) =——

CO

E
k —— +2' nc if (45)

and

this implies that the integration over dkf must be per-
formed between

1/2

k
E = +co, (n + —,

' )— kf k; —co, n;f—

2(kf —k; )

If we assume that the quantity

+co, (n +—,
' ),2 2kf —k, 2

(50)

we can add it to the expression for E given in Eq. (49).
Defining

This approximation can be thought of as a KJQSA be-
cause, as in the KJM, we have eliminated the parameters
of the radiation field from the denominator of the T ma-
trix.

Moreover, substituting in Eq. (47) the expression for
cosao [Eq. (44)], we can write the generic expression for
the energy in the denominator of the T matrix as

'2 1/2
E, E

k (max)= —+ k —— +2' n;
CO

c if (46)

(51)
kf ki doc nif

2(kf —k, )

since fdk =—Jdk, we find that the total cross section
becomes

I & nfsf kf I T(E(ao))In;s;k; )~I dkf (52)

with

E(ao) = +co,(n+ —,
' ),k

(53)

and the T matrix has essentially the analytical structure

of the radiation field-free result, with the momentum
redefined through Eq. (51) and the energy redefined
through Eq. (53). This approximation can be thought of
as a KW QSA because, as in the KWM, the T matrix is
evaluated at shifted energies and moments.
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VIII. CONNECTIONS BETWEEN THE QSA
AND THE LFA RESULTS

The QSA approximation may be considered a low-
frequency approximation. In fact the basic assumption of
the QSA is t, ((tIi „ i.e., the time scale of the variation of
the radiation field is much greater than the collisional
time, or in other words, there are many collisions during
a period of the radiation field. The above condition im-
plies that co ((v/d, which is the low-frequency condition.
In the following we show how it is possible to recover the
KJQSA expression for the cross section starting from the
KJM.

Using Eq. (20), we can write the KJM cross section as

have

+co, (nf + —,') = +co, (n;+ ,' )+—leo;
2 2

(62)

we can differentiate the above expression by assuming
that / is a continuous variable, obtaining

kfdkf =cadi . (63)

kfg~ Jdl= J dkf .
CO

(64)

With the help of (63) we can transform the sum over l
into an integration over dkf as

x j(nf&fkf ~T(E}~n;s;k; )+[~ (54)

Substituting Eqs. (61) and (64) in the expression for the
LFA total cross section [Eq. (54)], we finally obtain the
QSA total cross section already derived in Eq. (48).

with IX. CONCLUDING REMARKS

(kf —k, ) .
CO

(55)

Starting from Eq. (54), we can recover the total cross
section derived in the KJQSA [Eq. (48)] by following
three steps.

(i}The difFerence of energy between the initial and final
states of a particle embedded in a magnetic Geld in the
QSA is

E —E;= (k —k; )cosa,f I 2 f (56)

and the corresponding energy difference used in the
derivation of the LFA formula is

1cosa= —~ 1,
X

where

(58)

x= (kf —k;)=A,f; .
CO

(59)

(ii) For large arguments, the squared Bessel function
can be approximated as

J~(x)=
2 cos (x N)'i Ncos— —

X 4

(60)

In our case we have

Ji (A, ;)= 1

~(g2 —l~}'~2 n.k,f;sina
(61)

(iii) From the expression of the energy conservation we

Ef—E; =/co,

where co is in a.u. (Ii= 1). Equating these two expressions
for the energy difference, we find that the radiation field
phase is related to l through

We have derived the T-matrix series for collisions by a
static short-range potential in the presence of a strong
static magnetic field and a collinear polarized radiation
field. We have shown how to recover from the T matrix
in the presence of both fields the T matrix when it is
present in only one field. We have provided different
low-frequency approximations of the exact T matrix by
generalizing the two approaches used by Kruger and
Jung [3] and by Kroll and Watson [4] for a collision as-
sisted by a laser radiation to the case in which quantizing
magnetic field is also present. In this case the collision
process is ruled by three characteristic times: (i) the col-
lisional time t, =d/v; (ii) the characteristic time of the
magnetic field t'ai =1/co, ; and (iii) the characteristic time
of the radiation field tz =1/oi. We have considered the
magnetic field to be strong enough to quantize the motion
of the scattering particle in the plane perpendicular to 8.
This occurs if during the collision only transitions to the
6nal Landau levels are allowed, with a quantum number

nf that is not very large, i.e., when the ratio of the energy
of the free motion along 8 and the cyclotron energy
R =k /2', is a small number; this is consistent with the
condition tz & t, . Moreover, we have assumed that

t, « tz, i.e., that the time scale of the variation of the ra-
diation field is much greater than the collision time. In
both low-frequency approximations (KJM and KWM)
the T matrices are completely factorized. In the K%'M,
we consider the shift of the momentum of the scattering
particle at the 6rst order in co, as well as for the inter-
mediate states of the T-matrix series, and then it may be
considered to be a more accurate approximation. How-
ever, the KWM may be used only for the cases in which
the scattering amplitude is a sufBciently slowly varying
function of.the energy. This means that Eq. (24) does not
hold if the radiation field-free process presents sharp res-
onances. The KJM in the form given by Eq. (19) can be
used also in the presence of resonances. Combining the
two factorized expressions for the KJM and K%'M T ma-
trices with the higher-order modified Barn approxima-
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tion [5,6] for collisions in the presence of a static magnet-
ic field, we have obtained the LFA HOMBA T matrix
that permits the calculation of the total cross section, re-
moving the unphysical infinities at Landau thresholds
present in the FBA.

We have also derived the T matrix and the total cross
section in the quasistatic field approximation, assuming
that in the time scale of the variation of the radiation
field, the collision event takes place instantaneously. This
approximation corresponds to a consideration of the col-
lision event as taking place in the presence of a quasistat-
ic field with a fixed particle phase; the fact that the field is
actually not constant has been recovered by an appropri-
ate phase averaging. Accordingly, the frequency of the
radiation field does not enter the final results. Then the
QSA may be considered a simplification of the LFA at
very low frequency. Finally we have shown how it is pos-
sible to recover the QSA expression for the cross section
by starting from the KJM approximation.

We conclude by saying that the di6'erent low-frequency
approximations to the T matrix for collisions in the pres-
ence of a radiation and a quantizing magnetic field de-

rived in this paper could be of interest for a series of ele-
mentary atomic processes. To this aim a generalization
of our theory to any polarization of the radiation field
would be desirable. Moreover, we remind the reader that
the factorized forms of the T matrix derived in the LFA
are obtained because of the factorized structure of the un-
perturbed wave functions of the electrons embedded in
both the magnetic field and the radiation field linearly po-
larized along 8. Such a simple structure of the T matrix
cannot be recovered for an arbitrary polarization of the
radiation field.
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