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Pair-function calculations for two-electron systems in model plasma environments
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The pair-function formalism has been extended to the calculation of atomic and ionic properties in

plasma environments that are modeled in terms of analytic screening potentials of the usual Debye form
and the more general Debye-Laughton type. The theory has been applied to two-electron systems. As
particular applications, the stability of H and the energy splitting of several 1sns and 1snp states of the
He atom have been studied in model plasma environments as well as the energies of allowed and forbid-
den transitions.

PACS number(s): 31.15.—p, 03.65.Ge

INTRODUCTION

The detailed study of atomic processes in plasma envi-
ronments has become an active and relevant search topic
in recent years. In such environments, the interaction be-
tween the core and the valence electrons with the atomic
nucleus is screened. The potential between the nucleus
and the electrons can be represented by different models,
the most famous of which is the analytic exponential po-
tential of Yukawa type. Several papers have discussed
the energy levels of single-electron systems in this poten-
tial. Two relevant examples of such approaches are the
fully numerical computation by Rogers, Grabosk, and
Harwood [1] and a method of solving the Schrodinger
equation with screened Coulomb potentials by Nauen-
berg [2], which makes ample use of recurrence relations.
The calculation of autoionizing states turns out to be
more difficult and requires the development of alternative
techniques. Siegert boundary conditions have been suc-
cessfully employed to solve such problems [3—5]. The
complex coordinate dilatation method is an alternative
tool [6—8]. The present authors extended Nauenberg's
analytic treatment to encompass also resonances [9].

The physics background of these approaches is the ap-
proximation of the effects of the plasma charges on the
interaction between the bound electrons and the atomic
nuclei by a parametrized screening potential. It is in-
teresting and feasible to study the behavior of a mul-
tielectron system with the interaction among the valence
electrons taken into account explicitly while incorporat-
ing the effect of the plasma electrons and ion cores in the
form of a screened background potential. This behavior
becomes particularly relevant when ionizing and recom-
bination processes in plasmas are involved. In the
present work we study two-electron systems with a spe-
cial focus on the stability of the ground state of H and
He, as well as excited states of He in such environments
with different degrees of screening. We are particularly
interested in properties of these systems that can be used
for plasma temperature and density diagnostics.

In principle, the standard methods of multielectron
atomic calculations such as density function theory,
multiconfiguration Hartree-Fock theory, or atomic

many-body perturbation theory (MBPT) can be modified
to include screening effects. This, however, has not yet
been done.

This work is an attempt to extend MBPT to this field.
The formalism of MBPT is used following the work by
Morrison and co-workers [10—21] and the landmark cal-
culation by Mkrtensson of the ground states of the H
ion and the He atom, as well as the 1s2s state of the He
atom [13].

Section I of this paper deals with the potential. Section
II introduces briefly both the relevant relations of MBPT
and the numerical methods of solving the pair-function
equations. Section III presents some results and discus-
sion. A summary is presented in Sec. IV.

I. DKBYK-LAUGHTON POTENTIALS

Screened Coulomb potentials are widely used in simple
models to approximate complicated many-body interac-
tions, for instance, in the scattering of electrons from
atoms, in plasmas, in liquid metals, and in electrolyte
solutions. The most famous representative in the latter
area is the Debye-Hiickel theory.

This type of potential makes it not only feasible to in-
volve the approximate interactions in the many-body sys-
tem, but also satisfies the conditions of the resonance
theory of Combes and co-workers [14,15] precisely.
Therefore, various techniques, such as dilatation and ex-
terior scaling methods, can be used.

In order to be prepared for a wide range of plasma con-
ditions, one can study systems with the Debye-Laughton
potentials. The analytic form of these potentials is given
by

U(r) = — exp ——+8 exp
A r (C+1)r
r D D

By selecting the four parameters of A, B, C, and D, we
can adjust the potentials to represent very different plas-
ma environments. With a proper choice, the potential
exhibits both a maximum and a minimum at finite values
of r and can be adjusted to approximate other nonmono-
tonically screened potentials that have been proposed be-
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fore, such as the exponential-cosine screened Coulomb
potentials. With C=O, Laughton's modification adds a
potential barrier to the Debye potential with its max-
imum at a distance of

and

The pair function satisfies Bloch's equation
WD+&a'+4aSD

rmax 28 (2) (E +eb Hp)lp b &

II. PERTURBATION THEORY
AND THE PAIR FUNCTION

The details of MBPT can be found in Refs. [10—12].
Here we only review briefly the main formulas for the
case of two-electron systems.

We take the potential between the core and surround-
ing electrons as a Debye-Laughton potential, while the
interaction between the electrons remains a pure
Coulomb potential. The Hamiltonian of the two-electron
system takes the form

Irs)(rs a b+p„)
1

rs&D

1
~p„& cd ab+p. b) .

cd ED 12
(9)

In solving the pair-function equation, it is convenient to
separate the pair function into its radial, angular, and
spin parts

p.b
—g p(k, ab ~l„l, )

1

1

a=Ho+ 1

"12

Ho= —
—,
' Vf —

—,'V2+ U(r, )+ U(r2),

(3)

(4)

X g G(k, rsab)Y& (8$, )

m„, m,

(&~$2)o (1)o (2), (10)

where U is the screening potential as discussed in Sec. I.
The eigenvalues and eigenfunctions of Ho are given as
(e, +eb) and

l [ab) &. Here the curly brackets indicate
the properly antisymmetrized wave function. The eigen-
functions of the Hamiltonian H can be written as

(5)

Here
l [p,b) & is the pair function that represents the

correlation part of the wave function that is not included
in the product function

l [ab ) &. Two-electron wave func-
tions can be written in terms of nonsymmetric functions
as

where 6 is an angular coupling factor as given in Ref.
[13].

Then Eq. (9) yields a set of associated partial integro-
differential equations that cannot be solved analytically.
Two methods to compute approximate solutions have
been proposed. Salomonson and Oster developed a finite
discrete spectrum method to calculate the ground state of
the He atom in 1989 [16], while M5.rtensson [13] applied
an iterative method of solution. In each iteration, only a
partial differential equation is solved. The present work
is based on the iterative approach. The main procedure
has been described explicitly in MArtensson paper. The
approximate eigenvalue of H can be calculated by means
of

IIq.b) &=
2

(6) E =c., +cb+ ab ab
1

r12

l [ab ) &
= —la (1)b (2)—a (2)b (1)&,

1

v'2
+([ab) In.b))

TABLE I. Ground-state energy of the negative hydrogen ion in Debye-Laughton potentials with
3=1, 8=0, C=O, and different D values. The asterisk indicates an unbound system. Energies are
given in atomic units. D is given in atomic length units.

20
32
33.5
34
35
50

100
200

1000
infinite

Ground-state energy of H

—0.43403*
—0.467 98*
—0.470 34
—0.471 25
—0.472 54
—0.488 66
—0.508 12
—0.517 83
—0.525 70
—0.527 32

Ground-state energy of H

—0.451 82
—0.469 67
—0.470 85
—0.471 23
—0.472 05
—0.480 29
—0.490 07
—0.495 02
—0.499 00
—0.50000
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50 100 1000

TABLE II. Ground-state energy of the negative hydrogen
ion in Debye-Laughton potentials with A = 1, C= 0, and
different B and D values. The asterisk indicates an unbound
state. D is given in atomic length units.

TABLE IV. Energies of
~
ls2s 'S) and

~
ls2s 'S) states, the

energy splitting between these two states of the He atom in
Debye-Laughton potentials with 3=2, B=O, and C=O, and
different D s. States with an asterisk are unbound. D is given in
atomic length units.

0.002
0.005
0.010
0.0138

—0.485 02
—0.479 34
—0.469 86
—0.462 40*

—0.504 11
—0.498 27
—0.488 57
—0.481 03

—0.521 69
—0.515 70
—0.505 73
—0.498 11

All data in this paper are given in atomic units except
when indicated otherwise. The calculations include con-
tributions up to d symmetry (d limit).

9
10
12
20
50

100
200

11s2s 'S)
—1.754 590*
—1.796 123*
—1.847 463
—1.965 439
—2.066 355
—2.104 609
—2.124 305

l ls2s 'S)
—1.785 696 *
—1.820 088
—1.873 086
—1.991 352
—2.096 277
—2.134688
—2.154 638

Energy
splitting

0.021 106
0.023 965
0.025 623
0.026 913
0.029 922
0.030 079
0.030 333

Eigenvalue
of He+(1s)

—1.786 717
—1.807 265
—1.838 404
—1.908 184
—1.960 298
—1.980 074
—1.990 182

III. RESULTS AND DISCUSSIQNS

For plasma diagnostic purposes it is necessary to relate
experimental quantities to relevant plasma parameters,
such as particle density no and temperature T. The radi-
ation due to transitions between low-lying electronic
states, i.e., those that are bound under not too extreme
plasma conditions, as well as free-bound transitions are
only two of various electron processes that are habitually
utilized for diagnostics. For this purpose the knowledge
of accurate transition energies as a function of the plasma
parameters is mandatory. In this context the dependence
of the Debye parameter D on the particle density and the
temperature is used: D is proportional to (T/no)'~ . The
information on the transition energies (which is given in
the present work) has to be augmented by an analysis of
the typical line broadening in plasma environments
(which has not been calculated here) as well as an investi-
gation of the admixtures of optically forbidden lines that
are common in plasmas due to the temporary breaking of
the spherical symmetry. Under ideal circumstances the
measurement of two transitions with different depen-
dences on the parameter D would allow the determina-
tion of the two relevant quantities no and T, always as-
suming the validity of the simple Debye model. In prac-

tice, such an analysis is based on a large variety of experi-
mental information.

In the modified form of the Debye-Laughton potential
the parameter B has been introduced to add a potential
barrier in order to be able to analytically represent poten-
tial shapes that are more in agreement with the results of
ab initio Monte Carlo or molecular-dynamics ap-
proaches. By the same token, however, the familiar in-
terpretation of screening in terms of the single parameter
D and, in particular, its simple dependence on no and T
have been lost. Since the potential barrier is relevant
only for dense plasmas that are controlled by collisions,
as opposed to radiation, the few results that involve non-
vanishing values of 8 (see Table II) are somewhat de-
tached from the rest of the present data. A much more
detailed analysis is required before they can be utilized
for plasma diagnostics. To our knowledge this has not
yet been done and lies well beyond the scope of the
present work.

A. Stability of H

Tables I and II list the ground-states energies of H in
different screening potentials. From Table I, we see, as

nH /n 0.1 0.2 0.5 10

T (K)
nc

29
0.41

T (K) 360
n, 2.5

T (K) 640
ne 1.1

33
0.46

400
2.7

690
1.2

D=35
40 48
0.56 0.66
D=50

460 520
3.1 3.5
D= 100

770 840
1.3 1.4

58
0.81

590
4.0

930
1.6

82
1.1

110
1.6

720
4.9

860
5.8

1080 1230
1.8 2.1

TABLE III. Relation between temperature T, the electron
density n, (in 10 ' m ), the ratio NH /n of the number den-

H

sities of H and H, and the screening constant D, which is given
in atomic length units. Each pair of values T and n, has been
determined so that the Saha-Boltzmann [17] equation and the
defining equation for D are satisfied simultaneously.

—1.86—
—1.88—

C
'

~—1.90—
C7 —1.92—
O

'E —1.94—
0
o —1.96—
C

—1.98—
Ql

—2.00—
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—2.02—
I I I

20 30
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sc reening parameter 0 (in atomic length units)

FIG. 1. Energy of the ground state of the He+ ion (solid
curve) compared to the energies of the ~ls3s 'S) and ls3s 'S)
configurations of the He atom (dotted and dash-dotted curves,
respectively) for different values of the screening parameter D of
the unmodified Debye model.
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1
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expected, that by increasing screening the system be-
comes less bound. Without screening (corresponding to
infinite D) the energy is —0. 527 32 a.u. , which is 0.027 32
a.u. lower than the ground-state energy of H. When D is
about 34, the stability of H becomes critical, i.e., the
system energy —0.471 25 a.u. is very close to the
ground-state energy of H at —0.47143 a.u. For D less
than 34, H is unbounded. Assuming a ratio n H In of
the density of neutral hydrogen atoms to negative hydro-
gen ions, one can, with the help of the Saha-Boltzman
population analysis [17] and the usual definition of the
Debye parameter D, associate a pair of temperature T
and electron density n, values with each value of the
binding energy from Table I. This is shown in Table III.

B. 1sns states of the He atom

The jsns electrons can exist in singlet states
I
jsns 'S )

and triplet states
I
lsns S). The radial wave functions

for the singlet state 'S and the triplet state S of the two-
electron system are, respectively,

r, r2$"(r „r~ )

sc reening parameter D (in atomic length units)

FIG. 2. Energy of the ground state of the He+ ion (solid
curve) compared to the energies of the I js4s 'S ) and the

I
js4s ~S) configurations of the He atom (dotted and dash-

dotted curves, respectively) for different values of the screening
parameter D of the unmodified Debye model.

The total interaction energy takes the form

( ls, nsI V js, ns )+(js,ns VIns, js )

+ ( js, ns
I Vlpi„, &+( js, ns

I Vlp„, i, & (13)

where + indicates spin singlet states while —stands for
triplet states and we neglect higher-order contributions.

Table IV lists the Anal results of the energy of the

I

ls2s 'S) and
I
ls2s S) states of the He atom in a

Debye-Laughton potential. The fourth column presents
the splitting of the energy of the singlet and the triplet
states. The energy splitting of the two configurations de-
creases with increased screening.

In Fig. 1 we show the energies of the ground states of
the He+ ion and the

I
js3s) states of the He atom in

different screened Coulomb potentials. The solid line
represents the He+ energy, while the dotted and the
dash-dotted lines correspond to the energies of the

I
js3s 'S ) and the

I
js3s S ) states of He, respectively.

When D decreases (i.e., the screening increases), the ener-
gies of both He+ and the

I
js3s 'S) and the I ls3s S)

states of He increase, but at different rates. Figure 2 has
the same meaning as Fig. 1, except that it refers to the
energies of the js4s ) states of the He atom.

C. Transition energies between the 1s2p, the 1s2s,
and the ground state of the He atom

The 1snp electrons can exist in a singlet conAguration
I
jsnp 'P ) or a triplet configuration

I jsnp P ) . The ex-
pressions for the wave functions and the energies of these
configurations are similar to those discussed for the 1sns
case. Columns 2, 4, and S in Table V show the energies
of some transitions in the He atom under various screen-
ing conditions. The results listed in column 3 refer to a
transition that is dipole forbidden in an isolated atom. In
a plasma environment such transitions may occur and are
in fact a valuable tool for plasma modeling and diagnos-
tics. The transition energy increases between

I
js2p 'P)

and
I
jsjs 'S ) states, as well as between js2p P ) and

I
jsjs 'S ) when the screening decreases, but decreases be-

tween
I
js2p 'P) and js2s 'S) states. However, a simi-

lar trend has not been found for the transition energy be-
tween lls2p P) and lls2s S).

[P„(r,)P„,(rz )+P„,(r, )P„(r, )
1

2

+p(lsns, r, r2)+p(nsjs, r, rz)] . (12)

IV. SUMMARY

The pair-function approach has been used to calculate
energies and wave functions of the two-electron system in

TABLE V. Transition energy between the ground states and some low excited states. 3=2, B=O,
and C=O. Data with an asterisk indicate unbound upper states.

Ijs2p 'P)-I s jsj'S) Ijs2p P)-Ijsjs iS)
I
js2p 'P)-Ijs2s 'S)

I
js2p P)-I js2s S)

10
20
50

100
200

infinite

0.764 29*
0.784 88*
0.793 12
0.793 16
0.793 29
0.793 49

0.716 76*
0.744 95*
0.751 96
0.762 05
0.762 12
0.762 34

0.042 24
0.037 93
0.037 36
0.037 23
0.037 21
0.037 20

0.028 68
0.026 24
0.027 27
0.026 18
0.026 34
0.026 29



220 ZHENGMING WANG AND PETER WINKLER 52

Debye-Laughton potentials. When screening increases,
the contribution of the interaction energy decreases for
both the ground state of helium and excited 1sns states of
He. He becomes also less bound. The critical value of D
at which the two-electron system becomes unbound
varies for difFerent states. For higher excited states, this
happened at larger values of D. The singlet configuration
becomes unbound at a larger D than the triplet

configuration. The transition energy can be used for plas-
ma diagnostics.
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