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Universal, spherical, nonsingular van der Waals interactions including retardation effect are
developed for atoms and small molecules through a semiclassical field approach. Consideration of
the finite molecular size effect removes the short-distance singular behavior inherent in the widely
used potentials obtained from the point-molecule approximation. Physical arguments lead to the
molecular size parameter a (in atomic units) as 1/a = 1.25(I/IH), except for a system that
involves at least an atom or a molecule with very different first and second ionization potentials,
and for such a system the above numerical factor 1.25 is replaced by unity. Here I and IH are the
first ionization potentials for the atom or molecule considered and for a hydrogen atom, respectively.
The nonsingular potentials have been tested for the following representative systems: H2 ( Z„+), He&,
Ar2, NaK ( Z+), LiHg ( Z+), He-HF, Ne-HF, HF-HF, and Ar-HCl. Very good agreement has been
found for each of the systems. Based on the above systems studied, an empirical relation has been
obtained between the parameter b in the Born-Mayer repulsive potential Ae and the molecular
size parameters (aq and a2). Applying this relation to dozens of systems with known b from either
self-consistent-field calculations or experiments, surprisingly good agreements have been obtained.
By the same token, another empirical formula is obtained that relates the van der Waals minimum
well parameter R to the molecular size parameters (aq and a2) and the first ionization potentials
(I and I„) of interacting species. Again, very good agreements have been achieved in comparison
with dozens of systems with known experimental B 's.

PACS number(s): 34.20.Gj, 32.10.Dk, 31.15.Ct, 41.20.Bt

I. INTRODUCTION

Physical, chemical, and biological phenomena are
mostly governed by the so-called van der Waals interac-
tions in the region of separation &om a few angstroms to
even micrometers for neutral systems [1]. The dispersion-
energy component of this interaction is usually the domi-
nant contribution and is the only contribution for neutral
nonpolar systems. However, due to its smallness (less
than a few hundredths of an electron volt), the direct ab
initio calculation of this force is very limited even with
the advent of modern computers [2]. The essential diffi-
culties arise &om the errors inherent in subtracting the
sum of very large energies of isolated molecules from the
only slightly diferent total energy of the corresponding
interacting molecules. In practice, the most favorable
approach to study the dispersion energy is still semi-
empirical. Such constructed potentials have the theoret-
ically correct behavior at long range and at short range.

The widely used semiempirical van der Waals potential
is obtained simply by adding the short-range Born-Mayer
repulsive potential to the long-range dispersion energy as

V(R) = Ae —Cs/R —Cs/R —Czo/R, (1.1)

with R the intermolecular separation. The exponential
repulsive term is largely due to exchange as well as elec-
trostatic forces and can be determined fairly accurately,
for example, by the self-consistent-field (SCF) calcula-
tions. However, as described in [2], the attractive part
of the above potential is only asypmtotically (R + oo)
correct and is usually problematic around the van der

Waals minimum, the region of interest. For example,
even though the above model with SCF values for A and
6 and theoretical values for C6, Cs, and | qo was able
to predict the experimentally available rare-gas dimer
well parameters to within a few percent [4], it gives
a purely attractive interaction with no potential mini-
mum for alkali-atom —rare-gas systems and systems such
as NaK(sZ+) and LiHg( Z+). Recent beam-scattering
experiments [5—7] also show that the experimentally de-
termined interaction constant Cs is almost 50% less than
the precise theoretical values for a few systems if the
London potential —Cs/R is used. In other words, the
above model satisfies the criterion of the semiempirical
approach at long range and at short range, but is un-
able to give the correct description of the intermediate
region for arbitrary atomic or molecular systems. This
is entirely due to the improper application of the only
asymptotically correct attractive interactions to the re-
gion around the van der Waals minimum. Our purpose
is to go beyond the semiempirical approach, if not com-
pletely &om first principle, to find an attractive potential
that is correct at least around the van der Waals mini-
mum and for larger intermolecular separations. Such an
attractive potential can replace the attractive part in Eq.
(1.1) so that the resulting potential can be used to de-
scribe the van der Waals interaction for arbitrary atomic
or molecular systems.

The development of the dispersion interaction began
not long after the advent of quantum mechanics. The
famous London force is the Quctuating dipole-inducec'
dipole interaction of two neutral molecules, i.e., the
lowest-order contribution of the point-multipole expan-
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sion of the dispersion energy. This point-multipole ex-
pansion follows the traditional perturbation approach
and is easy to handle; however, this approach presents
the divergence problem as noticed first by Brooks [8],
and later by Roe [9] and by Dalgarno and Lewis [10],
with some improvement of Brooks's original proof. This
expansion converges to the true dispersion energy (in the
sense of Poincare) only as the intermolecular separation
goes to infinity. Each term in the point-multipole expan-
sion displays singular behavior for vanishing intermolec-
ular separation. The main reason behind these problems
is the omission of efFects of finite molecular size in the
point-multipole expansion, which is closely related to the
electronic charge overlap. Theoretically speaking, quan-
tum mechanics tells us that the electronic wave function
extends to in6nity in space. Therefore, charge overlap be-
tween molecules always occurs and, strictly speaking, the
point-multipole expansion may not be a valid approach in
describing the dispersion energy. However, the electronic
charge distribution of a molecule usually falls to vanish-
ingly small values after some distance &om its center.
Therefore, if e8'ects of molecular size are incorporated
into some multipole expansion, one expects that the di-
vergence problem and the short-range singular behavior
mentioned above in the usual point-multipole expansion
could be cured and. a good approximation for the dis-
persion energy can be obtained at least around the van
der Waals minimum. Based on the exponential decay
of wave functions and the fact that the point-multipole
expansion approaches the true dispersion energy asymp-
totically, Brooks made an educated guess by introducing
a so-called incomplete I' damping function to each term
of the point-multipole expansion. By this artifice, the
aforementioned unwanted features disappear.

Along this line, various damping functions are pro-
posed semiempirically or &om 6rst principles. It is
worth mentioning the two most widely used semiem-
pirical damping functions, the Hartree-Fock dispersion
damping functions of Douketis et al. [11]and the incom-
plete I'-function damping function of Tang and Toen-
nies [12], both of which ensure that the dispersion en-
ergy remains 6nite at short range. The latter expe-
riences tremendous success, for example, in predicting
four chemically di8'erent types of van der Waals inter-
actions [H2 (sZ+), He2, NaK (sZ+), and LiHg (2Z+)] to
agree with either nearly exact ab initio potential or ex-
perimental potentials within 1'Fo and is theoretically sup-
ported. A few analytic formulas for the damping func-
tions have also been derived &om various physical con-
siderations. Jacobi and Csanak [13] were first able to
derive the damping function for the dipole-dipole inter-
action by using an analytical representation of the Born
amplitude in momentum space together with a general
angular momentum analysis. Koide [14] derived quite
general formulas for the individual nonexpanded disper-
sion contributions D„[D„representing that multipole
interaction which survives at infinity as C„/B and is
equal to f (B)C /B at finite intermolecular distance R,
with f the corresponding damping function and C„ the
dispersion interaction constant]. However, obtaining ex-
plicit f requires wave functions for the atom or molecule

considered, which are not available in general except for a
hydrogen atom. Applying his forxnula to H2 (sZ+), Koide
obtained explicit fs and fs T. he result is almost the same
as that of Jacobi and Csanak for fs and shows that fs
and fs can be represented to a good approximation by
the squares of appropriate incomplete I' functions. This,
to some extent, supports Brooks's conjecture. The other
aspects of the development of the d.amping functions are
discussed in review articles [12,15,16].

All the above approaches are, however, nonrelativis-
tic, i.e., not including the retardation eKects. As re-
ported in [2], the frequency integration upper limit of
the dispersion interaction can be determined only if both
the retardation efFect and the finite molecular size efFect
are considered. To calculate the nonsingular Quctuat-
ing dipole-induced dipole interaction, we adopt the semi-
classical field approach, which was developed by Casimir
[17,18] and by Casimir and Polder [19,20]. This approach
has the advantage that the retardation eKect is included
automatically. Consideration of the 6nite molecular size
efFect removes the singular behavior from the London po-
tential. The key to our calculation is the atomic or molec-
ular polarizability density tensor. We are able to prove
in general that this density tensor, to a good approxi-
mation, can be determined by the atomic or molecular
ground-state wave function with a parameter character-
izing the finite molecular size.

II. SPHERICALLY SYMMETRIC
POLARIZABILITY DENSITY TENSOR

Mahanty and Ninham were probably the first to use
the semiclassical Geld approach of Casimir and Polder
[17—20] to consider the finite molecular size effect [21—23].
They took a Gaussian form of the polarizability density
simply for mathematical convenience. As a result, their
retarded potential is very complicated and it is very hard
to go beyond the dipole-dipole interaction. This is prob-
ably the reason that Richardson [24] later generalized
only nonretarded interactions for higher multipoles. The
semiclassical 6eld. approach follows the physically intu-
itive description of dispersion forces. Consider the inter-
action between two molecules as an example. The vari-
able electric field produced by the instantaneous dipole
in one molecule acts on the other, therefore polarizing
it. Using the linear quantum-mechanical response theory
[25], the Fourier component of the polarizability density
tensor, including the consideration of the 6nite molecular
size efFect, can be expressed [23] as

(2.1)
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where

(dq~ = ) (2.2)

momentum quantum number, and m the magnetic quan-
tum number. The ground state is N = (100). The only
nonvanishing matrix elements are for Q = (q10) if k is
chosen along the z axis. One calculates

V(B) = —4mlif

x Tr(+2 (+1 +2 i() &&(&2 +g, i()), (2.3)

~N) usually stands for the unperturbed electronic ground
state of the atom or molecule, and ~Q) is the possible un-
perturbed electronic states of the atom or molecule. The
summation g& is to all the electrons of the corresponding
atom or molecule.

From electrodynamics, we know that once a time-
varying polarization is present, there is a current asso-
ciated with it. Therefore, the electromagnetic field sur-
rounding one molecule must be changed relative to that
when the molecule is isolated. In other words, the electro-
magnetic wave spectrum must be shifted in some fashion.
This shift can be determined by solving the correspond-
ing Maxwell equations with this current as the source
and by choosing the Lorentz gauge. As in the Drude
model, the sum of the &equency shifts multiplied by the
Plank constant for the entire spectrum of the two molec-
ular system must give the dispersion interaction energy
of the system. As a preliminary investigation, we focus
here only on the dipole-dipole dispersion interaction. The
general Huctuating dipole-induced dipole interaction, in-
cluding retardation, can be written [23] as

J=z '+'' +"1+1 q ~+ kap 2 ~+&

(ql0~rt100) = f e, (2.6)

one has

2

n(k, ur) = —egeg

2(dg fyq F~ (kap)
k[(kap) + (1 + 1/q) z] ~+&

(2.7)

where eq denotes the unit vector k/k. The frequency-
dependent polarizability density tensor is

n(r, ~) = dskcx(k, ur) e '"
(2z)s

where Fz(kap) is jth-order odd polynomial if j is odd, a
(j —l)th-order odd polynomial if j is even, and it ap-
proaches zero if k -+ 0. ap is the Bohr radius. The
explicit form of E~(kap) does not concern us; therefore,
it is not given here. Denoting

where R is the center-to-center distance of the two
molecules, Rq and R2 are the center position vectors of
molecule one and molecule two, respectively, and

where

2 ~ql f1q

q)2 ql
(2.8)

(2.4)

2 c2Ig(~ ~ . g) dsk (& / ) + ik (iq —vq)

(27r)s (2/c2 + k2

X d uzi ui e

A(r) = d kegege
27r s

F~ (kap)
k [(kap) 2 + (1 + 1/q) 2] ~+& (2 9)

with c the speed of light and I the unit tensor. Note that
the polarizability density tensor n(r, i() depends on both
position vector and. frequency. For the point-dipole ap-
proximation [i.e., by setting ct(r, i() = Ia(ig)b(r)], Eqs.
(2.3) and (2.4) give a potential whose nonretarded limit
is the London dispersion energy while the retarded limit
is the result of Casimir and Polder [20]. It is clear from
Eqs. (2.3) and (2.4) that once the polarizability density
tensor is known, the potential can be obtained simply by
performing a few integrations. Our job is to 6nd a gen-
eral spherically symmetric polarizability density tensor
for atoms and small molecules.

We begin with applying Eq. (2.1) to a hydrogen atom
since this is the only one whose Schrodinger equation can
be solved exactly and analytically. Besides, as we will
see, the characteristic functional form of the spherically
symmetric polarizability density tensor for other atoms
and small molecules can be obtained &om the study of
this simple system. For a hydrogen atom, the electronic
states can be represented as (num) in general with n the
principle quantum number, l the total orbital angular

If the unit vector eg is written in terms of the spherical
A A A

unit vectors (es, ey, e„) associated. with vector r, Eq. (2.9)
can be rewritten as

(2z) p . [(kap) + (1+ 1/q) ] +~

+1
x dxe '" "[7r(l —x )(csee+ eyey)

A A

2vrx2e„e„], (2.10)

where the azimuthal angle integration in k space has been
performed [note that relative to k space, the unit vectors

A A A

(es, ey, e„) are fixed]. Obtaining a spherically symmetric
polarizability density tensor is equivalent to performing
a directional average of Eq. (2.10). By noticing that the

A A A A

directional average of each of e„e, eeee, and eyey is equal
to one-third of the unit. tensor I, we end with
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1 1 kF~ (kap)
3 (2~)' . [(kap)'+ (1+ 1/g)']'+'

+1
x dx e-'" (2.11)

Because the polynomial Ez (kap) in Eq. (2.11) is an odd-
function of k, the integral in the above equation can be
evaluated using residue theorems (see the Appendix for
detail) as

W(r) = IG, , (r/ap)e ('-+'~q)"~", (2.12)

where Gq i(r/ap) is a (q —1)th-order polynomial of the
variable r/ap. The spherically symmetric polarizability
density tensor follows from Eqs. (2.8) and (2.12) as

e
&

2tuqi fiqGq i( /ap)
(d —QJ

q)2 gl

(2.13)

e
—P~/~o

cx(r, (u) = I o;(u)). (2.14)

Here the parameter P is introduced to account for
the atomic size efFect from the dominant exponential
exp( —r/ap) and those within the suin of Eq. (2.13) and
all the remaining r-dependent terms within the sum are
set to constants. Furthermore,

( )
e ) J'iqgqi

Cd
q&2 q1

(2.15)

where we have set +2uqi fiq ~ fiq and gqi is the col-
lection of those constants and a possible normalization
factor. We will return to determine P in Sec. IV.

Prom the above study, we conclude that the distance
damping eKect to the polarizability density tensor is de-
termined by the exponential factor exp( —r/ap) in the
ground-state wave function of the atom with a replace-
ment of ap, the Bohr radius, by ap/P, the parameter

Remarkably, Eq. (2.13) is quite simple. Every quantity
there is calculable, which implies that at least within the
linear response approximation, we can evaluate the cor-
responding potential given by Eqs. (2.3) and (2.4).

The subtle information of the hydrogen atom is con-
tained in the polynomial Gq i in Eq. (2.13). However,
as discussed in [2], the distance damping effect is domi-
nantly controlled by the exponential factor exp ( /rpa), —
i.e. , the one in the ground-state wave function, in f ont
of the sum in Eq. (2.13). For example, as r )) ap, that
n(r, w) goes to zero is dominantly controlled by this ex-
ponential. As r ap, the polynomial Gq i(r/ap) is al-
most a constant compared to various exponential factors
in Eq. (2.13). For those exponential factors within the
sum in Eq. (2.13), except for the first few q's, they can
essentially be taken as one. For simplicity and univer-
sal purpose, a good approximation of Eq. (2.13) can be
taken as

characterizing the size eKect. Two specific properties are
essential to the above conclusion. One is that each of the
wave functions must contain an exponential factor similar
to exp (—r/ap). The other is that the function Fz (kap) in
Eq. (2.11) must be an odd function with respect to k. We
expect that for any atom or molecule having the above
two properties, the corresponding spherically symmetric
polarizability density tensor should have the same form
as that in Eq. (2.14).

For the other atoms, exact or even accurately corre-
lated wave functions are, in practice, seldom available;
only the fairly accurate Hartree SCF wave functions are
easily accessible. The SCF wave functions, which are es-
sentially the extension of the radial part of the hydrogen
atom wave function to all the other atoms, satisfy just
our needs. Since the radial part of the SCF wave function
for any atom always has an exponential function simi-
lar to exp( —r/ap) and the angular part is the same as
that of the hydrogen atom, Eqs. (2.14) and (2.15) should
also hold with a proper interpretation of the quantities
in these equations for the corresponding atom.

For molecules, due to the presence of many atomic nu-
clei, even if the Hartree SCF approximation method is
applied to the motion of an electron in a molecule, un-
der the action of the nuclei and of the remaining elec-
trons, the resulting averaged static charge distribution is
not spherically symmetrical as it would be in an atom.
So, strictly speaking, the angular part of the electronic
molecular wave function cannot be the spherical harmon-
ics. In molecular-orbital theory, electrons in molecules
are in orbitals that may be associated with several nu-
clei. Even with the simplest molecular orbital (MO), i.e.,
the linear combination of atomic orbitals (LCAO), either
variation method or numerical method must be used for
the calculation of the energy of the corresponding molec-
ular orbital. Even if we were able to analytically ob-
tain the polarizability density tensor by the LCAO MO,
the expression must be very complicated and contains
only the atomic parameters. What we really need is the
molecular-orbital concept and such approximated orbital
functions, which contain only molecular parameters in-
stead of the atomic parameters. This is hardly possible
in general. However, in our case, this is at least approx-
imately feasible for small molecules. First we are inter-
ested in only the spherically symmetrical polarizability
density tensor. Second, we are interested in dispersion
interaction, which is important only around the van der
Waals minimum and for larger intermolecular separations
and is small by nature . For intermolecular separations a
little less than that corresp onding to the van der Waals
minimum, the dispersion energy is negligible compared
with the quantum mechanical 6rst-order energy. The
intermolecular separation corresponding to the van der
Waals minimum is in general a few times the internuclear
separations. For example, the internuclear separation for
H2 is 0.74 A. while the intermolecular separation of the
van der Waals minimum between two H2 molecules is
around 3.5 A. . Finally, the outermost molecular-orbital
electrons contribute most to the polarizability.

Prom the above consideration, we may neglect the in-
ternuclear separations for small molecules and think that
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all nuclei in a molecule are centered at one point, i.e., an
atomlike molecule. Then, the above discussion for atoms
applies to small molecules as well. However, as will be
discussed in Sec. IV, the molecular size parameter is
estimated by use of the experimentally determined first
ionization potential of the molecule rather than that of
an atom with the same number of electrons. For exam-
ple, the molecular size parameter of H2 is difFerent from
that of the He atom. For large molecules, due to the ap-
pearance of many centers of polarization and many-body
eQ'ects, we postpone the study of this case to another
work, even though for each center of the polarization,
Eqs. (2.14) and (2.15) may also be true.

Following our recipe, one sees that Mahanty and Nin-
ham's Gaussian form of the polarizability density ten-
sor corresponds actually to choosing a molecular ground
state as a harmonic-oscillator wave function. We em-
phasize that unlike the situation in the point-multipole
expansion, the correct distance-damping behavior of the
electronic wave function should be used to correctly ac-
count for the finite molecular size effect, as indicated in
[26].

In summary, we have proved that, to a good approx-
imation, the following expression for the polarizability
density tensor is physically correct in general for atoms
and small molecules:

cx(r", (u) = e "~ In((u),
Svras

(2.16)

III. UNIVERSAL NONSINCULAR
VAN DER WAALS POTENTIALS

The explicit potential including retardation follows
&om Eqs. (2.3), (2.4), and (2.16) as

3h
V(R) = — d( V(R, ag, a2., (),

0

where

where a is the parameter characterizing the atomic or
molecular size e8'ect and the 6.equency expression for
n(ur) looks similar to Eq. (2.15).

V(R, aq, a2, () = nq(i() n2 (i()e ' F(R, aq, ()F(R, a2, g) —F(R, aq', ()G(R, a2, ()
G(R, aq., (—)F(R, a2, () + 3G(R, ag., ()G(R, a2, (), (3.2)

a~ and a2 are two parameters characterizing sizes of the two molecules, respectively, and

F(R, a;() = (c j ((c j 2a (cj
R'

1+ —+ 1 — — le % j
a 2a' &cj )

(3.3a)

G(R, a;() = 1 ~ R( 1 (R() R R2 &a(b1+ +-I
I

— 1+ —+
(A)22~ c 3(c j a 6a2 qcj

R' fa(l R(, ~)~
6as (c j (3.3b)

Looking at Eq. (3.2) as well as Eq. (3.3), one sees a
common &equency factor

&equency-integration upper limit (FIUL) in Eq. (3.1) as

1/ 1 —(a&&/c) 1 —(a2(/c)
(o ——max(c/aq, c/a2 j, (3.5)

(3.4)

which is almost unity if both aq(/c and a2(/c are much
less than one. Equation (3.2) seems to go to infinity if
both aq(/c and a2(/c approach one. However, this is not
the case if one looks at Eq. (3.3) carefully. Actually, the
common singular &equency factor 1/(1 —a$/c), in either
the F(R, a;() or G(R, a;() function, will be canceled out
to leave both of them nonsingular as a(/c -+ 1.

The above discussion implies that the factor in Eq.
(3.4) does not play a role in Eq. (3.2) unless aq(/c and
aq(/c are much greater than one. For example, if aq(/c
and a2(/c take the value 10, the factor would be 10
negligibly small. Therefore, it is legitimate to set the

which is on the order of 10 rad s by noticing that
c = 3 x 10 cms and a 10 cm. This is entirely
consistent with physically intuitive consideration that the
energy involved in atomic and molecular phenomena is
at most on the order of a keV, i.e. , x-ray energy, giving
&equency 10 rad s . Further numerical study shows
that Eq. (3.2) is negligibly small if &equency ( is greater
than 0.5c/a regardless of the intermolecular separation R.
To our knowledge, this is the first time that such fact has
been taken into account explicitly in the intermolecular
potential. We stress that no such conclusion can be made
if either the nonretardation limit is taken (c ~ oo) or the
molecular size parameters aq and aq are set to zero.
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For simplicity and without losing generality, the nu-

merical study has been done b settone y setting ai ——a2 ——a

quency u~q is reasonably chosen as 0.le~a i.e.

1/(1+ 1002:2). In other words, (1+100+2)cx ~i~~ c

e function in Eq. (3.2) vs z = a(/c are shown in

arge va ues, we see that the tail of the profile shifts to
the direction of lower &e ue

or example, the tail essentially ends at &equ 0 1
a. These facts are very useful in calculat-

ing non-retarded interaction const t f
or the &e uenc-or e equency-dependent dielectric constants in the
condensed-body case.

If both ai and a2 are set toto zero, the resulting poten-
tia om Eqs. (3.1)—(3.3) is the usual point dipole-di ole
retarded potential obtained b f be e ore y many authors, ex-
cept for the replacement of the FIUL &e om infinity to fo

by setting c ~ oo either in Eq. (2.4) from the outset or
in Eqs. (3.2) and (3.3) as

V(R) = -~'f'R)
R6 (3.6)

where

3h
d( .('4) .('4)

0

I

1

I
I
1

1
~ 1

~ ~ 0

y=60
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y=5

0
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FIG. 1. Fre uenc d.q y damping of the function &~2;

The actual plot was drawn for the dimension

is the usual di ole-di ole
'

p — po e interaction constant again with
the modification of the FIUL &

'
fi

'
om in nity to (o and the

so-called distance damping function fs(R) is

1
'

fg(R) = — 1 — 1+ —+ —~—
2 (~i)

2

+ 1 1+ "+ 'lfRi
3'"j oi 2 (oi)

1(R)'
+—

I

—
/

~ '),4&~'r . (3 8)

which approaches one if either ai and a are b

tia goes to the London potential.
Noticing that the maximum k &m pea equency in o; ~

is, in general, much less than th be o given by Eq. 3.5
both the retarded potential E . 3 1 dq. . an the nonretarded
potential Eq. (3.6), in the R -+ 0 limit give'7

v(R m 0) =—
72(aia2)s

(3.9)

finite, as expected. As is well kno d
'

se nown, ispersion energies
are sma in nature and are completel 1'e e y neg igi le in short
in ermo e e o remen ous largein ermo ecu ar separation compar d t t
repulsive energies. In reality d, van er aals phenom-
ena never run into a distance less th hess an t e correspondin
atomic or molecular size. The be a ove —+ 0 limit is

havior
'

Inerely used to show that the sh t-d'e s or — istance singular be-

the otenti
avior in erent in the London pot t' 1o en ia is removed and
e potentials developed here are analytical and finite at

po entials are also small at shortall separations. The ot
istance. For exam le if wp e, i we extrapolate the potential
q. (3.6) physically to R ~ 0 for the '

H(1S)-H(
or the interacting system

pon"ing dispersion energy is the1S, the corres on
argest and is estimated as 0.3 a. ha.u. , w i e the repulsive

energy approaches infinity.
Prom a practical viewpoint, the retarded ote

represented approximately by a sim ler fitted fer e unction.
' ar approximation procedure may also be

to the nonretarde
y a so e app ie

etarded damping function E . (3.8). This as-
sertion concerning the nonretarded da
su orte

ar e amping function is

be re resente
our amping unction can

s stems
oerinies or a ew representative

pursue such practically useful approximat
ra e in ec. V. We will

elsewhere.
ima ions in general

p g, the potentials developed hereTheoretically s eakin
give a definitely better descriptio f th d'ion o e ispersion in-
teraction around the van der W 1er aa s minimum than the
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teraction, at least down to the intermolecular separation
around the van der Waals minimum. Due to the limita-
tion of the theory used, we are not sure, at very short
separations, if the potentials are still able to describe the
dispersion energy correctly. However, as described above,
it is in the short separations that the dispersion energy
plays no role and can be completely neglected. More-
over, our potentials are analytical at all separations and
remain small even at zero separation. For practical pur-
poses, our potentials are quite adequate. We fulfill our
goal given in the Introduction.

In order to compare our potentials with those from
either ab initio calculations or experiments, we need to
know both C6 and the atomic or molecular size param-
eters ai and aq. The dispersion coefBcients C„can be
determined with either theoretical calculations or exper-
imental information on oscillator strength distributions
as described in the review article by Buckingham et al.
[16]and the references therein. We could leave the atomic
or molecular size parameters as fitted ones such that the
potentials developed here are models. However, we still
prefer to go one step further to estimate these size pa-
rameters through physical considerations as well as by
using the first ionization potentials of the corresponding
atoms or molecules. This is topic of the next section.

IV. ATOMIC OR MOLECULAR SIZE
PARAMETERS

In Secs. II and III we have reached the conclusion that
the spherically symmetric potentials between two inter-
acting species (atoms or small molecules), to a good ap-
proximation, have the same function form as that for the
H(1S)-H(lS) system. This confirms the belief of many
authors [11,12,27,29] that for all isotropic interactions,
the distance damping functions described in the Intro-
duction, aside &om scaling (or the atomic or molecular
size parameters), should be very similar to that for the
H(1S)-H(lS) system. This fact, plus what we have done
in Sec. II, gives us the hint that if we know clearly the
way to determine the atomic size parameter for a hydro-
gen atom, this may shed light on how to determine the
atomic or molecular size parameters in general. Through-
out the remainder of this study, atomic units are used.
In [2), P = 1.2 has been simply introduced to account for
the atomic size efFect of a hydrogen atom by taking the
(q = 5) exponential exp( —0.2r) out of the sum in Eq.
(2.13) and combining it with the dominant exp( —r). In
what follows, we will derive P = 1.25, less than 5'Fo in-
crease of the above value, by a general physical analysis.

As described in Sec. II, the distance damping eKect
of the hydrogen is important only as r approaches a few
atomic units. Though the exponential exp( —r) domi-
nantly controls the distance damping efFect, we expect
also that a small portion of this efFect comes from the
exponentials within the sum of Eq. (2.13). Certainly, the
first term (q = 2) in the sum contributes the most of the
small portion since it is this term that is most likely not
to be a constant for r around a few atomic units. Due
to the differences among these expoaentials, we need to

keep in mind that in extracting an exponential factor out
of the sum, the remaining exponentials should be left to
change as slowly as possible with respect to r. For exam-
ple, taking an exponential exp( —r/qo) out of the sum in
Eq. (2.13), the remaining exponentials in the sum look
like exp[ —(q —qo)r/qqo]. We expect that all of these expo-
nentials change slowly as r changes around a few atomic
units. This would require that ~q

—qo~/qqo be reason-
ably small for all q's. This is obviously satisfied for those
q's near qo, provided qo by itself is reasonably large. As
q )) qo, ~q

—qo(/qqo 1/qo. So qo should be large, but
it cannot be very large. Otherwise, for q « qo, we have

~q
—qo~/qqs 1/q, which is not small. The best way

to satisfy that ~q
—qo~/qqo is small for all q's is to set

the value of ~q
—qo~/qqo for the allowed minimum q = 2

the same as its value, i.e. , 1/qo, for q )) qo. So we have

(qp —2)/2qo = 1/qo, which gives qo
——4. Therefore, the

atomic size parameter P = 1+ 1/qo ——1.25. As will be
shown in Sec. V our damping function with the choice of
the above P = 1.25 agrees almost perfectly with the one
&om the almost exactly ab initio calculation [27] for the
H(1S)-H(1S) system.

According to the SCF approach, the exponential factor
in the one-electron ground-state wave function is similar
to that of a hydrogen atom, given by exp( Q Er—), —
where E is the corresponding one-electron energy in
atomic units. As a general estimation, the first ionization
potential is certainly a good choice for ~E„~. By now, it
seems that the atomic or molecular size parameter can
be estimated in general as

where I and IH are the first ionization potentials of an
atom or a molecule x and a hydrogen atom, respectively.
Experimental first ionization potentials for atoms and
molecules can be found, for example, from [28]. However,
the above is only part of the story. Further discussion is
needed.

For our purpose, the Hartree approximation is well
suited. The Fourier component of the polarizability den-
sity tensor of Eq. (2.1) can be written, in terms of one-
electron wave functions and energies, as

n r) m m e'""' n

~n~+~ k2'

(4.2)

where ~m, ) and ~n) are the one-electron states and u„
are evaluated according to Eq. (2.2) but now by one-
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electron energies. We assume that the m is summed over
all states occupied by electrons in the atomic or molec-
ular ground state and n is summed over all unoccupied
(excited) states. If we proceed along the same line as in
Sec. II for the hydrogen atom, we end up with

mp

(;,.) ='„I) .—-- )- f-;~-(",).- --, (4.3)
m=1 nm

where mp represents the highest occupied one-electron
state and p„g E„,—with E„ the one-electron energy.
So the larger the ~E„~ or the smaller the n, the larger
the p„. Therefore, the most important contribution is
kom m = mp, since the corresponding p is the smallest
among those allowed m in the sum. This explains that
the outermost-shell electrons (valence electrons) domi-
nantly contribute to the polarizability of an atom or a
molecule. In general, the smaller the p „the more im-
portant the effect of the atomic or molecular size around
the van der Waals minimum. So Eq. (4.3) can be rewrit-
ten as

e
cx(i, u) = Ie—

around 0.25 or around zero, as classi6ed in the following.
For a hydrogen atom, b' = 0.25. For any other atoms
or molecules whose 6rst and second ionization potentials
are not very different, b is close to 0.25. For atoms or
molecules whose 6rst and second ionization potentials are
very different, b ~ 0. In what follows, we simply take b

as either 0.25 or 0 for the above two cases, respectively.
For an interacting atomic or molecular system involving
an atom or molecule with h = 0, it appears to us that
b has to be set to zero for any other atom or molecule
interacting with this atom or molecule. Some correlation
seems to exist. We have as yet no good physical expla-
nations for this. As will be shown in Sec. V, the above
choices are very satisfactory. The choice of the atomic or
molecular size has also been discussed in [30], where the
size was simply given by Eq. (4.5) without the correc-
tion factor b'. In [11,31], some improvement of Ref. [30]
for the size has been claimed by changing the exponent
0.5 in Eq. (4.5) to 0.66 &om the consideration of ob-
taining good agreements with experiments for mixtures
containing the alkali atoms while the molecular size for
a like-pair system not involving alkali metal atoms was
proposed to be inversely proportional to R, the position
of the potential minimum. The molecular size for mixed
interactions was also proposed.

(4.4) V. COMPARISON WITH EXPERIMENTS

Recall that the energy —E for 1 & m & mp can be
taken as the corresponding ionization potentials. Look
at the atomic ionization potentials, for example. For all
except for alkali atoms, from the second and 6rst ion-
ization potentials, one can estimate that p, l —p, is
about 0.5, which looks similar to the 1/q = 0.5 for q = 2,
i.e., corresponding to the 6rst term in the sum of Eq.
(2.13) for the hydrogen atom. For the third ionization
potential and beyond, the corresponding p —p, and

are generally large in comparison with those corre-
sponding to the second ionization potential. In practice,
we can neglect the contributions &om those terms for
m & mp —1. For alkali atoms, even the second ionization
potential is almost ten times that of the 6rst. So all the
terms for m ( mo are negligible in Eq. (4.4). Besides, the
huge difference between the 6rst and the second ioniza-
tion potentials pushes the 6rst ionization potential to a
relatively small value, which implies that the unoccupied
state absolute energy ~E

~

is even smaller. Therefore, in
comparison with all the other atoms, the effect of atomic
size, for an alkali atom is solely determined by the 6rst
ionization potential with no need to include the correc-
tions &om either m ~ mp occupied one-electron states or
n & mp unoccupied one-electron states discussed above.
This also implies that the effect of atomic size for an alkali
atom plays the most important role around the van der
Waals minimum in comparison with those for the other
atoms, which will be demonstrated in Sec. V.

In general, we have

1/a* = (1+b) (I-/IH)'~'

where b, the correction factor discussed above, is either

We come to test the present potentials. The compari-
son of our potential to those previously obtained is equiv-
alent to that of the corresponding damping functions.
The nearly exact ab initio calculations of damping func-
tions for the H(1S)-H(1S) system have been performed
some time ago with applications of the so-called separable
pseudostate method [27]. In this calculation, the usual
Coulomb interaction potential energy between the two
H(1S) is not expanded in the R ~ multipole expansion;
therefore the corresponding calculated induction and dis-
persion energies include the charge overlap effects and go
with the name "nonexpanded" energies. In other words,
the effects of atomic size are included. However, the elec-
tronic exchange effects are neglected and the separabil-
ity of the nonexpanded induction and dispersion energies
into properties of the isolated species is assumed. This
implies that the calculated energies are possibly accurate
only for reasonably large B, which was also pointed out
by those authors. This applies also to the decomposition
of the second-order energy into additive induction, the
so-called spherical dispersion, and the remaining disper-
sion components. This fact, as well as other complica-
tions, has also been discussed for smaller R in [12]. In
general, one expects that the smaller the R, the larger
the errors for the calculated dispersion energies. As indi-
cated in [27], the calculated results for the second-order
energy are in good agreement with the e~act ab initio
correspondences of Kolos and Wolniewicz [32] for R & 4,
respectively, but not for the smaller values of R. Hence
the ab initio damping functions in [27] do serve as stan-
dards for R & 4 to test their correspondences obtained
by other means.
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Our damping function with P = 1.25 determined in
Sec. IV agrees with that of Koide et al. [27] within 2% for
B & 6. Even though the determination of the P = 1.25
descibed in Sec. IV is theoretically attractive, small er-
rors, for example, less than 5%, are expected. For exam-
ple, better agreement can be obtained, which is within
2% for R & 5, if P is reduced to 1.19. The compar-
isons are shown in Fig. 2. Recall that the van der Waals
minimum for the H(lS)-H(1S) system happens close to
B = 7.8 and the total interaction energy vanishes around
B = 6.8. B = 6 is already in the strong repulsive re-
gion where the repulsive energy is almost 10 times the
van der Waals potential well depth. With these in mind
and by noticing that even the ab initio damping func-
tions are expected to have small errors, the agreement is
almost perfect in the region of interest. This indicates
not only the correctness of our analytical damping func-
tional form, at least in the region of interest, but also
that of the way to determine the atomic or molecular
size parameters given in Sec. IV. In what follows, we will
provide more examples to give further support to this.

In general, it is very difBcult to calculate directly the
analytical damping functions, which requires analytical
wave functions of the system under study. However, we
do have very successful empirical damping functions, for
example, those of Tang and Toennies [12]. As discussed
in the Introduction, their empirical potential has been
tested for each of the following representative systems:
H2 (sZ+), He2, and Ar2 as well as NaK (sZ+) and LiHg
(2Z+). The agreement with the corresponding experi-
mental potential is within 1'%%uo in the potential well region.
Since these potentials are empirical in nature, one should
not expect that the corresponding damping functions are
also good within 1'%%uo accuracy in the well regions. By
comparing our damping function to its correspondent for
each of the above systems, the agreement is always within
4'%%uo in the potential well region and for the separations
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FIG. 3. Comparison of our damping function for
1/aH, = 1.681 with the model damping function of Tang
and Toennies (Born-Mayer parameter b = 2.388) [12] for the
He-He system.

extended even to the strong repulsive region. The com-
parisons have been shown in Figs. 3—6. The very good
agreements indicate also the universality of the current
potentials since the representative systems include four
chemically difFerent types of van der Vlaals interactions,
giving the interactions &om very weak to very strong and
the potential wells &om very narrow to very wide.

Strictly speaking, we have not yet made the compar-
isons for true molecular systems. The structure of a true
molecule is very complicated in comparison with that
of an atom. This certainly will complicate the calcula-
tion. Among other things, the basis set and convergence
problems make the nearly exact ab initio calculation un-
feasible, especially for the dispersion energy, even with
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FIG. 2. Comparison of the damping function given by Eq.
(3.8) for 1/aH = 1.25 with that from the ab initio calcula-
tion of Koide, Meath, and Allnatt [27] for the H(lS)-H(1S)
system. A comparison is also given for 1/aH = 1.19.

FIG. 4. Comparison of our damping function for
1/aA, = 1.346 with the model damping function of Tang and
Toennies (Born-Mayer parameter b = 1.917) [12] 2 for the
Ar-Ar system.
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FIG. 5. Comparison of our damping function for
1/aN = 0.6147 and 1/aK = 0.565 with the model damp-
ing function of Tang and Toennies (Born-Mayer parameter
b = 0.8414) [12] for Na-K ( Z+).

FIG. 6. Comparison of our damping function with
1/az„= 0.6297 and 1/aHs ——0.8759 with the model damp-
ing function of Tang and Toennies (Born-Mayer parameter
b = 1.012) [12] for Li-Hg ( Z+).

modern computers. Therefore, the damping functions ex-
tracted &om such calculated energies cannot really serve
as standards to test damping functions obtained by other
means. Various aspects of van der %'aals interaction &om
ab initio calculations for molecular systems have been
discussed in the most recent review article [33]. On the
empirical side, the family of accurate potentials of Hut-
son [36,37] is believed so far to be the best. These po-
tentials are partitioned into the Born-Mayer repulsion,
the induction contribution, and the dispersion contribu-
tion. The damping functions used in the dispersion term
are those of Tang and Toennies [12]. As pointed out in
[33], the dispersion contribution is adjusted to accommo-
date the deficiencies of the repulsion and induction con-
tributions so that the total potential can reproduce the
experimental data. Therefore, we expect that the damp-
ing functions with such fitted parameters cannot serve as
standards either.

Despite so many defects of damping functions for true
molecular systems, we are to test our damping function
for the following typical systems: He-HF Ne-HF, HF-HF,
and Ar-HCl. The first three systems have a very weak
anisotropy of the total interaction energies while the Ar-
HCl has a very strong anisotropy of the total interaction

energy. It is believed that reasonably reliable damping
functions for the first three systems have been calculated
for intermolecular distances R = 5 —10 by evaluating the
nonexpanded dispersion energies with employing time-
dependent coupled Hartree-Fock techniques [34,35]. HF
is a polar molecule and the induction energy of the in-
teracting system HF-HF is as important as its dispersion
energy. The empirical damping function for the system
Ar-HCl is that of Tang and Toennies but with a fitted
parameter b = 1.892 with 95% confidence to give the
so-called H(3) total potential to reproduce experimental
data [36].

The comparison to our damping function for each of
the above systems is given in Table I and in Fig. 7. The
agreement is within 4'% for the He-HF system and within
3'Po for the Ne-HF and HF-HF systems. The trend is that
the smaller the intermolecular separation B, the larger
the disagreement. Keeping in mind that certain errors
are inevitable and the accuracy goes down as B becomes
small in the ab initio calculations of the damping func-
tions, the above agreements are again excellent. As for
Ar-HCl, if 6 = 1.892 is simply taken, the agreement is
not so good, which is about 5% around the van der Waals
minimum R = 7.2. However, if the above b is reduced

TABLE I. Comparison of our damping function fs(R) with its ab initio correspondence of Knowles and Meath [34,35] for
He-HF, Ne-HF, and HP-HF systems at intermolecular separations B = 5 —10. The atomic or molecular size parameters used
for our damping function are 1/aHe = 1.681, 1/aN, = 1.547, and 1/aHF = 1.346 in atomic units.

R
5
6
7
8
9
10

Present
0.8745
0.9505
0.9816
0.9934
0.9977
0.9992

He-HF
Knowles and Meath

0.9096
0.9767
0.9950
0.9991
0.9999
1.0000

Present
0.862
0.945
0.9795
0.9927
0.9975
0.9992

Ne-HF
Knowles and Meath

0.887
0.970
0.9931
0.9987
0.9998
1.0000

Present
0.816
0.921
0.9689
0.9883
0.9958
0.9985

HF-HF
Knowles and Meath

0.836
0.948
0.9864
0.9969
0.9994
0.9999
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by 5%%uo to 1.797, the resulting agreement is within 3%%uo

down to the intermolecular separation B = 5. Such a
reduction of b is allowable by recalling that the damping
function employed here to compare with our damping
function is by nature empirical and it does not purely
describe the dispersion damping as discussed above.

So far we have shown that the potential Eq. (3.6) is
very satisfactory. In addition, we provide the method,
discussed in Sec. IV to determine the atomic or molecu-
lar size parameter a. The asymptotic constant C6 can be
obtained &om many sources, also discussed in Sec. IV. As
a preliminary investigation, we have as yet not given the
attractive terms Csfs(R)/R and Cqofqo(R)/R, which
are necessary to give an accurate description of van der
Waals interaction for at least atomic or molecular sys-
tems. We wish to return to this elsewhere. As is well
known, currently only the dipole-dipole dispersion inter-
action including the many-body effects is considered for
the van der Waals interaction of condensed bodies. How-
ever, the effects of the atomic or molecular size as well as
the short-range repulsive interaction are completely ig-
nored in the existing treatment. In the above, we have
shown how to incorporate the effects of the atomic or
molecular size into the dispersion interaction. Therefore,
we expect that the potential developed in this study can
be applied readily to the van der Waals interaction at
small separations for condensed bodies. In what follows,
we try to go one step further to give empirical estima-
tions for the parameters A and b of the Born-Mayer re-
pulsive energy Ae based on physical considerations
and observations to the aforementioned systems studied.
If neither good experimental data nor ab initio calcu-
lations are available to determine these parameters, the
following empirical estimations are good at least for qual-
itative study. Full discussions of the short-separation van
der Waals interactions including the repulsive forces for
neutral condensed bodies will be given in [3).

Physically speaking, the parameter b indicates at which
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FIG. 7. Comparison of our damping function for
1/a~, = 1.346 and 1/aHo~ = 1.21 with the model damping
function of Tang and Toennies for such 6tted Born-Mayer
parameters b = 1.892, 1.797 [36] for the Ar-HC1 system

intermolecular separation the repulsive interaction be-
comes important. Therefore, it must also relate to the
atomic or molecular size discussed in Sec. IV. With
this in mind, comparing the atomic or molecular sizes
to their corresponding Born-Mayer parameters b, which
are known for all systems except for He-HF, Ne-HF, and
HF-HF studied above, one has the following equation,
which holds for these systems within 5%%uo.

6 = 0.700(l/ag + 1/a2), (5.1)

where ai and a2 are the atomic or molecular size pa-
rameters for the interacting species, respectively, and are
determined according to Eq. (4.5). Recalling that the
above systems include four very different types of van der
Waals interactions, one may think that Eq. (5.1) may be
true in general. This is further supported by the follow-
ing evidence. Equation (5.1) is used to calculate the pa-
rameter b for 21 systems whose Born-Mayer parameters
were given or collected in [38,39] either by SCF calcula-
tions and other theoretical means or &om experiments.
Our selection for the above systems from [38,39] is based
on the following criteria: the theoretical b's should give
fairly accurate experimental well parameters or the ex-
perimental b's are obtained from accurate experimental
well parameters. The results, in addition to the previous
six b's, are listed in Table II. The agreement is very good,
either within 5% of theoretical calculations or within the
experimental errors.

We need to find one more relation so that the parame-
ter A can be determined. This turns out to be much more
difBcult. At present, only a partial answer is found. As
before, once an interacting system consisting of atoms
or molecules with very different first and second ioniza-
tion potentials is considered, complication occurs. We
have not yet found an answer for the interacting system,
which contains such atoms or molecules but no rare-gas
atoms. Except for those systems, we find the relation
for interacting systems whose long-range interactions are
dominated by dispersion energies as

B = 4.65
i+ (,'-„") (5.2)

where R is the intermolecular separation correponding
to the van der Waals minimum, the "+" is for systems
involving at most one rare-gas atom while the "—"is for
systems involving only rare-gas atoms, and I and I„are,
as usual, the first ionization potentials of the two inter-
acting species involved, respectively. For interacting sys-
tems involving true molecules, the above B should be
understood as the separation corresponding to the min-
imum of the spherically symmetric part of the van der
Waals potential.

Loosely speaking, we can take an atom or a molecule
as a hard sphere with an effective radius a. By this
approximation, one expects that R (aq + a2) for
an interacting system with atomic or molecular size pa-
rameters ai and a2, respectively. If the two interacting
species are difFerent, one expects that a certain correc-
tion is needed, in comparison with the case when the two
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interacting species are identical, to account for the ef-
fect of asymmetry between the two interacting species.
Even so, the correction needed depends also on the ac-
tual interacting species involved. It is well known that
the dispersion interaction between two rare-gas atoms is
very weak while the short-distance repulsive force is very
strong in comparison with the case when at most one
of the two interacting species is a rare-gas atom. One
expects that either even weaker attractive force or even
stronger short-distance repulsive force appear between
two difFerent rare-gas atoms in comparison with the case
involving two identical rare-gas atoms. Therefore, R
should be larger, which is indicated by the minus sign in
Eq. (5.2). If at most one rare-gas atom is involved, one
expects that a larger attractive force or a weaker repul-
sive force appears. Therefore, the R should be smaller,
which is indicated by the plus sign in Eq. (5.2). The term
(I —I„/I + I„)2 quantifies the effect of asymmetry be-
tween interacting species x and y. So we qualitatively
explain Eq. (5.2). This equation has been used to calcu-

late the R for 29 systems. The results, along with the
corresponding experimental or theoretical values for R
are listed in Table III. Compared to the crudeness of the
above estimation, the agreement is excellent.

By employing Eqs. (5.1), (5.2), and the dipole-dipole
dispersion energy (3.6) and requiring that the first deriva-
tive of the following total energy vanish at R = R

V(R) = Ae —Cs fs(R)/R 1 (5.3)

we can estimate the parameter A as

A = Cs [fs(R~) —6R~fs(R )j e -/bR, (5.4)

where fs(R) = dfs(R)/dR
By now, it seems that we can determine the van der

Waals potential completely for a system if the interac-
tion constant C6 and the first ionization potentials of
interacting species are known. However, caution must be
taken by noting that both Eqs. (5.1) and (5.2) are em-
pirical in nature and Eq. (5.3) has not yet included the
Cs fs(R)/R and Cxo fxo(R)/R terms.

TABLE II. Comparison of our Born-Mayer parameters 6
determined by Eq. {5.1) with those either from theoretical
calculations or 6tted froxg. experimental data. Most theoret-
ical or experimental b's are from the collection of Tang and
Toennies [38,39] except for those with footnotes. All quanti-
ties are in atomic units.

TABLE III. Comparison of the determined van der Waals
well parameters R from Eq. {5.2) with their correspondences
determined from experiments collected in [38,39] except for
those with footnotes. Again, quantities are in atomic units.

System
He-Hg
He-He
He-Ar
He-Ne
He-Kr
Ne-Ar
Ne-Kr
Ne-Xe
Ar-Ar
Ar-Kr
H-H
H-Ne
H-Ar
H-Kr
Ll-Kr
Na-Kr
K-Ar
K-Kr
Rb-Kr
Cs-Ar
Cs-Kr
Cs-Xe
NaK
Na-Na
K-K
LiHg
ArHCl

Present
2.108
2.353
2.118
2.278
2.064
2.044
1.990
1.928
1.884
1.830
1.750
1.977
1.817
1.763
1.151
1.141
1.149
1.106
1.098
1.128
1.085
1.036
0.826
0.861
0.791
1.054
1.789

Theor. or Expt.
2.207
2.388
2.022
2.434
1.905
2.148
2.037
1.963
1.917
1.969
1.670
1.873
1.815
1.810
1.175
1.175
1.132
1.164
1.132
1.058
1.080
1.067
0.841

0.812b
0.807
1.012

1.797

Reference [40].
"Reference [42].
'Reference [43].

5% reduction of the value from Ref. [36] as discussed in Sec.
V.

System
He-He
He-Ar
He-Ne
He-Kr
He-Xe
He-HF
Ne-Ne
Ne-Ar
Ne-Kr
Ne-Xe
Ar-Ar
Ar-Kr
Ar-Xe
Ar-HCl
Ar-HF
Ar-HBr
Kr-Kr
H-H
H-Ne
H-Ar
Li-Ar
Na-Ne
Na-Ar
K-Ar
K-Kr
Rb-Kr
Cs-Ar
Cs-Kr
Cs-Xe

Reference [41].
Reference [36].

'Reference [37].

Present
5.53
6.54
5.75
6.96
7.58
5.94
5.91
6.57
6.94
7.48
6.91
7.15
7.52
7.22
6.91
7.31
7.33
7.44
6.35
7.14
9.44
8.17
9.44
9.49
10.03
10.04
9.53
10.06
10.77

Expt.
5.62
6.69
5.69
7.09
7.84

5.97
5.86
6.48
6.77
7.09
7.10
7-33
7.75

7.33
6.60
7.57'
7.62
7.85
6.27
6.84
9.35
7.84
9.26
9.73

10.02
10.00
10.39
10.28
10.34
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VI. CONCLUSION

The universal polarization density tensor with spher-
ical symmetry, to a good approximation, has been de-
termined, which is used to calculate the nonsingular po-
tentials for both retarded and nonretarded cases through
a semiclassical field approach. The finite molecular size
efFect incorporated in the polarization density tensor is
crucial to remove the short-distance singular behavior
from the widely used potentials that are obtained from
the point-molecular approximation. We are able to show
that the &equency-integration upper limit of the van der
Waals interaction is 0.5c/a instead of infinity. In ad-
dition to the formula used to determine the atomic or
molecular size parameter a, two empirical formulas have
also been proposed, that can be used to estimate the
Born-Mayer parameter b and the van der Waals well pa-
rameter R, and therefore the Born-Mayer parameter
A, respectively. The accuracy of these formulas has been
tested extensively. If neither accurate ab initio calcula-
tions nor experimental data are available, the potential
developed in this study, plus the above mentioned formu-
las along with the interacting constant C6, which can be
obtained from many sources as discussed before, can be
used at least for qualitatively study for atomic or small
molecular systems.
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APPENDIX

The integration in Eq. (A5) is a very common one and
can be evaluated by employing residue theorems around
poles i(l + 1/q). The result can be cast as

gg(r) —G i(„/ap)e (i+i/q) v/ao (A6)
In this appendix we show explicitly how one can reach

Eq. (2.12) &om Eq. (2.11) by utilizing the fact that
F~(kap) in Eq. (2.11) is an odd function of k. At the
end, we will prove in general that M„,i, , „i (k)
(nplpmp~rcos8(nlm) (nlm~e'" ' '

~nplpmp) is an odd func-
tion of k for any one-electron state ~nlm), which is equiv-
alent to saying that the corresponding function E~, as for
the case of a hydrogen atom, is an odd function of k
for any given one-electron state ~nplgmp). This result,
plus the exponential factor exp( —r/a) in the ground-
state wave function for other atoms and molecules as
discussed in Sec. II, leads us, by the same token as for
the hydrogen atom case, to Eq. (2.16).

Let us rewrite Eq. (2.11) as

A(r) = — I) G, i(r/ap)e ~'+ / "/ ', (A7)
I 1
3 (2vr)' i=2

which is essentially Eq. (2.12).
Since ~nlm) = ~nl) ~lm) and ~lm) PP(cose) e' 4'

up to a constant with Pi (cos0) the associated Legen-
dre polynomial, we have first

(lomo
~

«»0
~
lm) = ~ „(lomo

~

cos~
~
lmo) . (A8)

By using the identity

where G~ i(r/ap) is a (j —1)th-order polynomial of vari-
able r/ap. Returning to Eq. (Al), we have

where

X(~g = —,r ) a(r),l
j=2

kE~ (kap)
[(kap) + (1+ 1/q) ]'+'

—ikey

(A1)

(A2)

P (*) = (2l + 1) '[(l + )P: ( )

+(l —m+ 1)pi+i(~)l

and the orthogonal relation

pm( )pm( )d ( + )
(l —m)! 2l+ 1

we have

(A9)

(A10)
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(Lomo]costl~lm) [(Lo + mo + 1)ljj j

+(Lp —mp)bj, )+j]6', (A11)
Since (Lpmp~e'""~'s]Lmp) = —(Lp mme

i""'~'s~lm
o) for

both l = lp —1 and l = lp+ 1, we have

Hence the only nonvanishing matrix elements are those
for m = mp l = lp + 1, or l = lp —1. For those allowed
m, l values, the matrix element (nolomo~e'" ' ' ]nlm) can
be shown to be an odd function of k in the following.
This can be easily done by noticing that Pj ( x)—
( 1)~+—PP (x) from the definitions Pj (x) = (1
x )~l d~Pj(z)/dx~ and Q~(x) = I/2 L! d&(x —I)&/de&

MTL j Tn, fllrla (k) —(rjolomo ]rcostl ]nlm)
x(nlm~e'""' '

]npLpmo)

= i(nolomo~rcose]nlm)
x (nlm] sin(kr cos8) ]nolo mp), (A12)

which is an odd function of k.
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