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The construction of global shape coordinates for the n-body problem is considered. Special atten-
tion is given to the three- and four-body problems. Quantities, including candidates for coordinates,
are organized according to their transformation properties under so-called democracy transforma-
tions (orthogonal transformations of Jacobi vectors). Important submanifolds of shape space are
identified and their topology studied, including the manifolds upon which shapes are coplanar or
collinear, and the manifolds upon which the moment of inertia tensor is degenerate.
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I. INTRODUCTION

In recent years the n-body problem has been studied
from a new perspective, one that involves certain gauge
fields which arise in the separation of rotations and in-
ternal motions. By the n-body problem we mean a mul-
tiparticle system in which the interactions are invariant
under overall rotations of the system. The role of gauge
fields in such systems has been realized and developed
in a number of papers, including those by Guichardet
[1], Tachibana and Iwai [2], Iwai [3], and Shapere and
Wilczek [4,5]. We envision the primary applications of
this new approach to occur in atomic, nuclear, and molec-
ular physics, as well as in classical problems such as ce-
lestial mechanics.

It has long been recognized that coordinates for an n-
body system naturally break up into internal or shape
coordinates and orientational coordinates. This decom-
position has a natural description in the language of fiber
bundles, which is the proper mathematical framework for
gauge theories. In this language, the internal or shape co-
ordinates are coordinates on the base space (essentially
the space we call “shape space”) and the orientational
coordinates (usually chosen to be Euler angles) are coor-
dinates on the rotation fibers.

In applications it has not always been clear how to
construct internal or shape coordinates explicitly. This
difficulty, and the related problem of understanding the
topology of shape space, has been an obstacle in certain
problems in molecular dynamics. One possible system of
shape coordinates was given by Eckart [6], but his coordi-
nates are primarily useful for small amplitude vibrations
about the equilibrium positions.

In the case of the four-body problem, the construction
of explicit, global shape coordinates has been dealt with
by Keating and Mead [7], who analyzed this problem in
the context of a study of conical intersections between
Born-Oppenheimer potential energy surfaces. These au-
thors defined a coordinate system based on the interpar-
ticle distances, and used the theory of the permutation
group to find linear combinations of the squares of the
interparticle distances that resulted in useful coordinates
for their study. They worked out the ranges of these coor-
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dinates and also described a way of modifying this coor-
dinate system in order to distinguish shapes which differ
only by parity. In our work we make use of techniques
very similar to those developed by Keating and Mead;
one difference is that we employ a continuous group (the
“democracy group”) rather than the permutation group.

A technical treatment of the four-body problem has
been given by Narasimhan and Ramadas [8]. These au-
thors proved that the space of all shapes in the four-body
problem is homeomorphic (topologically equivalent) to
R®, and that the space of all shapes with dimensional-
ity greater than or equal to 2 is homeomorphic to the
Cartesian product of the real line R and a certain five-
dimensional manifold. We will discuss these results from
a less abstract perspective in Sec. IV.

In this paper we consider the general n-body problem
(for arbitrary n), devoting special attention to the three-
and four-body problems. There is a vast amount of lit-
erature on this subject, much of which focuses on the
three-body problem. Works in this area include papers
by Breit [9], Smith [10], Bhatia and Temkin [11], Zick-
endraht [12], De Celles and Darling [13], Mead and Truh-
lar [14], Johnson [15], Sutcliffe [16], Pack and Parker [17],
and Mezey [18]. The subject of hyperspherical coordi-
nates has been considered by Smith [10,19], Smirnov and
Shitikova [20], Johnson [15], and Pack and Parker [17].
The construction of quantities which are invariant under
permutations of particle labels or under the more gen-
eral democracy transformations has been considered by
authors such as Keating and Mead [7], Smith [19], Dragt
[21], Levy-Leblond and Lévy-Nahas [22], and Louck and
Galbraith [23]. We make use of similar techniques below.

In Sec. II of this paper, we describe the general fea-
tures of the m-body problem and introduce quantities
that facilitate the study of shape space. This section
also includes a discussion of the action of various groups
on shape space. In Sec. III, the methods developed in
the previous section are applied to the three-body prob-
lem. This is done to illustrate the theory and to explain
the significance of some of the standard coordinate sys-
tems that are used in the literature. In Sec. IV, we study
the shape space of the four-body problem and some of
its submanifolds. We also discuss the use of democracy
transformations for visualizing four-body shape space.
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II. GENERAL CONSIDERATIONS

In this section we develop several results which are of
use in the n-body problem for any value of n > 3. One of
our main accomplishments is to define a mapping from
shape space onto the space of real, symmetric, (n — 1) x
(n — 1) non-negative definite matrices with rank r < 3.
This mapping plays a central role in the construction of
coordinate systems on shape space.

A. Translational degrees of freedom and Jacobi
coordinates

Consider a system of n distinguishable particles with
lab (inertial frame) positions (ri,...,r,) and masses
(my,...,my,). The total kinetic energy is

.
Tiot = 3 ;ma!ralz' (2'1)

To separate out the translational degrees of free-
dom, we perform a linear coordinate transformation
(r1,...,tn) = (P1,.-.yPn—1,R), where R is the center
of mass,

1 n
R = M Z MaTas (2.2)
a=1
and where the n — 1 vectors (p1,...,Pn—1) are mass-

weighted Jacobi vectors. In Eq. (2.2), M is the total
mass,

(2.3)

n
M = Z M.
a=1

The Jacobi vectors p, are chosen so that the kinetic en-
ergy about the center of mass has the form

n—1
1 i
T= 5 a§=1 |pa| ’

to which the kinetic energy of the center of mass,
(M/2)|R|?, must be added to obtain the total kinetic
energy Tiot as in Eq. (2.1). We will henceforth ignore the
kinetic energy of the center of mass, and simply refer to
T as the “kinetic energy.”

The n — 1 Jacobi vectors p, are coordinates on
the “translation-reduced configuration space,” which is
R37~3, We will henceforth refer to this space simply
as “configuration space,” and to the translation-reduced
configurations in it simply as “configurations.” The ki-
netic energy (2.4) defines a Euclidean metric on this
configuration space. Linear transformations among the
3n — 3 coordinates on this space which preserve the Eu-
clidean form of the metric belong to the group O(3n—3),
which is the overall symmetry group of the kinetic energy.

The usual procedure for defining Jacobi vectors in-
volves organizing the particles into a hierarchy of clus-
ters, in which each cluster consists of one or more par-

(2.4)
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ticles, and where each Jacobi vector joins the centers of
mass of two clusters, thereby creating a larger cluster.
Each Jacobi vector must be weighted by the square root
of the reduced mass of the two clusters it joins in order to
achieve the Euclidean form of the kinetic energy shown
in Eq. (2.4). For example, in the four-body problem, we
can use the clustering of particles illustrated in Fig. 1 to
define

P1L= \/#1(1'2 - 1‘1),
P2 = V/"Z(r‘l - r3)7

m3ar3 + mM4ry
P3 = \/H3 (

_ MyTry + MmoTy (2.5)
ms + my my + mg ’ '
where the reduced masses p, are defined by

1 1,1 1 1 1

H1 mi my’ E - m3 my’

1 1 1

- = + . (2.6)
M3 myi+my  mz+my

B. Three groups acting on configuration space

Different clusterings lead to different definitions of Ja-
cobi vectors, but all choices are connected by linear trans-
formations of the form,

n—1
Pa = Dappp, (2.7)
p=1

where D (with components Dy,g) is an (n — 1) x (n — 1)
matrix depending on the masses. Since all choices of
mass-weighted Jacobi vectors lead to the same Euclidean
form (2.4) of the kinetic energy, the matrix D is orthogo-
nal, i.e., an element of the group O(n —1). We introduce
this group as a continuous group which interpolates be-
tween all the discrete choices of Jacobi coordinates. We
call this group the “democracy group,” because the trans-
formations (2.7) arise in questions of particle democracy,
such as how to construct coordinates or functions which
are invariant under permutations of particle labels. Of-
ten it is convenient to restrict the democracy group to
the connected group SO(n — 1). This entails little loss

1

FIG. 1. An example of Jacobi vectors for the four-body
problem. The figure is drawn for m; ~ 3m2, m4 =~ 3ma3.
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of generality, since by changing the sign of one Jacobi
vector, if necessary, it is always possible to force the ma-
trix D to have determinant +1. The democracy group
O(n — 1) or SO(n — 1) is only a subgroup of the overall
symmetry group O(3n — 3) of the kinetic energy, because
the democracy transformations (2.7) do not mix the in-
dividual components of the Jacobi vectors p,,.

Another group of importance acting on configuration
space consists of ordinary rotations, i.e., the transforma-
tions
(2.8)

P, =Rpa, a=1,...,n—1,

where R € SO(3). The rotation group is a symmetry
group, not only of the kinetic energy, but also (as we
shall assume) of the potential energy, and so has a deeper
significance than the larger group O(3n — 3) which is the
symmetry group of the kinetic energy alone.

We will also be interested in the parity operator P,
whose action on configuration space is given by

P, =Ppy = —pq. (2.9)
The rotation group combined with parity gives the group
O(3) of proper and improper rotations, also a subgroup
of O(3n — 3).

The democracy group has a significance which goes
beyond the motivations of its definition, and it arises in
many places in the analysis presented below. One reason
for the importance of the democracy group is that it is the
largest subgroup of O(3n—3) which commutes with all ro-
tations R €SO(3). (The proof involves a simple applica-
tion of Schur’s lemma.) Only those elements of O(3n—3)
which commute with rotations have an action on shape
space (defined momentarily); thus, the democracy group
acts on shape space and is the symmetry group of the
metric tensor defined on that space. It is also the sym-
metry group of the kinetic energy in the reduced (shape
space) description of the dynamics.

C. Vectors for visualization

Sometimes for purposes of visualization it is useful to
have some set of vectors which describe the geometry of
an n-particle configuration in a more immediate manner
than the Jacobi vectors. For example, we may wish to
use the displacement vectors d, taking us from one of
the particles, say, the nth, to the other n — 1,

d, =ry —r,, a=1,...,n—1, (2.10)
as illustrated in Fig. 2. Such vectors are related to the
Jacobi vectors by a linear transformation,

n—1
d, = Z Uas ps- (2.11)
B=1

For our purposes, all we ever need to know about this
transformation is that it is invertible, i.e., det U # 0.
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d; 4

d; ds

FIG. 2. It is easier to visualize the geometry of the
n-particle system in terms of the n — 1 vectors d., rather
than the n — 1 Jacobi vectors p,. But the two sets of vectors
are related by an invertible linear transformation.

D. Shape space and the action of parity on it

Now we turn to shape space, which is the space in
which a single point represents a family of configurations
of a given shape. Two configurations {p,} and {p),} are
defined to have the same shape if p!, = Rp, for some
proper rotation R € SO(3); this defines an equivalence
relation between configurations, and shape space S is the
quotient space

R3n—3

(2.12)
For example, in the three-body problem, shape space is
the space of triangles formed by three distinguishable
bodies. For n > 3, shape space is a manifold of dimen-
sionality 3n — 6, and internal or shape coordinates are
coordinates on this manifold. By a coordinate system on
shape space we mean a one-to-one mapping from some
region of shape space onto some region of R3"¢; as is
the general case with coordinates on manifolds, we ex-
pect to find that the whole manifold cannot be covered
with a single coordinate patch, and multiple, overlapping
patches must be used. On the other hand, it turns out
that in the cases n = 3 and n = 4, shape space can be
covered with a single coordinate patch. Finding a coor-
dinate system on shape space is closely related to find-
ing the topology of shape space; for example, we shall
prove below that shape space for the four-body prob-
lem is homeomorphic (topologically equivalent) to R® by
finding a single coordinate patch which covers all of shape
space, in which each of the six coordinates ranges from
—oo to +o0.

We now consider the action of parity on shape space,
in preparation for later analysis. The action of parity on
configuration space, given in Eq. (2.9), commutes with
the action of every element of the rotation group, so par-
ity has a well-defined action on shape space. We can just
as well think in terms of reflections as parity, since an ar-
bitrary reflection acting on configuration space induces
the same mapping on shape space as parity (a reflection
is the same as parity composed with a 180° proper ro-
tation about the normal to the plane of the reflection).
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Thus, if an n-particle configuration is planar, i.e., if the
Jacobi vectors p, or, equivalently, the displacement vec-
tors d lie in a plane, then the shape is invariant under
reflections in that plane, and therefore also under parity.
Conversely, if a configuration is three dimensional, i.e.,
if the span of the p, or d, is all of three-dimensional
space, then parity must map the given shape into a dis-
tinct shape, i.e., one which cannot be reached by a proper
rotation. This is clear geometrically, but to present a
proof we select three linearly independent Jacobi vec-
tors, say, p1, P2, P3, and form the nonzero triple product
p1 - (p2 X p3); since this changes sign under parity but
not under proper rotations, parity maps the old shape
into a distinct new shape. As simple corollaries of these
facts, we note that all shapes in the three-body problem
(triangles with distinguishable vertices) are planar, and
are therefore invariant under parity [18]; but for n = 4,
only the planar configurations, a subset of measure zero,
are invariant under parity, while all other configurations
(tetrahedra of nonzero volume and with distinguishable
vertices) are mapped into distinct shapes by parity.

E. Motivation for study of matrices F, K, and Q

Below we present an analysis of three matrices, F, K,
and Q, which prepare us for the establishment of coor-
dinates on shape space. The general motivation for this
analysis is as follows. First, for the case n = 3, it is obvi-
ous that the lengths of the three sides of the triangle can
be used as a coordinate system on the three-dimensional
shape space. Similarly, for the four-body problem, there
are six interparticle distances which almost form a coor-
dinate system on the six-dimensional shape space, failing
only to distinguish two shapes (tetrahedra) related by
parity. Of course, any invertible functions of the interpar-
ticle distances will serve as well for coordinates; interest-
ing choices are the squares of the interparticle distances
(which are somewhat better behaved than the interpar-
ticle distances themselves), or the dot products of the
Jacobi vectors, ps-pg. [In the n-body problem, the num-
ber of interparticle distances and Jacobi dot products is
the same, namely, n(n — 1)/2, and they are simple func-
tions of one another; thus, if the interparticle distances
can be used as coordinates, then so can the Jacobi dot
products.] In many respects, the Jacobi dot products
are nicer candidates as coordinates than the interparti-
cle distances or their squares, because with the Jacobi
dot products, all the mass dependencies in the problem
become localized in the definition of the Jacobi coordi-
nates. Unfortunately, for n > 5, the number of Jacobi dot
products, n(n—1)/2, exceeds the dimensionality of shape
space, 3n—6, so the Jacobi dot products can no longer be
used as coordinates, unless we arbitrarily throw some of
them out, an unsymmetrical and unattractive solution.

So the two defects of the Jacobi dot products,
Pa * P3, as coordinates on shape space are that for n > 4
they do not distinguish shapes related by parity, and that
for n > 5 there are too many of them. As far as the
parity ambiguity is concerned, we may wish to consider
the triple products p, - (pg X py), of which there are
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(n — 1)(n — 2)(n — 3)/6 in the n-body problem, because
these do distinguish shapes related by parity. But the
square of any triple product can always be expressed as
a cubic polynomial in the dot products p, - pg, as shown
by the vector identity

[A-(BxC)*=A4%B?C?*+2(A-B)(B-C)(C-A)
-A*(B-C)*-B*A-C)?
—C%*(A-B)2. (2.13)
Thus we see that, apart from a sign ambiguity arising on
taking the square root (which is really the same as the
parity ambiguity), the triple products are functions of the
dot products. Therefore it seems best first to study the
dot products and worry about their surplus when n > 5,
and then to deal with the parity ambiguity. To this -end
we introduce the matrices F, K, and Q and develop their
properties. The following discussion is a variation of the
standard theory of the singular value decomposition.

F. Definitions of matrices F, K, and Q

The matrix F is an (n — 1) x 3 matrix, defined by

Plz P11y Pi1z
P2z P2y P2z

F=| 7 (2.14)

Pn—1,z pn—l,y pn—l,z

ie, Foi = pai, @« = 1,...,m— 1,7 = 1,2,3. Since this
matrix has three columns, its rank r satisfies

r =rankF < 3. (2.15)
The rank r is the dimensionality of the span of the vec-
tors p, or dg, so it has a direct geometrical meaning, as
follows:

r =0, n-particle collision;

r <1, collinear configuration;

r <2, planar configuration;

r =3, three-dimensional configuration. (2.16)

As indicated by the inequalities, we consider the collinear
configurations to include the n-body collision, and the
planar configurations to include the collinear; if we wish
to indicate configurations for which » = 1 or r = 2
exclusively, we will speak of one-dimensional or two-
dimensional configurations, respectively.

From F we construct two more matrices,

K = F'F,
Q= FFt,

(2.17)
(2.18)

where the ¢t indicates the transpose, which are obviously
both symmetric and non-negative definite. We will call
the 3 x 3 matrix K the “moment tensor;” its definition
can also be written
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n—1
Kij =) Pai Paj- (2.19)
a=1

The moment tensor K is closely related to the moment
of inertia tensor M, defined by

n—1
Mi; = Z [lPal?8i; — pai Pail » (2.20)
a=1

or

M = (tr K)I — K. (2.21)
As for Q, it is an (n — 1) X (n — 1) matrix containing the
n(n — 1)/2 Jacobi dot products,

Qap = Pa - PB- (2.22)

G. Interrelations among matrices F, K, and Q

It turns out that matrices K and Q have the same rank
r as F. We prove this first for K. Let x; and e;, 7 =1, 2,3,
be the eigenvalues and normalized eigenvectors of K, so
that

Ke; = k;e;. (2.23)
Since K is symmetric, the eigenvectors can be chosen to
be orthonormal and are complete on R3; and since K is
non-negative definite, we have x; > 0. For definiteness
we order the eigenvalues and eigenvectors according to

K1 > K > k3 > 0. (2.24)
Then by Eq. (2.17) we have
[Fei|2 = eﬁ . FtF - €; = K, (225)

so that Fe; = 0 if and only if k; = 0. Therefore the
null spaces or kernels of K and F (as subspaces of R3)
coincide, and K and F have the same rank. A similar
argument applies to Q, which has the same null space as
F* (as subspaces of R®"!), and therefore the same rank
as F.

There is a close relationship between the non-null
eigenvectors of K and those of Q. (We call an eigenvector
null if the corresponding eigenvalue is zero.) As for Q,
let the eigenvectors and eigenvalues be £¥ and A, respec-
tively, where k = 1,...,n — 1 labels the eigenvectors and
eigenvalues, so that

n—1

B=1

(2.26)

These eigenvectors are complete on R®~! and we choose
them to be orthonormal, so that

n—1

3 €5k = bas, (2.27)
k=1

and

n—1

D EkEl = bne (2.28)
a=1

For definiteness, we order the eigenvalues of Q according
to

A2 A2 -2 A1 20. (2.29)

Since the rank of both K and Q is r < 3, only the first r
eigenvalues of each matrix are nonzero.
Now let us consider the vectors (in R3),

n—1

Xk =) €8P (2:30)
a=1

fork=1,...,n—1. We claim that X} vanishes if A\, = 0,

and otherwise it is an unnormalized eigenvector of K with
eigenvalue k; = Ag. To prove this, we first note that

Xi-Xe = €5 Qaph = M bre. (2.31)
a,B
Thus X = 0 if Ay = 0, and the vectors
1 n—1
ér=—17-=9 ¢ p, 2.32
o ; . (2:32)
for k = 1,...,r are orthonormal. They are also eigen-

vectors of K with eigenvalues k; = A, according to the
direct calculation

1
Kép = — 08 &8 = A\iés. 2.33
& ‘/’\_’:;,BPBQ XM k€k (2.33)

We see that the nonvanishing eigenvalues of K and Q are
the same, kK, = A, k=1,...,7.

In a similar manner, we can show that the vectors (in
Rn-l)

N, = € - Pa, (2.34)
for ¢ = 1,2, 3, vanish if k; = 0, and otherwise are unnor-
malized eigenvectors of Q with eigenvalues \; = k;. If
A; > 0, we can normalize these vectors and write

. 1 .
o= =8 Pa (2.35)

where é; is a normalized eigenvector of Q as in Eq. (2.26).

As a simple corollary of these facts, we note that
the non-null eigenvectors of K, ie., &;, i = 1,...,r,
span the same subspace of R? as the Jacobi vectors pq,
a = 1,...,n — 1, and form an orthonormal basis in
this subspace. This follows because the two subspaces
have the same dimensionality (namely, r) and because
€; - po = 0 for ¢ > 7, so the orthogonal subspaces are the
same. Therefore the p, can be written as linear com-
binations of the &;, ¢ = 1,...,r. To obtain this rela-
tion explicitly, we transform Eq. (2.32), which is valid
for k=1,...,r, into



2040 ROBERT G. LITTLEJOHN AND MATTHIAS REINSCH 52
T g form according to Eq. (2.8), and the moment tensor ac-
Z V Ak 623 €r = Z Z fz €5 Pa- (2.36) cording to
k=1 a=1k=1

But since X = 0 for £ > r, we can extend the k limit on
the right hand side of Eq. (2.36) fromk =rtok=n—1,
and then use the completeness relation (2.27) to obtain

Pa = VELér.
k=1

(2.37)

Finally, we note the simple relation between the eigen-
values k; of K (all of them, the null and non-null) and
the eigenvalues p; of the moment of inertia tensor M; it
is

H1 = K2 + K3, (238)

M2 =K1+ K3z, M3 =K1+ Ksa.

The moment of inertia tensor M does not generally have
the same rank as K and Q; instead, if » = 0, then
rankM = 0; if r = 1, then rankM = 2, and the
two nonzero eigenvalues of M are equal; if r = 2, then
rankM = 3 and one eigenvalue of M equals the sum of
the other two; and if r = 3, then rankM = 3 with no
special condition on the eigenvalues of M. These are ele-
mentary results with elementary interpretations. As for
the eigenvectors of K and M, they are the same,

Méi = /,l,iéi. (2.39)

H. Group actions on quantities of interest

In later sections we will be interested in the action
of rotations and democracy transformations on various
quantities of interest. The general idea is that a given
quantity will belong to some irreducible representation
of the rotation group and some other irreducible repre-
sentation of the democracy group, i.e., it will be a mem-
ber of two sets of quantities which span carrier spaces of
irreducible representations of the two groups. The quan-
tities of interest are usually polynomials in the compo-
nents of the Jacobi vectors, po;. Quantities which are
invariant under one or the other group (belonging to
the trivial representation) are especially interesting; for
example, coordinates on shape space must be invariant
under rotations (they must belong to the representation
j = 0), and democratic invariants (such as the hyperra-
dius) are interesting because they treat all particles in
a democratic manner, being invariant under permuta-
tions of particle labels. Democratic invariants are also
important because the democracy group is a symmetry
group of the kinetic energy (both its “horizontal” and
“vertical” components), and therefore the construction
of democratic invariants is involved in finding operators
which commute with the kinetic energy. In the follow-
ing discussion we will speak in terms of arbitrary n, but
in fact we will mainly be interested in the cases n = 3
and n = 4, for which the democracy group is SO(2) and
SO(3), respectively.

Under rotations R € SO(3), the Jacobi vectors trans-

K’ = RKR®. (2.40)

But the matrix Q is invariant under rotations, which is
why we are interested in the components of Q for coor-
dinates on shape space.

Under democracy transformations D € SO(n — 1), the
moment tensor K and the moment of inertia tensor M are
invariant, but the Jacobi vectors transform according to
Eq. (2.7). Thus first degree polynomials in the compo-
nents of the Jacobi vectors po; transform according to
the fundamental representation of SO(n — 1) (actually
the direct sum of three copies of the fundamental repre-
sentation, one each for ¢ = 1,2,3). None of these first
degree polynomials is rotationally invariant.

The general second degree polynomial in the compo-
nents of the Jacobi vectors is a linear combination of the
monomials pu; pgj; usually we are only interested in the
quantities which are rotationally invariant, so we con-
tract on %,j to obtain the Jacobi dot products p. - pg,
the components of Q. These transform according to

n—1

Q:zﬁ = Z DauDﬂquvv

Hv=1

(2.41)

i.e., according to the symmetric part of the tensor prod-
uct of the fundamental representation of SO(n — 1) with
itself (only the symmetric part because Q is a symmetric
matrix). This tensor product is generally reducible, and
yields a Clebsch-Gordan series of other irreducible repre-
sentations of SO(n — 1), which always includes the trivial
representation (the scalar or democratic invariant). This
is clear because the trace of Q, essentially the hyperra-
dius, is a democratic invariant.

If we ask for rotational invariants among cubic polyno-
mials in the components of the Jacobi vectors, we come
up with the triple products ps - (pg X py), which trans-
form according to the totally antisymmetric part of the
threefold tensor product of the fundamental representa-
tion of SO(n — 1) with itself. The Clebsch-Gordan series
for this tensor product may or may not yield the trivial
representation (i.e., a democratic invariant); it does so
for n = 4.

Higher order polynomials which are rotational invari-
ants can be formed by taking products of Jacobi dot
products or triple products. For example, rotationally
invariant polynomials which are quartic in the Jacobi
vectors can be formed by taking products of the Jacobi
dot products with themselves, i.e., they are quantities of
the form Qo3Q,.. It is straightforward to work out the
Clebsch-Gordan series for these and to pick out the var-
ious irreducible representations of the democracy group.
In later sections we will illustrate these operations with
explicit examples.

I. A useful mapping and its properties

We now return to the Jacobi dot products and attempt
to remedy their defects as coordinates on shape space.
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These dot products are well-defined functions on shape
space and are the n(n—1)/2 components of the matrix Q,
which we think of as an element of the space of (n —1) x
(n—1) symmetric matrices, or “symmetric matrix space”
(M) for short. The independent components of such a
matrix can be used as coordinates on symmetric matrix
space, so symmetric matrix space can be identified with
R™"~1)/2_ A coordinate system on shape space (S) will
be a mapping from some region of shape space to some
region of R3"~%; we now construct a related mapping by
regarding the definition (2.22) of Q as a mapping f from
shape space to symmetric matrix space,

f:8—-> M, f:s—Q(s), (2.42)
where s represents a shape, i.e., an equivalence class of

configurations related by proper rotations, and where

Qaﬂ(s) = Pa " PB- (243)
Here p, and pg are Jacobi vectors chosen from any con-
figuration in the equivalence class represented by s.

The mapping f has three important properties. First,
if shapes s and s’ are related by parity, s’ = Ps, then
Q(s) = Q(s'). This trivial property follows immediately
from the invariance of the dot product under parity, and
it implies that whenever Ps # s the mapping f is at least
two to one. As discussed above, for n > 4, only the planar
configurations, a subset of measure zero, satisfy Ps = s;
for all others, Ps # s. The two-to-one nature of the
mapping f is what we have called the “parity ambiguity.”
Of course, we need a one-to-one mapping for a coordinate
system.

According to the second property, however, the map-
ping f is never worse than two to ome. That is, if
Q(s) = Q(s') for two shapes s and s', then either s’ = s or
s’ = Ps. To prove this, suppose we have two shapes s and
s',let Q = Q(s) and Q' = Q(s’), and suppose Q = Q'. We
let A\x and &% be the eigenvalues and orthonormal eigen-
vectors of Q = Q’, as above. From the equivalence classes
of configurations represented by s and s’, we arbitrarily
choose configurations {p,} and {p.,}, and from these we
construct the matrices K and K’ as in Eq. (2.19), which
are not in general equal. But since the nonzero eigenval-
ues of Q and those of K are the same, the eigenvalues of
K and K’ are the same, k; = &}, ¢ = 1,2,3. As for the
non-null eigenvectors of K and K’, we use Eq. (2.32) to
write

1 = k / 1 = k 1
ék = —FV £a Pos &) = —F—= £o¢p ’ 2.44
o agl k= az=1 o (244)

for k = 1,...,r. These sets of vectors, {é,} and {é}},
form r-dimensional, orthonormal frames in the spaces
spanned by {p.} and {p}, respectively; these spaces
have the same dimensionality. Now if 0 < r < 2, then
any r-dimensional frame in R3 is related to any other
such frame by some proper rotation, i.e., &, = Sé, for
some S € SO(3); and if r = 3, then any three-frame in R3
is related to any other such three-frame by some (possi-
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bly improper) S € O(3). But by Eq. (2.37) this implies
that

P, = Spa- (2.45)
Thus either configurations {p.} and {p.,} are related by
some proper rotation (always the case when 0 < r < 2),
meaning that s’ = s, or else they are related by some
improper rotation (which sometimes happens when r =
3), meaning that s’ = Ps.

The mapping f is certainly not onto symmetric ma-
trix space, because the matrices Qqg(s) constructed by
Eq. (2.43) are always non-negative definite and have rank
r < 3, and symmetric matrix space, as we have defined
it, includes all symmetric matrices. On the other hand, it
turns out that f is onto the subset of symmetric matrix
space consisting of non-negative definite matrices of rank
r < 3. That is, if Q is an (n — 1) X (n — 1) symmetric,
non-negative definite matrix with rank r < 3, then there
exists some shape s such that Q = Q(s). This is the
third property of the mapping f, and its significance is
that if we can find coordinates on the subset of symmetric
matrix space consisting of non-negative definite matrices
with rank r < 3, then, apart from the parity ambiguity,
we will have found coordinates on shape space. As we
shall show, this subset of symmetric matrix space is a
manifold of dimensionality 3n — 6.

To prove this property, we let Q be any (n—1) x (n—1)
symmetric, non-negative definite matrix with rank r <
3. We construct its eigenvectors £¥ and eigenvalues g
as in Egs. (2.26), (2.27), and (2.28). Since Q is non-
negative definite, we have A; > 0, and only the first r < 3
eigenvalues Ay are nonzero. We order the eigenvalues
as in Eq. (2.29). Thus we can write Q in terms of its
eigenvalues and eigenvectors by

Qap = D _EE N ES.

k=1

(2.46)

Now we arbitrarily choose an r-dimensional, orthonormal
frame {&.}, ¥ = 1,...,r in R3, and use Eq. (2.37) to
define Jacobi vectors p,. Then by direct computation
we find

Po-Ps= 3 VAElther &= eEM&f = Qup.
k=1

k=1

(2.47)

Thus, if s is the shape of configuration {ps}, then Q =
Q(s), as claimed.

We will henceforth refer to the subset of symmetric
matrix space for which Q is non-negative definite and
has rank r < 3 as the “physical region,” and the rest of
symmetric matrix space as the “nonphysical region.”

III. SHAPE COORDINATES FOR THE
THREE-BODY PROBLEM

There is a large literature on the three-body problem,
and many different coordinate systems have been used
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on the corresponding three-dimensional shape space. In
this section we will pretend that we do not know any
of this, but instead we will apply the general theory of
Sec. II to the case n = 3. In the process we will illustrate
the general theory, we will “discover” some coordinate
systems in use, and we will prepare ourselves for the case
n = 4 which we take up in the next section.

A. Coordinates on symmetric matrix space for n = 3

In the case n = 3 there are only two Jacobi vectors,
p1 and p3, and symmetric matrix space is the three-
dimensional space of real, 2 X 2 symmetric matrices. We
let Q be such a matrix (whether or not it can be written
in the form Q.3 = p« - P3, i.e., whether or not Q lies in
the physical region). We write Q as a linear combination
of the identity matrix and the Pauli matrices,

1
Q= E(wl + w0, + weo,), (3.1)
where the expansion coefficients are given by
w=trQ = Qu1 + Q2,
wy = tr(Qo;) = Q11 — Q22,
wy = tr(Qo;) = 2Q12. (3.2)

The Pauli matrix o is omitted because Q is symmetric.
The coefficients (w, w1, w2) are convenient coordinates on
symmetric matrix space; each ranges from —oo to +o0,
and symmetric matrix space itself is R3.

B. The physical region for n = 3

The physical region is the subset of symmetric matrix
space for which Q is non-negative definite. It is not nec-
essary to add the qualification rank Q < 3, because Q is
only a 2 x 2 matrix. The physical region is easily char-
acterized in terms of the eigenvalues of Q; these are

1
AL = 3 (w-i—,/wf—}—w%),
1
/\zzi('w—‘/wf-{—w%), (3.3)

which are arranged so that A; > A;. Specifically, the
physical region is A, > 0. Thus, in the coordinates
(w, w1, w2), the boundary separating the physical from
the nonphysical region is the surface Ay =0, i.e.,

— a2 2
w = 4/wy + w;3.

This surface is a cone, and the physical region itself is
the union of the interior of this cone with the boundary,
as illustrated in Fig. 3.

On the boundary of the physical region we have A\; >
A2 = 0 and rank Q < 1, so the boundary consists of the
collinear shapes. Most of the boundary points represent
one-dimensional shapes, but at the apex of the cone we

(3.4)

(w1, w2)

w1

FIG. 3. Symmetric matrix space in the case n = 3 is R3,
on which (w,w;,wz) are convenient coordinates. The sur-
face of the cone (only the upper sheet, as illustrated) sep-
arates the physical from the nonphysical region. The sur-
face itself contains collinear shapes, and the interior contains
two-dimensional shapes.

have A\; = A2 = 0 and rankQ = 0, so the apex repre-
sents the three-particle collision. In the interior of the
cone we have A2 > A; > 0 and rank Q = 2, so the inte-
rior shapes are two dimensional, representing triangles of
nonvanishing area.

In the physical region we are allowed to write Qug =
Pa - P3, so that

w=p}+p3 wi=pl—p; wz=2p;-p2. (3.5)
We note that w is the square of the “hyperradius” (see
Smith [10]). To these we add

w3z = 2|p1 X pzl > 0, (36)

to be used only in the physical region, and we note the
identity

2 2 2
w2=w1+w2+w3.

(3.7)
Thus, the surface of the cone is also characterized by
wsg = 0, or p; X p2 = 0 (p; and p, are parallel). We note
that ws is proportional to the area of the parallelogram
spanned by p; and p2, and thus, by Eq. (2.11), to the
area of the triangle formed by the three bodies. This area
is considered to be strictly non-negative.

Topologically speaking, the boundary of the physical
region is homeomorphic to R2, as is easily seen by pro-
jecting the surface of the cone onto the w;-ws plane.
That is, Eq. (3.4) specifies a one-to-one mapping between
the surface of the cone and the w;-w, plane. We will see
an analog of this feature in the four-body problem.

There is no parity ambiguity in the three-body prob-
lem, because triangular shapes are invariant under parity,
as discussed in Sec. IID, and the mapping f from shape
space onto the physical region of symmetric matrix space
is one to one. Therefore coordinates on the physical re-
gion of symmetric matrix space are also coordinates on
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shape space. But coordinates (w,w;,ws) are not conve-
nient for the physical region, since the range of w has
nonconstant bounds (y/w? + w2 < w < o). In this re-
spect, w3 is better than w. If we move from some point
(w1, w2) in the wi-ws plane parallel to the w axis, as
illustrated in Fig. 3, then at a certain point we will punc-
ture the surface of the cone and pass into the physical
region. At the point of puncture, w3 = 0, and beyond
this point, w3 increases monotonically. Therefore if we
use (wy,ws,ws) as coordinates in the physical region, we
see that the physical region is characterized by ws > 0.
These coordinates make it obvious that shape space itself
is homeomorphic to half of R3, including the boundary
w3z = 0.

The transformation from w to ws is not differentiable
at the apex of the cone, as is indicated geometrically by
the transformation of the boundary of the physical re-
gion, which is the surface of a cone in the coordinates
(w,w;,wz), and a plane (w3 = 0) in the coordinates
(w1, w2, w3). Therefore scalar or tensor fields of inter-
est on shape space which appear smooth in one coor-
dinate system will appear nonsmooth in the other. In
the three-body problem this lack of differentiability oc-
curs only at the three-particle collision, which is a highly
singular configuration, but it is a warning to beware of
notions of smoothness unless they are connected with an
invariant physical or geometrical meaning.

The coordinates (w;,ws,ws), or variations of them,
have been used by a number of authors, including Smith
(19], Dragt [21], Mead and Truhlar [14], Iwai [3], and Pack
and Parker [17]. One simple variation, suggested by the
identity (3.7), is to transform to spherical coordinates in
(w1, w2, w3) space; this gives the coordinates (w,x,v),
defined by

w; = W cos X Cos ¥,
wy = wcos x sin,

w3 = wsinx. (3.8)

The angles (x, ) are “hyperspherical” angles (see Smith
[10] or Pack and Parker [17]).

C. Group theoretical significance of the coordinates

In the following we present a group theoretical analysis
of various quantities of interest in the three-body prob-
lem, and show in a different way how one might “dis-
cover” the coordinates we have introduced above. This
analysis is overly formalistic for the purposes of the three-
body problem, but it is useful practice for our later treat-
ment of the four-body problem.

Shape coordinates are automatically invariant under
rotations R € SO(3), as in Eq. (2.8), but they may
have different transformation properties under democ-
racy transformations. In the three-body problem, the
democracy group is simply SO(2), whose one-dimensional
irreducible representations can be labeled by the “mag-
netic quantum number” m = ... - 1,0,1,2,..., with
characters exp(ima). The fundamental representation
of SO(2) consists of the matrices
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D(a) = <cosa —sina ) ’ (3.9)

sina cosa

for 0 < a < 2n. This representation is reducible and
contains the irreducible representations m = —1 and m =
+1,

SO(2) = —1 & +1, (3.10)
although the reduction requires complex transforma-
tions.

Under democracy transformations, the Jacobi dot
products transform according to the symmetric part of
SO(2) ® SO(2), or

[(-18+4+1) @ (-1® +1)lsym = —20 08 +2. (3.11)

(The antisymmetric part gives a single copy of m = 0.)
Thus, of the three independent components of Q.g in
the three-body problem, there is one linear combination
which is a democratic invariant (m = 0); this is just the
quantity w introduced in Eq. (3.5). As for the represen-
tations m = %2, these are complex, but can be combined
into a single, two-dimensional real representation. The
two quantities transforming under this representation are
w; and ws, as shown by

wy\ _ [ cos2a —sin2a w1

wy | 7 \ sin2a cos2a ( wy | °
Alternatively, the quantities w; + iw, transform accord-
ing to the complex but one-dimensional m = +2 repre-
sentations. Geometrically, Eq. (3.12) shows that democ-
racy transformations are rotations about the w axis in
the coordinates (w,w;,wz), or about the wz axis in the
coordinates (w;,ws,ws), by twice the angle a; thus 2a
can be identified with the azimuthal hyperspherical an-
gle ¢ as in Eq. (3.8). This fact is widely recognized in
the literature on the three-body problem (e.g., Pack and
Parker [17]).

Three-body shape space is three dimensional, and the
democracy group is one dimensional. Therefore we ex-
pect there to be at least two democratic invariants on
shape space, but so far we have only one, namely, w. We
have not seen any others yet because there are no others
which can be formed from quadratic polynomials in the
Jacobi vectors. To see the other invariant, we must go
to higher order polynomials. Cubic polynomials will not
do, because the threefold tensor product of SO(2) with
itself does not contain the representation m = 0, and
in any case there are no rotational invariants among the
cubic polynomials because we cannot construct a triple
product with only two Jacobi vectors. In fact, the new
invariant turns up among the quartic polynomials in p,.
The rotationally invariant, quartic polynomials in the Ja-
cobi vectors are quadratic polynomials in the quantities
(w,wy,wz); but since w already belongs to the repre-
sentation m = 0 we might as well discard it, since it
can never create a new m = 0 quantity in combination
with w; and w;. Thus we consider quadratic polyno-
mials which are linear combinations of w;w;, 4,5 = 1,2,
where the w; transform according to Eq. (3.12). There

(3.12)
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are three independent such polynomials, which transform
according to

(—20+2) @ (—2® +2)|\ym =400 +4. (3.13)

The m = 0 quantity in this decomposition is just the
obvious invariant of the transformation (3.12); we write
a for this invariant, which is
a=w}+wl (3.14)
Thus w and a are the two democratic invariants in the
three-body problem. Finally, the quantity w3 introduced
in Eq. (3.6) is just a simple function of the two invariants,
ws = YV w? —a. (3.15)

A more direct way to construct the democratic invari-
ants is to use the obvious invariants of the matrix Q, i.e.,
its trace and determinant. Indeed, we find

w=trQ, w2 = 4det Q. (3.16)
Alternatively, we can use the eigenvalues A; and ),
which are also democratic invariants.

The action of the democracy group on three-body
shape space suggests that the natural coordinates to use
on shape space would be (w,ws,a), that is, two demo-
cratic invariants plus the angle « of the democracy trans-
formation as in Eq. (3.9). Of course, any two functions
of the democratic invariants could be used instead; it
is hard to argue that one invariant is better than an-
other. In practice, however, it seems that either coor-
dinates (wq, w2, ws) or (w, X, %) are more convenient for
the three-body problem. The reason is that the various
tensor fields of interest on the three-body shape space
(such as the metric tensor or the Coriolis tensor) are in-
variant under a larger group than the democracy group,
namely, under a certain SO(3) group which contains the
democracy group SO(2) as a subgroup. This SO(3) sym-
metry group consists of rotations in the usual sense in the
(w1, w2, ws) coordinates, and its presence is related to the
fact that the holonomy group for the three-body problem
is only SO(2) and that the planar three-body problem has
a larger symmetry group than just the democracy group.
There is nothing analogous in the four-body problem, for
which the various tensor fields of interest are invariant
under the democracy group but not a larger group.

IV. SHAPE COORDINATES FOR THE
FOUR-BODY PROBLEM

We now apply the theory of Sec. II to the case n = 4.
This case is the first one for which the generic features
occurring at large n occur; the three-body problem is
a special case (just as is the two-body problem). Our
main accomplishments in this section are to show that
four-body shape space is homeomorphic to R® (a fact
first proven by Narasimhan and Ramadas [8]), to find
convenient coordinates on this space, to identify various
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submanifolds of interest, and to explore the action of the
democracy group on shape space.

A. Coordinates on symmetric matrix space for n = 4

In the case n = 4 there are three Jacobi vectors, p1, p2,
p3, and symmetric matrix space is the six-dimensional
space of real, symmetric, 3 X 3 matrices Q. The democ-
racy group for n = 4 is SO(3); of course the democracy
group is not to be confused with the rotation group, also
SO(3) as an abstract group. [The rotation group acts
on configuration space (not shape space), according to
Eq. (2.8).] We will denote the irreducible representations
of the democracy group by £ = 0,1, 2,...; the fundamen-
tal representation SO(3) is the irreducible representation
£=1.

A convenient basis of matrices for symmetric matrix
space consists of the identity | and the following five ma-
trices:

1 0 0 010
B, =+v3|l0-10]), B,=+v3[100],
0 0 O 000
000 001
Bs = +v3{001], B, = +v3(000],
010 100
-1 0 0
By = 0 -10]. (4.1)
0 0 2
These matrices obey
trB; =0, (4.2)
tr(B,-Bj) = 65,’_.,', (43)
for 7,7 = 1,...,5. The matrices B; are the analogs of

the Pauli matrices for the case n = 3. Their definition
is motivated by the action of the democracy group on
symmetric matrix space, shown in Eq. (2.41); this action
consists of the symmetric part of SO(3)xSO(3), which
decomposes according to the £ values

(1®1)sym =0 2. (4.4)

Thus the identity matrix spans the one-dimensional £ = 0
subspace of symmetric matrix space, and the matrices
{B;} span the five-dimensional £ = 2 subspace of sym-
metric and traceless matrices.

We write an arbitrary symmetric 3 x 3 matrix Q (not
necessarily in the physical region) as a linear combination
of the basis matrices, according to

5
1
Q= 3 (wl—l—;wiBi) R

so that (w; w1, ..., ws) are coordinates on symmetric ma-
trix space. Thus we have

(4.5)

w=1trQ, w; = %tr(QBi), (4.6)



52 INTERNAL OR SHAPE COORDINATES IN THE n-BODY PROBLEM 2045

or

w= Q11+ Q22 + Qa3, wz = V3Qa3,

wy = ?(Qu - Q22), ws=V3Qa,

wy = V3Q12, ws= %(—Qu — Q22 +2Q33). (4.7)

The coordinates (w;wy,...,ws) transform under democ-
racy transformations just like the corresponding basis
matrices; w is the £ = 0 democratic invariant, and the w;
transform according to £ = 2. All six coordinates range
from —oo to 400, and symmetric matrix space itself is
RS. Keating and Mead [7] used a similar set of coordi-
nates, making reference to interparticle distances rather
than mass-weighted Jacobi vectors.

B. The physical region for n = 4

The physical region is the subset of symmetric matrix
space for which Q is non-negative definite. It is not nec-
essary to add the qualification that rankQ < 3, since
Q is only a 3 x 3 matrix. Inside the physical region we
are allowed to write Qo3 = po - P8, so the coordinates
become

w = p}+p3+ 03, ws = V3ps-ps,

_ \/§ 2 2 wy = \/§P3'P1»
wy = —(pi = p2), 1 . .
wy = \}301172, ws = 5(_P1”P2+2P3)-

(4.8)

We note that w is again the square of the hyperradius.
To these equations we add the definition

1/2
we = V3 (lp1 X pal? + |p2 X psl? + |ps x p1[?)/* > 0,
(4.9)

to be used only in the physical region, and we note the
identity

(4.10)

5
w? = (Z wf) + w2,
=1

In terms of the three eigenvalues of Q, ordered accord-
ing to A; > Az > A3, the physical region is characterized
by A3 > 0. In Sec. III we used explicit formulas for the
eigenvalues, Eq. (3.3), to study the physical region. But
in the four-body problem the eigenvalues are roots of a
cubic, and it is not easy to work with their explicit ex-
pressions. Therefore we take another approach.

We imagine the (w;ws,...,ws) coordinates in sym-
metric matrix space as illustrated in Fig. 4, in which
the five-dimensional hyperplane w = 0 is illustrated
schematically as if it were two dimensional. The eigen-
values )\ are functions of the six coordinates A =
Ae(w;wi, ..., ws); we denote the eigenvalues evaluated
on the five-dimensional hypersurface w = 0 by Ago, so
that

{wi}

W;

FIG. 4. Symmetric matrix space in the case n = 4 is RS,
on which (w;wy,...,ws) are convenient coordinates. On the
five-dimensional hyperplane w = 0, there is only one point
which lies in the physical region; this is the origin w; = 0,
representing the four-body collision. At all other points on
this hyperplane, at least one eigenvalue Ago is negative. The
surface dividing the physical from the nonphysical region is a
higher dimensional analog of a cone, and is homeomorphic to
RS.

AkO =/\k0('u)1,...,w5) =)\k(0;w1,...,w5)‘ (411)
Then we claim that
w
Ae(wywy, ..., ws) = §+/\k0(w1,...,w5). (4.12)

The proof follows immediately from the secular equation
for Q, which is

det(Q — Ael) = det [% > wiB; - (,\,c - %) |} =0.
) (4.13)

Thus Ago = A —w/3.
Now since w = tr Q on the hyperplane w = 0 we have

A1o + A20 + Azp = 0. (414)

Therefore either all three Ao vanish, or else some are
positive and some are negative. The vanishing of all
three Aro implies rankQ = 0 or equivalently w; = 0,
1 =1,...,5; this is the four-body collision, and it is the
only point of the hyperplane w = 0 which is contained
in the physical region. It is the analog of the apex of the
cone in the three-body problem. At all other points on
the hyperplane w = 0, at least one eigenvalue Ao must
be negative (certainly the last one, Asq), so these points
lie outside the physical region. A typical arrangement for
the three eigenvalues on the A axis is illustrated in Fig. 5.

Now let us choose a point {w;} on the hyperplane
w = 0, and move parallel to the w axis, as illustrated
in Fig. 4. According to Eq. (4.12), as we move along this
line in the direction of increasing w, all eigenvalues A
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Azo  Az20 Ao

! A

0
FIG. 5. Typical appearance of the three eigenvalues Axo of

Q on the hyperplane w = 0. Except at the origin, at least one
of the eigenvalues must be negative.

increase monotonically, their differences remaining con-
stant. When we reach the point
w = —3/\30(w1,...,w5) Z 0, (415)

the eigenvalues satisfy Ay > Az > A3 = 0, and we are at
the boundary of the physical region. On this boundary,
rank Q < 2, so the boundary configurations are planar.
At all larger w values, we have A\; > Ay > A3 > 0 and
rank Q = 3, so such matrices lie inside the physical region
and the corresponding shapes are three dimensional.

Equation (4.15) can be thought of as a one-to-one map-
ping from points of the hyperplane w = 0 to the points
on the boundary of the physical region, and shows that
this boundary is homeomorphic to R5. In other words,
Eq. (4.15) is the equation for a single-valued surface over
the hyperplane w = 0. The value of w occurring in
Eq. (4.15) is always non-negative, and takes on the value
w = 0 only at the origin of the coordinates. The surface
itself is a higher dimensional analog of the cone we found
in the three-body problem, which is why it is illustrated
as a cone in Fig. 4. But the illustration is misleading in
certain respects; in particular, when the boundary sur-
face is represented in the coordinates (w;wy,...,ws), it
is not smooth at places where the lowest two eigenvalues
are equal, A, = A3 = 0. The vanishing of two eigenvalues
implies rank Q < 1, which implies in turn the collinear
shapes. The boundary surface [as viewed in the coordi-
nates (w;ws,...,ws)] is continuous at such points, but
it is not differentiable; in a moment we will introduce a
coordinate transformation which irons out these singu-
larities. Again, we have a warning to beware of notions
of smoothness, this time in the neighborhood of collinear
shapes. It is well known (e.g., Watson [24]) that the
dynamics of an n-body system has singular features in
the neighborhood of collinear configurations, but there is
much more that can be said about this subject.

C. Coordinates on shape space for n = 4

Unlike the case n = 3, for n = 4 the mapping f from
shape space onto the physical region is not one to one. It
is one to one for planar shapes, which we now recognize as
the boundary of the physical region; but it is two to one
for all points inside the physical region. Therefore to find
coordinates on shape space we need coordinates which
cover the physical region twice, except for the boundary
points, which are to be covered once.

To this end, we introduce the quantity V,

V = p1 - (p2 X p3), (4.16)
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which is a rotational invariant and therefore a single-
valued function on shape space. The geometrical mean-
ing of V is that it is the signed volume of the paral-
lelepiped spanned by the three Jacobi vectors, which to
within a constant factor is the volume of the tetrahedron
formed by the four particles. To express V as a function
on symmetric matrix space, we note the identity

det Q = (detF)? = V2, (4.17)
which is meaningful because in the four-body problem
the matrix F is square. Therefore we have

V = +£1/det Q = £/ A1 )23, (4.18)
or
Vi= (D) (Y4 m) (Y4am). (@19)

We see that V, regarded as a function on symmetric ma-
trix space, is real in the physical region, its value is zero
on the boundary (the planar shapes), and it is double
valued in the interior of the physical region. The + sign
resolves the parity ambiguity for shapes of nonzero vol-
ume. Furthermore, V2 increases monotonically with w
as we move past the boundary parallel to the w axis, as
in Fig. 4, so the range of V, for all values of w;, is —oo
to +o0.

Therefore suitable coordinates on shape space are
(Vi;ws,...,ws), each of which ranges from —oco to +oo.
These coordinates provide the proof that shape space in
the four-body problem is homeomorphic to R8. If we
identify shape space with R® through these coordinates,
then we see that the five-dimensional hyperplane V = 0
contains the planar shapes; in these coordinates, all the
lack of smoothness that was present in the boundary sur-
face of planar shapes in symmetric matrix space has been
ironed out.

D. Democratic invariants for n = 4

Since shape space for n = 4 is six dimensional and the
democracy group SO(3) is three dimensional, we expect
there to be at least three independent democratic invari-
ants, of which w = tr Q is one. In fact, there are precisely
three independent democratic invariants, since the man-
ifold swept out by allowing the democracy group to act
on a typical point of shape space is three dimensional.
For a typical point of shape space, the matrix Q has
distinct eigenvalues, so the subgroup of the democracy
group which leaves this point invariant is a discrete (0-
dimensional) subgroup. There are exceptional points of
shape space constituting a subset of measure zero where
these statements are not true, but for now we will con-
centrate on the typical points.

The easy way to find the three democratic invariants
is to write down the invariants of the matrix Q, which
can be identified with the coefficients of the secular poly-
nomial. We write this polynomial in the form

P(A) = —det(Q—Al) = A% —c2A% + ¢; A —co.  (4.20)
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Of the coefficients, c, is the previously found invariant,
tr Q = w. The coefficient ¢; is new, and can be written
in several forms,

c1 = QuQ22 + Q22Q33 + Q33Q11 — Q% — Q33 — Q3

= Aths + A2ds + Aghy = %(wz —a) = éwg, (4.21)

where
5
=1
By Eq. (4.10), we have
w > +/a, (4.23)

in the physical region. The final coefficient is

co=detQ = A A A3 =V = %(uﬁ — 3aw +b), (4.24)

where
b = 2w3 — 6ws(w? + w?) + 3ws (w2 + w?)
—3vV3w; (w3 — w?) + 6vV3 wawswy. (4.25)

In deriving these equations, we have solved Egs. (4.7)
for the components of Q, and used the results to express
things in terms of the coordinates (w;wy,...,ws).

The three democratic invariants for the four-body
problem can be taken to be (cz,c1,c0) or (w,a,b) or
(A1, A2, Ag) or any invertible functions of these; note that
a and b depend only on (wy,...,ws), and are indepen-
dent of w. Note also that V2 is a democratic invariant;
so is V itself, if we restrict the democracy group to SO(3)
[instead of O(3)].

The secular polynomial simplifies somewhat when ex-
pressed in terms of Ag = A — w/3. If we write Py(Ag) =
P()), then by Eq. (4.12) we obtain Py(Ao) by setting
w=0and A =)\ in P(\). Thus,

Po(ho) = A3 — %a/\o - %b. (4.26)
If one has to find the eigenvalues A of Q, the easiest way
is to solve first for the roots Ag of Py(Ag), which depend
only on the invariants a and b, and then to use Eq. (4.12).

The democratic invariants can also be obtained from a
group theoretical approach. As noted earlier, the coordi-
nates (w;wy,...,ws) are rotationally invariant quadratic
polynomials in the Jacobi vectors, transforming accord-
ing to £ = 0 and £ = 2. To examine quartic polynomi-
als in the Jacobi vectors, we discard the invariant w and
form the 15 independent monomials w;wj, 7,5 = 1,...,5.
These transform according to

(202)ym =002 4, (4.27)

so they contain precisely one democratic invariant; this
is simply a. To obtain a third invariant, we move on to
sixth degree polynomials in the Jacobi vectors, i.e., cubic
polynomials in the w;. These transform according to

(20202)ym=0020304®6, (4.28)
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which again contains a single invariant; this turns out
to be b, so that the funny coefficients seen in Eq. (4.25)
are essentially vector coupling coefficients for SO(3). We
can also examine cubic polynomials in the Jacobi vectors.
The only one of these which is rotationally invariant is
the triple product V = p; - (p2 X p3), which is the totally
antisymmetric part of 1 ® 1 ® 1, which is just a single
scalar (£ = 0).

It is also convenient to express the invariants of the

moment of inertia tensor in terms of (w,a,b). From
Eq. (2.38) we have trM = 2w, and
detM = (/\1 + Az)(Az + /\3)(A3 + Al)
= C2C1 — Cp
= (/\1 + A2 + /\3)(/\1A2 + A2z + A3/\1) — A1Az2A3
= %(Sw:’ — 6aw — b). (4.29)

E. Interesting submanifolds of shape space

We now study certain interesting submanifolds of
shape space. Technically, these are not proper differen-
tiable manifolds, because they contain points where they
are not smooth.

The polynomial Py(Ag) has a local maximum at A =
—4/a/3 and a local minimum at Ao = ++/a/3; a graph of
this polynomial for typical values of a and b is shown in
Fig. 6. Since the roots of Py are real, the maximum must

be non-negative and the minimum nonpositive. This
leads to the inequality
—2a%/? < b < 4242, (4.30)

which is not at all easy to prove from the definitions
Egs. (4.22) and (4.25). When the locally maximum value
of P, vanishes, then b = +2a3/2 and the two lowest roots
are equal, A2o = Azp = —+/a/3, with Ao = +2/a/3.
Likewise, when the locally minimum value of Py vanishes,
then b = —2a%/? and the two largest roots are equal,
Ao = A20 = ++/a/3, with Az = —24/a/3. An alternate

Jas]
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> ]
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+/a/3
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P U S N T S S
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FIG. 6. Typical graph of the polynomial Py(Ao). Local
extrema occur at A = +,/a/3. The roots are real and sum to
zero.
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way to prove inequality (4.30) is to use Egs. (4.21) and
(4.24) to express a and b in terms of the eigenvalues of
Q. One then finds that

4a® — 5% = 27(A1 — A2)° (A2 — A3)*(As — A1)?,  (4.31)
which shows that 4a® — b? is non-negative.

These algebraic relations connecting a, b, and the three
eigenvalues Ao, all of which are functions of the five w;,
can be viewed geometrically either in the five-dimensional
hyperplanes w = const in symmetric matrix space, or
in the five-dimensional hyperplanes V' = const in shape
space. For example, if we take a point (wq,...,ws) in
the hyperplane w = 0 in symmetric matrix space such
that b = +2a%/? and project it onto the boundary of the
physical region (V = 0) according to Eq. (4.15) or as il-
lustrated in Fig. 4, then w = y/a = A; and Ay = A3 = 0.
At such a point of matrix space rank Q < 1 and the corre-
sponding shapes are collinear. Conversely, every collinear
shape can be obtained in this manner. Therefore the
two equations b = +2a%/2 and V = 0 characterize the
collinear shapes; such shapes are properly one dimen-
sional, unless a = 0, in which case we have the four-body
collision. It would appear that the manifold of collinear
shapes is four dimensional, since we have two equations
connecting the six coordinates (V;ws,...,ws) specifying
it; but actually the manifold of collinear shapes is three
dimensional (the functions in the two equations are not
smooth at the points in question). It is easy to see this
from another point of view, because any collinear shape
is specified by the coordinates of the three Jacobi vectors
along a single direction. Similarly, the submanifold of
zero-dimensional shapes is zero dimensional (the single
shape representing the four-body collision).

Another submanifold of interest in shape space is that
upon which the moment of inertia tensor is degener-
ate, since at such points the principal axis frame is not
uniquely defined. We will call this the “degeneracy sub-
manifold.” The principal axis frame, assumed to be right
handed, is defined at all other points of shape space and is
unique modulo proper (right handed) inversions of some
of the eigenvectors. [We can exclude permutations of the
eigenvectors if we sequence the eigenvalues of K accord-
ing to Eq. (2.24).] In any contractible region of shape
space, excluding the degeneracy submanifold, the prin-
cipal axis frame can be defined as a smooth function of
shape. The principal axis frame does not, however, ap-
proach a unique limit as the degeneracy manifold is ap-
proached, so the shape derivatives of the eigenvectors be-
come infinite as the degeneracy manifold is approached.
This in turn implies a divergence of the gauge potential
A,,, so the manifold of degeneracy of the moment of in-
ertia tensor is also the singular manifold of the gauge
potential (the “string singularity”) in the principal axis
gauge. These are all reasons for being interested in the
degeneracy manifold of the moment of inertia tensor.

The moment of inertia tensor is degenerate if and only
if A2 = Az or Ay = Az. In view of Eq. (4.12), these con-
ditions are true for any w (or for any V) if and only if
/\20 = A3() or AlO = /\20, i.e, b= :t2a3/2. The manifold
b = —2a®/? inside the hyperplane V' = 0 looks exactly like
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the collinear manifold b = +2a3/2 inside the same hyper-
plane and joins with it at the four-body collision. In par-
ticular, both manifolds are three dimensional. Therefore
the degeneracy manifold is formed by taking the union of
these two three-dimensional manifolds in the hyperplane
V = 0 and translating them parallel to the V' axis. Thus
the degeneracy manifold is four dimensional.

Narasimhan and Ramadas [8] also considered subman-
ifolds of shape space and drew some topological conclu-
sions about them. The treatment given in the present
paper can be used to derive some of their results by
alternate means. As an example of the utility of the
(V;wsq,...,ws) coordinate system, we present a simple
proof of the homeomorphism

B=Rx (§°—P), (4.32)
where B is the set of shapes with dimensionality greater
than or equal to 2, and P is a submanifold of the five-
sphere S° homeomorphic to the projective plane RP2.
The manifold B is of interest because it is the subset of
shape space consisting of noncollinear shapes, and such
shapes are acted upon freely by the rotation group. In
other words, B is the base space of the principal SO(3)
fiber bundle obtained from the set of noncollinear config-
urations.

B is homeomorphic to the subset of the (V;wy,...,ws)
parameter space obtained by removing the points which
represent collinear shapes. As discussed above, points
representing collinear shapes satisfy b = +2a%/2 and
V = 0. These conditions are homogeneous in the co-
ordinates, so we are removing a set of rays from R®. The
set which remains is R x (S°% — P), where P is a subman-
ifold of S° to be determined. Because of the condition
V =0, P is homeomorphic to the set of points that are
on a sphere centered at the origin in (wy,...,ws) space
and that represent collinear shapes. For concreteness,
let the radius of this sphere be ,/ag where ao is an ar-
bitrary positive constant. If we define C to be the set
of all shapes that are collinear and have a = ag, then
P is homeomorphic to C. We define a mapping from
a two-sphere of radius (ao)!/ imbedded in R® to C by
mapping (x1,Z2,z3) to the shape of the collinear con-
figuration given by {po = zou,a = 1,2,3}, where u is
an arbitrary constant unit vector in physical space. It is
clear that this mapping is onto C and that it is every-
where two to one since (z1,%2,z3) and —(z1,z2,z3) get
mapped to the same shape. Thus P is homeomorphic to
52 modulo the equivalence relation of defining antipodal
points to be equivalent. This is RP2.

F. Foliation of shape space by the democracy group

Visualization of shape space for n = 4 or the submani-
folds within it is not easy because of the high dimension-
alities involved. This task is made much easier by foliat-
ing shape space under the action of the democracy group,
i.e., dividing shape space into the family of “orbits” of
the democracy group. The same foliation arises in the
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construction of basis wave functions which transform ac-
cording to irreducible representations of the democracy
group. In this section we will consider the democracy
group to be SO(3) (excluding the improper transforma-
tions).

If we identify a point of shape space by the symmetric
matrix Qug = Pa - P, then the action of the democracy
group on this point is given by Eq. (2.41). Thus the orbit
of a matrix Q under the action of the democracy group
is the set {DQD*!|D € SO(3)}. The symmetric matrix
Q does not uniquely identify a point of shape space due
to the parity ambiguity, but, since this ambiguity is re-
solved by the sign of the coordinate V' and since V itself
is a democratic invariant, the orbit of a point of shape
space can be identified with the orbit of the correspond-
ing matrix Q.

Since every symmetric matrix Q can be diagonalized
by some proper orthogonal D, every orbit contains a diag-
onal matrix. In fact, unless all the eigenvalues are equal,
it contains several diagonal matrices, corresponding to
the permutations of the eigenvalues. In any case, every
orbit contains a unique diagonal matrix satisfying the
eigenvalue ordering (2.29); we will call this the “princi-
pal diagonal matrix.”

If all three eigenvalues are distinct, then the orbit of the
democracy group is three dimensional, as we can see by
considering the actions of infinitesimal democracy trans-
formations taken about the three eigenvectors of the prin-
cipal diagonal matrix (these actions produce three lin-
early independent matrices). The orbit is not a copy of
the group SO(3), because there is a discrete subgroup of
SO(3) which leaves the principal diagonal matrix invari-
ant; this is the viergruppe of proper diagonal orthogonal
matrices, or the group D, in the Schoenflies notation [25],
which has the effect of changing the directions of either
zero or two of the eigenvectors of Q. Therefore the or-
bit is the three-dimensional space of cosets of SO(3) with
respect to this discrete subgroup.

If two eigenvalues of Q are equal and the third distinct,
then the orbit is two dimensional, being the space of
cosets of SO(3) with respect to a certain one-dimensional
subgroup. Such matrices correspond to the degeneracy
manifold discussed above. Finally, if all three eigenvalues
of Q are equal, then the orbit is just a (zero dimensional)
point (because a multiple of the identity matrix is invari-
ant under democracy transformations).

Coordinates (V; w1, ..., ws) are convenient for examin-
ing the action of the democracy group. Since V is demo-
cratic invariant, we can work in any five-dimensional hy-
perplane V = const, and study the action of the group
on the five w;. This action is independent of V and
looks the same in any hyperplane V' = const. Further-
more, diagonal matrices are represented in the coordi-
nates (wi,...,ws) by wy = wz = wg = 0, i.e., they lie in
the two-dimensional w;-ws coordinate plane in the five-
dimensional hyperplane V = const, as can be seen by
Eq. (4.1). But since every orbit includes diagonal ma-
trices, every orbit passes through this two-dimensional
plane.

The w;-ws plane is illustrated in Fig. 7. In this plane,
Egs. (4.22) and (4.25) simplify, and we have
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FIG. 7. The w;-ws plane is a section through the orbits
of the democracy group in the subspace V = const. The
matrix Q is diagonal on this plane. The heavy lines bound
the “fundamental sector,” within which the eigenvalues are in
descending order. Contours of b are shown.

2 2
a = wy + wg,

b = 2ws(w? — 3w?).

(4.33)
(4.34)

There is a mathematical similarity between the present
analysis for the four-body problem and the Bohr-
Mottelson treatment of quadrupolar deformations of a
sphere [26]. In both cases one has an £ = 2 representa-
tion of the group SO(3) (in Ref. [26] SO(3) is the rotation
group; here it is the democracy group) and one uses the
group theoretical methods indicated in Egs. (4.27) and
(4.28) to find two invariants.
From Egs. (4.33) and (4.34) follows
4a® — b? = w?(3w? — wi)? > 0. (4.35)
Thus we have another proof of the inequality (4.30), valid
not only in the w;-ws plane but everywhere in shape
space since a and b are constant along the democracy or-
bits. One can easily show that b actually takes on all val-
ues between and including the limits shown in Eq. (4.30),
as is also indicated by the contours of b in the w;-ws
plane, illustrated in Fig. 7. (The contours of a are just
circles, and are not shown.)

Equation (4.35) also shows that the set b = +2a%/2,
which is the degeneracy set of the moment of inertia
tensor, appears in the w;-ws plane as the three lines
wy = 0, wy; = ++/3ws which divide the w;-ws plane into
six sectors. In fact, the rays at polar angles § = —150°,
—30°, and +90° correspond to b = +2a3/2, while those at
6 = —90°, +30°, and +150° correspond to b = —2a3/2,
The former set of rays on the hyperplane V = 0 is the
set of collinear shapes (including the origin, which is the
four-body collision).

The Q matrices on the w;-ws plane are diagonal but
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do not necessarily satisfy the eigenvalue ordering Qq; >
Q22 > Q33. But we can solve Egs. (4.7) on this plane, to
obtain

2
_ = — w,
Qu — Q22 V3 1

1
Q22 — Qa3 = ~ /3 wy — ws,

Q33 — Qu = —% wy + ws, (4.36)

from which we conclude that the principal diagonal ma-
trices lie in the sector —90° < @ < —30°, which we call
the “principal sector.” This sector is indicated by heavy
lines in Fig. 7. When a diagonal matrix in the interior
of the principal sector is acted upon by the democracy
group, the resulting orbit intersects the w;-ws plane five
more times, corresponding to the six proper orthogonal
D matrices which permute the eigenvalues.

Therefore if we wish to represent all shapes of the four-
body problem once and only once (except for a set of
measure zero), we can range over the principal sector, say,
by using coordinates a and b in the range 0 < a < o0,
—2a%/2 < b < +2a%2, and by allowing the Euler an-
gles of the democracy group to cover the space of cosets
SO(3)/D;. Alternatively, we can range over all of the w;-
ws plane, as is conveniently done in coordinates (wy, ws)
themselves, and allow the Euler angles of the democracy
group to cover the space of cosets SO(3)/T, where T
is the 24-element point group consisting of the four el-
ements of D, times the six proper permutations of the
axes.

V. CONCLUSION

In conclusion, we will mention several applications and
extensions of the results of this paper, some of which will
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appear in future publications. First there is the problem
of coordinates on shape space for n > 5. For n > 5,
it turns out that shape space can be represented as a
union of a (3n — 12)-dimensional family of copies of the
(six-dimensional) four-body shape space, which gives a
(3n — 6)-dimensional manifold, as expected. Thus four-
body shape space can be regarded as the building block
out of which shape space for all higher values of n can be
constructed. We will present a more detailed analysis of
the case n > 5 in the future.

In another application, we have succeeded in trans-
forming the four-body kinetic energy operator on shape
space into its horizontal and vertical components under
the action of the democracy group. That is, we have
carried out the same transformation on shape space with
the democracy group as has previously been carried out
on configuration space under the action of the rotation
group. Surprising results of this calculation are that the
metric on the new base space (shape space divided by the
democracy group) is Euclidean, and that the new curva-
ture of the connection vanishes (as does the Riemann
curvature).

We have also studied the Chern classes of the rotational
SO(3) fiber bundle which appears in the four-body prob-
lem and found that they are all trivial. We will report
on these and other applications in the future.
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