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Response of metal clusters to elastic electron impact
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We perform a theoretical study of the response of neutral and ionized metal clusters to the elastic
impact of slow electrons. We center our attention on Na40 and Na4q+ closed-shell clusters. A phase-
shift analysis is performed for both systems. The total cross section for the neutral cluster presents
resonances related with the existence of quasibound states when studied as a function of incident
energy. For the ionized cluster we show the calculated ratio of the angular distribution to the
Rutherford differential cross section, near and far from a resonance. The existence of resonances as
well as the associated energies are very sensitive to the mean interaction potential. As a consequence,
elastic scattering of slow electrons on clusters could be a useful tool in the study of the electronic
structure of clusters.

PACS number(s): 36.40.—c, 34.80.—i

I. INTRODUCTION

The understanding of how atomic and molecular prop-
erties evolve into the bulk solid is one of the motivations
which has driven the research on metal clusters during
recent years. Many experiments have addressed aspects
of cluster physics such as cluster stability, ionization po-
tentials, and plasmon resonances (see, e.g. , [1)). The the-
oretical calculations of those magnitudes were successful
in predicting and reproducing, within reasonable limits,
the experimental measurements (see, e.g. , [2)). Most of
the theoretical descriptions of the electronic structure of
metal clusters start &om a shell model description of their
valence electrons, in which the electrons move indepen-
dently in an average potential. Based on this single par-
ticle scheme, magic numbers, ionization potentials, and
plasmon resonance &equencies have been evaluated. The
calculations are sensitive to the details of the average po-
tential. More sophisticated theoretical calculations cor-
roborate this independent particle picture [3—5].

In this paper we present an alternative way of gain-
ing information on the average potential of clusters and
other related properties, that is, by studying the scat-
tering of electrons by metal clusters. Elastic collisions
of slow electrons with neutral and ionized metal clusters,
if performed, will yield information on the cluster struc-
ture, thereby providing information on size effects, as
well as detailed information on the long and short range
properties of the electron-cluster interaction.

The experimental study of electron-cluster collisions is
difficult, mainly due to the very low signal of size-selected
clusters in a molecular beam [6]. However, some exper-
iments of low energy electron scattering on small metal
clusters are being performed [7], encouraging us to inves-
tigate theoretically elastic scattering of slow electrons by

metal clusters. For low incident electron energies, elastic
dispersion will be the dominating process; at larger in-
coming energies, inelastic processes, such as ionization,
&agmentation, mass and energy transfer, must be incor-
porated.

The first theoretical study of elastic electron scattering
by clusters used a semiclassical approximation [8]. Re-
cently we carried out a fully quantum mechanical study
[9] of the neutral clusters Nas and Na2o by solving the
scattering Schrodinger equation. Pure quantum mechan-
ical effects, such as the appearance of resonances in the
elastic cross sections (when studied as a function of the
incident electron energy) have been obtained. These res-
onances correspond to quasibound states of the system.
In this paper we apply the quantum mechanical treat-
ment of Ref. [9] to the scattering of electrons by larger
sodium clusters, not only neutral but also positively ion-
ized. In this way, we treat systems which are easier to
produce experimentally. The paper is organized as fol-
lows. In Sec. II, we review the formalism, whereas Sec.
III is devoted to the presentation and discussion of the
results obtained. Conclusions are collected in Sec. IV.

II. FORMALISM

Let Vq q be the local total effective potential between
the incoming electron and the cluster. For closed-shell
clusters this potential is usually assumed to be spherically
symmetric and therefore we may use the partial wave
expansion of the scattering wave function

@ = r ' ) ut(k, r)Pt(cos8) .
e=o
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The radial equation to be solved for the partial wave ug
ls

To solve Eq. (2.2) we numerically integrate the wave
function om r = ufr = 0 p to a matching radius, where

' +i' —'" '"~ '"~) (i.) =o
dr2 Q2

(2 2) (k ):H, (k, ) + (2 0 )H, +l(k, ) (2.5)the k)

h'E(E+ 1)
V» i(E, r) = V(r) + Vp~i + (2.3)

—2 E& h E is the incident energy, and p, iswhere k = p
the reduced electron mass.

e incident elec-The total efI'ective potential between the incident e ec-

many-body calculation and its more general expression is
d t e. More elaborate calculationsnonlocal in space an ime.

[3—5] m icae ed t th validity of the quasipartic e picture,
the main e ec oRect of the many-body efI'ects eing a siza e

ithout arenormaliza ion o e1' t f th quasiparticle energies, withou a
h the associated wave functions. Insignificant change in e as

an -bodthe Ioilowing, we wif il
'

will not incorporate these many- o y
efFects.

iven bThe total efI'ective potential V&~& is given y

with

H~+ = exp(~iog)(Fr + iGr)

d 4 — +b . F and Gr, are the regular and irregular
spherical Coulomb functions and 0.

g is the Cou om p ase
shift. The additional phase shift bg is due to the s ort
range an po ariza ion coa 1 t omponents of the potentia . or
the dispersion o e ecf lectrons by neutral clusters, t e unc-

F d G are replaced (within a factor p = r y
new hasethe spherical Bessel functions jg and gp and a new p ase

The general scattering amplitude is f(8) = f, (8) +
f(8), where, is ej (0) th Coulomb scat tering amplitude
and f(8) is given by

Here the mean field potential V(r) is obtained in the

electrons andfor the interaction between the N valence electrons an
h

'
d t electron (ii) a jellium contribution w ere the

z

ri id back round
nd &iii~ the LDA exchange-correlation

rs due to thecontribution. For neutral closed-shell clusters, ue o e
h Brst two contri-

correlation terms which fall ofI'exponentially wit r. or

e otential wi lcellation is not complete, and the average potential wi
deca as 1&~r. The ionic background of the cluster isdecay as,~r. e i
treated as a uniform sphere (for closed-s e c-shell clustersl of

d R = N. where ao is the Bohr radius, r, = 4radius B = aor. . ) w
is the bulk signer-Seitz radius for sodium, an; is e
number of atoms (ions) in the cluster.

According to e acth f t that neutral or ionic cluster tar-
gets are po anze y1 d b the electric field of the incoming
electron, we intro uce an a) additional second order term
accounting for this effect [ll] which behaves as 1/r at
large distances. For this polarization potential we use
the adiabatic approximation [12]

2
(do /dQ) f (8)

(d~z eh. /&~) f.(8)
(2.6)

Whereas for the ionized target the total cross section
diverges, for the neutral case a simple expression can e
found. One can write

cr~ ~(k) = —) (21+1)sin hr(k) .
e=o

(2.7)

0

2

(8) = (2ik) ) (2E+ 1)exp(2icrr)
e=o

x (exp(2ihq) —1)Pq (cos8) .

For the case of ionized clusters the expression to be eval-
uated is the ratio

2(d'+ r2)2 (2.4)

where o. is the static dipole polarizability of the cluster
target and d a cutofI' parameter which is of the or er o
the cluster size.

As mentioned before, many-body effects are not in-

may ea oasma a
bombarding energies. We defer the stu y od of these e8'ects
in these regimes to a future study.
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FIG. 1. Effective potentials for Na40 rom — prom E = 0 up to
E = 10. The solid lines include the contributions from the

field the polarization, and the centri ug al term. Themean e, e
own onl forpotentia wi ou e p'th t th olarization correction is s own o y

6 ure thet = 0 (dashed line). On the right-hand side of the figure, e
si'ngle particle bound states are shown for the total potentia
(polarization included).
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FIG. 2. Phase shifts from 8 = 0 up to E = 10 as a function
of incident electron energy for the e -Na40 system.

FIG. 4. Total elastic cross section for an extended range of
very low incident energies for the e -Na40 system. The 6gure
shows the tendency o —+ const when E —+ 0.

This expression is only valid at low energies, when the
phase shifts are real.

III. RESULTS

Figure 1 shows the calculated optical potential Vg q,
which includes the centrifugal potential, from E = 0 up to
I = 10, for the e -Na40 system (solid lines). The dashed
line gives the interaction potential without the contribu-
tion of the polarization term for E = 0. The value of the
polarizability parameter o, was taken from experimental
results [13]. The remarkable feature is the existence of
pockets for 1 & 8 & 10 which lead to resonances in the
cross sections when the incident energy approaches the
energy of a metastable quasibound state. We display,
in the same figure, the energies of all the bound states
of the system for the mentioned potential (polarization
included).

The phase shifts bg are plotted in Fig. 2 for E = 0 up to
10 as a function of the incident energy. For large energies
all the phase shifts tend towards zero (the large energy
range was selected only to show these convergencies). For
small energies the phase shifts approach ne'er, where ng
is the number of bound states of the system for a given

angular momentum E (Levinson's theorem) [11].
A characteristic signature of an energy resonance is a

rapid increment of the phase shift, over a small energy
interval, by a magnitude equal to m. Figure 2 shows that
a clear resonance is observed for 8 = 8 at E„1.45 eV.
This energy is slightly below the top of the barrier of the
8 = 8 efFective potential.

The total elastic cross section for the e -Na4o system
is shown in Fig. 3 as a function of the energy of the
impinging electron. We disentangle the partial contribu-
tions due to each angular momentum. The figure shows
a rich structure which can be related to the behavior
of the phase shifts. The above mentioned resonance at
E 1.45 eV manifests itself as a well defined peak. The
total cross section also has bumps at E 0.15 eV and
at E 0.4 eV. The first is due to a very wide quasista-
tionary state for E = 3; the second arises Rom the E = 5
contribution. At a very low energy ( 3 x 10 eV)
there is a peak in the cross section due to the S = 1 con-
tribution. This bump, however, is not a resonance; it is
due to the fact that a partial cross section always goes
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FIG. 3. Total and partial elastic cross sections as functions
of the incident energy for Na40.

FIG. 5. Differential cross section for the system e-Na40 for
the incident energy E = 1.45 eV.
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through a maximum when the phase shift goes through
a half integer of m (see Fig. 2). Finally, in Fig. 4 one can
observe that, at very low energy (E 10 eV), the cross
section approaches a constant value, only dependent on
the 8 = 0 partial contribution.

The difFerential cross section (der/dO) for a given en-

ergy also yields information about the resonances. In
Fig. 5, the angular distribution for the e -Na40 system is
shown for E = 1.45 eV. As expected, the theoretical cal-
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culation displays minima which coincide approximately
with the zeros of the Pg s—Legendre polynomial (the dis-
tortion being due mainly to interference with E = 6 par-
tial contribution). Thus the experimental observation of
the angular distribution gives information about the an-
gular momentum of the metastable state characterizing
the resonance.

It can be argued that the polarization correction cho-
sen is an ad hoc expression and that the value of the
cutofF parameter d may inQuence the results. We have
performed calculations in which this parameter was var-
ied around 10'%%uo of the cluster radius. The results show
small variations in the amplitude and positions of the
peaks, retaining essentially the 8 character and the posi-
tion of the resonances.

In order to show the behavior of the total cross sections
as a function of the size of the target cluster, we compare,
in Fig. 6, the total cross sections for Nas, Na2p, Na4p,
and Na58 for the same region of incoming electron ener-
gies. The number of peaks (resonances) increases with
increasing N; and the S value of the resonances also in-
creases with N, .

We concentrate our attention now on the dispersion
of an electron by the ionized cluster Na4&+ which con-
stitutes the target of the collision. In Fig. 7 we display
the mean field potential plus the centrifugal term. The
main difFerence &om neutral Na4p is the Coulomb tail
referred to before. This long range attractive Coulomb
term dominates at large distances and generates a deeper
well inside the cluster. The potential still displays pock-
ets, but for higher angular momenta than in the neutral
case. In particular, for 8 & E & ll the figure displays the
existence of barriers which may give rise to quasistation-
ary states.

For the static dipole polarizability of Na4~+ there are
no direct experimental results available. Therefore we
used o. = 4330 deduced from the experimental surface
plasmon resonance frequency ur„of Ref. [14] and the re-
lation u = Rs(u, /u„)2 [15] where R = (aor, ) N and

is the classical surface plasmon frequency (3.4 for
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FIG. 6. Total cross sections for the systems e-Na~ with
N = 8, 20, 40, 58 in the same region of incoming electron en-
ergies.

FIG. 7. Effective potentials for Na41+ for 8 = 0 up to
1 = 12. The contributions from the mean field, the polariza-
tion, and the centrifugal term are disentangled (solid lines).
The potential without the polarization correction is shown
only for / = 0 (dashed line).
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FIG. 8. Phase shifts for E = 0 up to E = 12, as a function
of the incident electron energy, for the e -Na4&+ system.

FIG. S. Ratio of the elastic and Rutherford di8erential
cross sections, der/do. R„qq, for incident energies near to and
far from the E = 0.9 eV resonance.

Na). We have also computed the a value using the
well known time-dependent local density approximation
(TDLDA) within the spherical jellium model [16] obtain-
ing o, = 3175. The corresponding TDLDA value for Na40
is o; = 3328. This value underestimates the experimental
polarizability n = 4090 by roughly 20%. Assuming that
the TDLDA leads to similar deviations in the cation case,
we corrected the theoretical results by the same amount,
leading to the extrapolated value of o. = 3900. However,
we would like to point out that, for Na4q+, due to the
dominance at large distances of the long range Coulomb
over the polarization term, we find a very small depen-
dence of the results on the value used for o. in the range
mentioned above.

We also note that what is truly relevant is that, for n,
the screening of the external field is properly included,
as is the case when we use either the experimental val-
ues or the extrapolated theoretical TDLDA results. In-
deed, by neglecting screening, therefore allowing for an
independent response of the valence electrons, we would
overestimate the static polarizability by essentially one
order of magnitude (in the jellium model, the indepen-
dent particle static polarizability is 30200 for Na40 and
29650 for Na4q+).

The phase shifts bg for X = 0 to 8 = 12 are plotted in
Fig. 8 as a function of the incident electron energy. For
large energies the phase shifts approach zero, as in the
case of neutral clusters, but the behavior for low energies
differs since, for an attractive long range potential that
decays as 1/r, there exists no equivalent of Levinson's
theorem.

For ionized clusters the total cross section diverges.
However, resonances are observed when the differential
cross section, divided by the Rutherford cross section, is
plotted. As can be seen from Fig. 9, for an energy of
0.9 eV the ratio dojdcr~„th has . minima which approx-
imately correspond to the zeros of the Pg 9 Legendre
polynomial (despite some interferences with E = 7 and

8 terms). This is a manifestation of the E = 9
resonance that the system has at that energy (see also
Fig. 8). Far &om a resonance energy (for example, at

0.01 and 5 eV), the ratio of the cross sections shows no
well defined structure.

IV. CONCLUSIONS

In this paper we have studied the elastic scattering of
slow electrons by metal clusters, both neutral and singly
ionized. Due to the occurrence of resonances, the total
cross sections exhibit a marked structure when studied as
functions of the energy of the incident electrons. These
resonances are associated with quasibound states of the
system which appear at specific values of the angular mo-
mentum. The positions and widths of these resonances
depend sensitively on the average potential used in the
calculation, thereby providing a useful tool to test ex-
perimentally the shell structure of valence electrons in
clusters. %e have also shown that the same kind of anal-
ysis can be extended to ionized clusters used as targets.
In this case the asymptotic behavior of the partial wave
function is a linear combination of regular and irregular
Coulomb functions and the total cross section diverges.
However, one can still obtain information on the reso-
nance structure by measuring the differential cross sec-
tion near a resonance energy. %e have found that, as
the cluster size increases, higher angular momenta con-
tribute to the resonances, the cross section displaying a
more pronounced structure.

The present method is expected to be accurate at low
bombarding energies where the absorption of Qux from
the elastic channel is negligible. We believe that this
study constitutes a good starting point for the analysis
of elastic dispersion of electrons by metal clusters, and
we hope to promote experiments in this Geld.
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