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Nonclassical Bose-Einstein condensate
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A scheme is proposed to manipulate the quantum-statistical properties of a neutral atomic Bose-
Einstein condensate in an ultracold alkali-atom-trap system with atoms in the ground hyperfine
F = 1, M& = +1,0 states (labeled respectively as

~
gy, o)). Initially, the atomic condensate is

assumed to be prepared in a hyperfine sublevel
i g ). By efFective two-photon excitations with two

classical (o ) and quantum (o+) nonresonant copropagating traveling-wave light fields, we show
that the atomic system can be settled into a coherent superposition of two atomic Bose-Einstein
condensates corresponding to diferent ground hyperfine sublevels and diferent quantum statistics.
Furthermore, with an appropriate choice of interaction time, atom-field coupling strengths, and
quantum features of the quantized laser field, a nonclassical condensate can be prepared in the
hyperfine sublevel

I g+).
PACS number(s): 03.75.Fi, 42.50.Dv, 05.30.Jp, 42.50.Vk

Recent advances in laser cooling and trapping have
stimulated research on the system composed of ultra-
cold atoms. Both experimental and theoretical aspects
of achieving Bose-Einstein condensation (BEC) in a con-
fined atomic gas have recently attracted great attention
[1—9]. There seem to be many technical difficulties in
reaching such a goal. Although the experimental achieve-
ments are beyond the ambitious goal, it is a general be-
hef that BEC is possible in a confined atomic gas. Using
such a belief, theoretical research on the interaction of a
BEC with a light wave and other relative topics in quan-
tum statistics of ultracold atomic ensembles made rapid
progress in quantuin optics [10—21]. In the present pa-
per, we propose a scheme to manipulate an atomic BEC
by a quantized light Geld, and show the possibility of
preparing a novel condensate with a nonclassical density
Beld.

Since many experiments attempting to realize gaseous
BEC are carried out in some kinds of trapped geome-
try [1—9], it is plausible to adopt a conventional con-
Gguration with neutral atoms confined in a trap po-
tential. In a harmonic trap, the minimum number of
atoms (N ) needed to obtain BEC is explicitly depen-
dent on the oscillation frequency v and ultimate temper-
ature T. For instance, in an ultracold atom-trap system
with v = (27r) x 100 Hz and T, = 0.1 pK, the max-
imum number of atoms in the normal-state fraction is
N = 10 . If the total number of atoms N exceeds N,
the excess atoms (N, = N —N„) go to the vibrational
ground state

i
0). It has been shown that about 10s alkali

atoms could be stored in a magneto-optical trap (MOT)
[1—4] by the use of evaporative cooling techniques. Here,
we will deal with moderate numbers of atoms and focus
our attention on an atomic system of Li [22—24) atoms
in the ground hyperfine sublevels E = 1,M~ ——+1,0,
labeled, respectively, as

i g~ o). Initially the sublevels

] go) and
] g+) are assumed to be depopulated by pos-

sible experimental techniques [1—4]. We make a further

assumption that N 10 atoms are accumulated in the
state

] g )ts
i 0) to form a BEC. Two copropagating o+

and o traveling-wave light fields are employed to ex-
cite the atomic condensate via two-photon excitations.
The o light wave is assumed to be strong enough to be
treated as a classical field and the 0+ light wave is a weak
quantized field. In the processes of two-photon coupling,
some intermediate states

i
F = 0, 1, 2, M&l ——0), labeled

as
i j), are involved. The schematic diagram for such a

two-photon excitation is shown in Fig. 1. The transfer
of atomic population between the ground-state sublevels

i g ) and
] g+) due to the two-photon excitations may

create a new condensate in the sublevel
] g+). We shall

show that the generated condensate can be settled into
different quantum states by appropriately choosing the
quantum states of the weak quantized light Geld. In this
sense, the two-photon excitations result in a coherent su-
perposition of two atomic Bose-Einstein condensates cor-
responding to different hyperfine sublevels and different
quantum statistics [25]. Furthermore, if the interaction
time for the two-photon coupling and strengths of the
light fields are appropriately selected, and if the quan-
tum light Geld is initially prepared in a certain nonclas-
sical state, a nonclassical condensate can be generated
by the use of quantum features interchanged from the
quantized light Geld to the generated condensate.

I g+l

FIG. 1. Schematic diagram of two-photon excitation of
atoms in a Bose-Einstein condensate.
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To initiate our arguments, we begin with a systematic
Hamiltonian for the noninteracting (ideal) boson alkali
atoms confined in MOT in the following second quan-

tized form [12—16,25—28] in a frame rotating at the fre-
quency of the applied laser fields and in the rotating wave
approximation (RWA):
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where
~ j) represent intermediate atomic internal states

with energies ha~ and b~ = ~~ —~ denote the associ-
ated laser detunings (ur is the laser frequency). Atoms
in a MOT are usually trapped near a local magnetic
field strength extremum [1—9], where the ground hyper-
fine levels are Zeeman split by a small amount. We may
neglect the Zeeman shifts here for the sake of simplicity.

and P; are atomic creation and annihilation oper-
ators for atoms with the atomic internal structure and
center-of-mass motion being in the states

~
i) =~ g~, j)

and Fock states
~

n) of vibrational energies e, respec-
tively. n is used to label the nth vibrational state and
it is actually a triplet index (n, n„,n, ). yq 2 are the
phases of the applied laser fields. The first three terms
in the above Hamiltonian are the energies of the ground-
state sublevels

~ g~) and intermediate states
~
j). Note

that the ground hyperfine sublevel
~ go) is not involved

in the questions considered here. The fourth and fifth
terms describe the interaction of the atomic ensemble
with the strong 0 -polarized laser and weak o+-polarized
quantized laser fields. In terms of the conservation of
angular momentum, the intermediate states are those
with magnetic quantum number M+~ o z 2

——0. The
strong o -polarized laser only couples to the internal
states

~ j) and
~ g+), and the weak 0+-polarized quan-

tum laser only to the states
~ j) and

~ g ). The cou-
pling strengths are, respectively, denoted as O~ and g~.
The quantized laser is described by the Hermitian con-
jugate operators a and a~. The last three terms are re-
lated to vacuum light fields and their interaction with the
atomic ensemble, which may give rise to some incoher-
ent effects, such as atom-atom interactions due to photon
exchange, spontaneous emissions, and collective sponta-
neous emissions [13—18,25—28]. Previous analysis [13—15]
has demonstrated that the rates I'~ of the collective spon-
taneous emissions Rom the intermediate states

~ j) scale
as I'z 2N pz, with 2' being the spontaneous emission
rate of an individual atom. On the other hand, the many-

I

I

body interactions originated &om the photon exchange
are proportional to N, p~/! h'z

~
[16—18,26,27]. Hence only

under conditions with very large laser &equency detun-
ings (~ b~ ~)& K,p~) can we neglect these incoherent pro-
cesses. Typically, the optical linewidth for an individual
atom is of the order of p~ & 10 Hz. For the parameters
considered here, the eBective spontaneous emission rates,
as was indicated in a recent calculation performed by
Lewenstein and co-workers [16,26] and Javanainen [18],
are of the order of hundreds of GHz. We may thus se-
lect the laser &equency detunings to be of the order of

~
bz ~& 10 Hz to avoid the incoherent influence &om the

vacuum fields. Moreover, a recent self-consistent analy-
sis [16,26] has shown thatif , the laser-atom interaction
time is selected as short as 10 ps, the collective spon-
taneous emission can be legitimately neglected. Here-
after, we will assume that the two applied light waves
are pulses of the same temporal envelope with duration
10 ps and width pL, 10 Hz. Then, in. the interac-
tion Hamiltonian, exp(ik r) should be substituted by

f [pL, (t kL, .r/ur)] e—xp(ikr, r), which corresponds to an as-
sumption that the pulses have forms of plane wavepackets
propagating in the kL, direction with the center frequency
ur and polarizations ot and o, respectively. f(pr, t) is
the temporal envelope of the pulses chosen to be real.
In the trap system concerned, the characteristic length
is the size of the vibrational ground-state wave function
a 10 m, while the o+- and cr -polarized photon
momenta are in the range hkL, + h»/c, whose changes
are negligible in comparison with 1/a 10s m . We
may thus safely set k kL, [16,26]. Moreover, since the
widths of the pulses are much smaller than the laser &e-
quency detunings, the 0'+-polarized (weak) laser pulse
can be approximately viewed as a single quantum elec-
trornagnetic mode with time-dependent amplitude. In
such assumptions and approximations, the Hamiltonian
can be rewritten as
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The coherent transitions described in the above Hamiltonian include atomic excitations &om ground hyperBne sublevel

~ g+, n2) to intermediate states
~ j,ni) by absorption of 0 -polarized light photons, and transitions between

[ g, n2)
and

~ j,ni) driven by the quantized light field. In view of the large laser &equency detunings, we may adiabatically
eliminate the intermediate states. As will be shown in the following, the applied laser fields produce two eEects:
two-photon transitions between

~ g~, n) and
~ g+, n), and ac Stark shifts, respectively. The atomic excitations of the

condensate create a new condensate in the sublevel
~ g+) if more than one atom is left in

~ g+, 0), and the excitations
of atoins in the normal-state &action (~ g, n g 0)) give rise to atoms in the normal-state &action (~ g+, n P 0)) for
the newly generated condensate. In our case, the atomic and quantized light fields satisfy the following Heisenberg
equations of motion:

'4+ = ).~pe f(&Lt)+i, ~ (n I
e '

I ni) )
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Since the c.m. energies e are very small compared to the spontaneous emission rates and laser &equency detunings,
we have approximately set e„=0. Moreover, the atomic field operators pi, „can be adiabatically eliminated,

) O~e
' ' f(pgt)Pg+, ~2(n I

e'" '
I n2) + ) g~e '~'f(p~t)aug, , (n I

e' ~'
I n2) (4)

where terms oscillating rapidly at the &equencies bj are neglected. We next substitute these results into the differentia
equations of the atomic Beld operators pg~ and laser Beld operator a to derive

OjO' .0*- j .
( )4'g+, n = ) f ('YLt)4'g+, n ) e f (1L )+4'g, n

j

i&,~= —). &'f (~~t)4gt ~4g . —) &

'e ' ' '*'f'(~st)4gt, 4g+,
,n 3 Din

The inHuence of atomic excitations on the weak quan-
tized field is originated from the two-photon Rabi os-
cillations of the condensed atoms (~ g~, o)) as well as
normal-state atoms (~ gy, n g 0)). In this paper, we
suppose that the condensated atoms produce an over-
whelming counteraction on the weak quantized light field,
and we neglect the eKects &om the atoms in the normal-
state &action. This is valid when the number of atoms
in the condensate is large in comparison with that in the
noncondensate &action. We will give some further com-
ments on this topic in what follows. On the other hand,
since we are con&onted with a situation of weak quan-
tized light field and large laser &equency detunings, the
ac Stark shift and time derivation of the ground-state
sublevel

~ g ) are negligible. In a customary way, the
condensate is well described by a coherent state

[ a) [29]
defined as

o [ n) = QN e '
[ n)

The corresponding creation and annihilation operators
can then be treated as c numbers. We introduce the ac
Stark shifts

Sg ———

gjg ~ SC
S2 ———

j 2

as well as efFective two-photon coupling constant

Then, the difFerential equations of the density Beld P+ ——

o can be solved in terms of the initial operators a(0)
and y+(0) [3O],

t)s. (s) =s ' ~ (qis. (0) sos(b)

B Sg —S2
i —a(0)+—P+ (0) sin((7. )

where $ = g(Si —S2)2/4+
~

B ~z is the generalized two-
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photon Rabi frequency, and w = I f~(pr, t) dt is defined
as the pulse area. If the laser Gelds and pulse area are
selected to satisfy

Si ——S2

( 11
I
&

I « ——
I
N+ —

I
~

where « ——f dtf (pL, t), the density field P+(«) be-
comes

(10)

where the phase &p is defined as e'~ = e '
& 'A/

I
R I,

and g = p + (N —1/2)m. Hence, after the two-photon
excitations, the condensate in the hyperfine sublevel

I g+) is only characterized by the initial features of the
quantized laser Geld.

In the interaction picture, we set the wave function
I

of the total system, including the radiation and atomic
density fields, to be

I &p) =I p+) I yy), in which
I p+)

and
I yy) are the wave functions of the atomic den-

sity field P+ and quantized laser field, respectively. If
the quantized laser Geld is initially in a vacuum state
I yy) =I 0), i.e. , a(0)

I
0) = 0, no atoms will be popu-

lated in the atomic hyperfine sublevel
I g+), for the field

P+ will also be in a vacuum state
I y+) =I 0) after the

excitations. If the quantized laser Geld is initially in a
Fock state

I pt) =I n), i.e. , a (0)a(0) I n) = n
I n),

the field P+ will also be in a Fock state at t = +oo,
for Pt+(«)P+(«) I y) = at(0)a(0)

I y) = n
I p). More

interestingly, if the quantized laser Geld is initially in a
squeezed coherent state

I yy) = D(ni, t = —oo)S(8, t =
—oo)

I 0), with D(ni, t = —oo)—:exp [niat(0) —n*a(0)]
and S(8, t = —oo) = exp 28'a (0) —28at2(0), where 8
is the squeezing parameter, squeezing occurs at t = +oo
for the state of the quantum density field P+, because
the state generated by the operator

D+(ni, t = +oo)S+(8, t = +oo) = exp [nig+(«) —n;P+(«)] exp
I

8'P+(«—) ——8&+ («) I

fl, 2 1

(2 2

is D(nie 'x, t = —oo)S(8e 'zx, t = —oo)
I 0), which

has the squeezing parameter Oe ' ~. That means the
squeezing properties of the quantized laser Geld can be
converted to the quantum atomic density field P~. This
kind of quantum conversion [30] can be shown clearly in
terms of the expectation values of the fluctuation opera-
tors. If the quantized laser Geld is squeezed in one of the
quadrature phase operators defined as X'i ——(a + at)/2
or X2 ——(a —at)/2i, at t = +oo, the atomic density
field P+ will be squeezed with the squeezed quadrature
phase operator defined as Yi ——(P+e '" + P+e'&)/2 or

Y2 ——(P+e 'x —P+e'x)/2i, respectively, for

((&Ye)')I; = (v I Y,'(«) I ~) —[(v I Y(«) I
v)]'

(v I x,'(t = —~) I v )

-[(v
I x, (t = -~)

I
~)]'

= &(&x~)')Ii=--
On the other hand, the average number of atoms in
the generated condensate is equal to the initial pho-
ton number of the o+-polarized quantum laser field, for

(P+(«)P+(«)) = (a (0)a(0)). Since the quantized light
Geld is weak, only a small number of atoms are condensed
in the hyperfine sublevel

I g+, 0). Furthermore, the two-
photon. excitations create coherence between the ground
hyperfine sublevels

I g~); the atomic system is thus set-
tled into a coherent superposition of two atomic Bose-
Einstein condensates corresponding to difI'erent internal
ground. -state sublevels and diAerent quantum statistics.

It is worthwhile emphasizing that the above discussions
are carried out under the assumption that the condensate

p is in a coherent state. In a real condensate,
the associated density Geld, which has Poissonian quanta
statistics, may not be coherent. However, if the boson
operators acquire very large macroscopic expectation val-

ues:
I (P ) I=I (Pt ) I= i/N, )) 1, the commutators for

the operators P and P can be ignored, and the con-
densate in the state

I g ) can be approximately treated
as a classical density. In such a limit, the operators for
the density field P can be replaced by the associated
c numbers. This is analogous to that commonly used in
quantum optics where large laser fields are treated classi-
cally. In the above considerations, we have neglected the
interaction between particles. This assumption is only
valid if the characteristic energy of elastic interaction be-
tween atoms is much smaller than the level spacing in
the trap, i.e. ,

nU (& hv

where n is the atom (condensate) density, U
4vrh a, /m, m is the atom mass, and a, is the scatter-
ing length. We consider 10 ~Li atoms in a trap with
v = (2n) x 100 Hz, n is estimated to be of the order
n 101 cm s. With realistic number 10 A. for the
scattering length, we obtain nU 10 4 K [nU/h
(2m) x 10 Hz], i.e., much larger than hv. This means
that the interaction between (ground-state) atoms can-
not be neglected. One may consider the interaction
along with the following strategy: An ideal Bose gas
can be well described with a macroscopic wave function
'IPp(1') = QN, (r I

0). For any interacting condensate
an analogous gl(r) should exist. In our theory, go(r)
has in e6'ect been coupled with light Gelds as a rigid en-
tity. It is reasonable to postulate that in an interacting
system @1(r) is simply used instead of Qp(r). Although
the macroscopic wave function gl (r) is to be determined
&om the theory of an interacting Bose condensate, the
results will be qualitatively similar to the results Rom
the theory of an ideal Bose gas. As for the interaction
between excited- and ground-state atoms, it takes the
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(12)

where the atomic fields gg~ (R) and gs (R) are introduced
as

(13)

(14)

and ~ds ~~ is the absolute value of the dipole moment
between atomic internal states ]g~) and

~ j), respectively.
For the density we consider in this paper, n 10 cm
the mean interparticle separation is much larger than the
optical wavelength A/2m:

nA'/8~' && 1

In such a situation, the integration in the expression (12)
is very small, and therefore the contact interaction be-
tween ground-state and excited-state atoms will play a
negligible role. Also the collective optical excitations will
be absent [10,11]. On the other hand, the number of con-
densate atoms is dependent on the texnperature T of the
system as

(Tl
N, =N 1 —

i

—
iET) (16)

where T is the critical temperature [N„
1.2202(k~T, /hv) ]. So far we have mostly ignored

the atoms in the normal-state (noncondensate) fraction.
From the experimental point of view, what seems realistic
is that only a not-too-large part of atoms is in the conden-
sate, and that the gas temperature is just a little below
the critical value. As was shown [32], for magnetically
trapped hydrogen only a small &action of atoms can be
in the condensate, mainly because of strongly enhanced
spin relaxation. One may expect the same for lithium

following form in the coordinate representation [31] and
in the shape-independent approximation [27):

Id=de ) [fd R~d, ~~ d~ (R)dJ(R)d, (R)d (R)

+ dRd~ ~ R ~R ~R g R

atoms in MOT, in this case because of the strongly en-
hanced three-body recombination. Once the condensate
is forxned in the trap, it is strongly coxnpressed by the in-
hoxnogeneous trapping potential. The corresponding in-
crease of density leads to strong enhancement of inelastic
collisional processes, and the trapped gas sample decays
very rapidly [32]. In this sense, the approximation, in
which the efFects from the noncondensate atoms are ne-
glected, may become questionable. As is shown in the
above analyses, the two-photon Raman processes con-
sist of transitions within the condensates or normal-state
&actions in the difFerent hyperfine sublevels. Transitions
within the normal-state &actions may produce signiG-
cant counteraction on the weak quantum light Beld, and
thereby may mask the quantum feature interchange be-
tween the condensate and quantum laser field. Quantita-
tive analyses on the efFects &om the normal-state &action
are soxnewhat difBcult, but we can make a few qualita-
tive arguments. We note that the matrix element for the
two-photon Raman coupling between the condensates in
the hyperfine sublevel ]g~) is proportional to a numer-
ical factor QN„while the maximum thermal occupa-
tion number of a noncondensate state in our situation is
k~T/hv 20. As a result, collective efFects are less im-
portant for atoms in the normal-state &action, especially
in a system with small atomic density: nA /8m « 1.
For example, we assume that the gas temperature is
T 0.75T, (N, /N 37/64 ) 1/2), then the infiuence
on the weak quantum laser Geld is mainly caused by
transitions within the condensates, and hence the above-
mentioned quantum conversion will not be masked by the
transitions between the thermally occupied nonconden-
sate states.

In summary, we emphasize that by the use of the quan-
tum conversion between the quantized laser and atomic
density fields demonstrated here, some novel kinds of
BEC with nonclassical features for the associated den-
sity field can be achieved. It may be of theoretical in-
terest to investigate the quantum statistics of that novel
kind of condensate. The experimental exploration of the
predicted efFect has to await laser cooling and trapping
technology capable of achieving the normal BEC with
large degree of condensation.

This work is supported in part by the National Sci-
ence Foundation of China and the Australian Research
Council.
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