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Vyacheslav Spiridonov'
Centre de Becherches Mathematiques, Universite de Montreal,

Case Postale b128, succursale Centre uil-le, Montreal, Quebec, Canada HSCSJ7
(Received 30 January 1995)

A variety of coherent states of the harmonic oscillator is considered. It is formed by a particular
superposition of canonical coherent states. In the simplest case, these superpositions are eigenfunc-
tions of the annihilation operator A = P(d/dx+ 2;)/~2, where P is the parity operator. Such A
arises naturally in the q ~ —1 limit for a symmetry operator of a specific self-similar potential
obeying the q-Weyl algebra AA~ —q A~A = 1. Coherent states for this and other refiectionless po-
tentials whose discrete spectra consist of N geometric series are analyzed. In the harmonic oscillator
limit, the surviving part of these states takes the form of orthonormal superpositions of N canonical
coherent states ~e"n), k = 0, 1, . . . , N —1, where e is a primitive ¹hroot of unity, e = 1. A class
of q-coherent states related to the bilateral q-hypergeometric series and Ramanujan-type integrals
is described. It includes an unusual set of coherent states of the free nonrelativistic particle, which
is interpreted as a q-algebraic system without a discrete spectrum. A special degenerate form of
the symmetry algebras of self-similar potentials is found to provide a natural q analog of the Flo-
quet theory. Some properties of the factorization method, which is used throughout the paper, are
discussed from the differential Galois theory point of view.

PACS number(s): 03.65.—w, 42.50.—p, 02.30.—f

I. INTRODUCTION

Replacement of the commuting coordinate and mo-
mentum variables of a classical point particle by the op-
erators x and p satisfying the Heisenberg commutation
relation,

[x,p]:—xp —px = ih, .

endows this particle with wave characteristics. According
to the original de6nition, coherent states are the states
in which corpuscular properties of a quantum particle
are seen best. For the harmonic oscillator, such a quali-
tative motivation happens to be supported by the rich
group-theoretical content built in the structure of co-
herent states, so that; the symmetry approach provides
their alternative description. As a result, there have ap-
peared several di8'erent quantitative de6nitions of coher-
ent states which are equivalent only for the harmonic os-
cillator case. Independently of this nonuniqueness of def-
inition, &om both the physical and mathematical points
of view, coherent states of quantum mechanics are fasci-
nating objects having useful applications in many Gelds
[1—4].

In the present paper we discuss coherent states associ-
ated with a speci6c class of one-dimensional Schrodinger
operator potentials found in [5—7]. The general class
of these self similar potent-ials is defined with the help
of q-periodic closure [6, 7] of the dressing chain, or the
chain of Darboux transformations. The latter transfer-
mations are known to be closely related to the factoriza-
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tion method [8, 9]. Symmetries of the self-similar poten-
tials are described by some polynomial operator algebras
of order N (N is the period of closure) which play the
role of spectrum generating algebras. For N = 1, 2 these
algebras coincide with known q analogs of the bosonic os-
cillator and su(1, 1) algebras [6]. The q-coherent states,
de6ned as eigenfunctions of symmetry operators which
lower the energy, have many interesting properties. In
particular, the algebras depend on the parameter q, so
that q = +1 coherent states seem to be equivalent; but
this is not so. For the q-Weyl algebra system, the limit
q -+ —1 exists only when the potential is symmetric, and
then the corresponding coherent states are described by
a particular superposition of canonical coherent states.
This superposition has a universal form; it represents
an example of the Titulaer-Glauber coherent states [10]
which were constructed in [ll] &om a difFerent idea. Its
multimode oscillator analog de6nes the particular entan-
gled coherent states which have a phase difFerence equal
to vr/2. The name parity coherent states is suggested for
these and other more general two-term superpositions of
coherent states for which the parity operator plays a cru-
cial role in the de6nition.

For the limiting values of parameters corresponding
to the harmonic oscillator potential, the raising and
lowering operators of the self-similar potentials' sym-
metry algebras become equal to powers of bosonic cre-
ation and annihilation operators. In this limit, part of
the q-coherent states degenerate into orthonormal su-
perpositions of N canonical coherent states ~e"n), k
0, 1, . . . , N —1, where e is a primitive Nth root of unity,
e~ = 1. These are natural generalizations of even and
odd coherent states [12]. Note that there are q-coherent
states which do not survive in this limit. In another de-
generate limit, when the potential vanishes but q remains
arbitrary, one gets a unique set of nontrivial coherent
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states of the &ee particle system.
It is interesting that symmetry operators of the self-

similar potentials are defined with the help of a scaling
operator —a special form of the squeezing operator. Due
to this fact, wave functions of these systems resemble
wavelets. From a degenerate form of the symmetry alge-
bra, when pure dilatation by a fixed number q becomes
physical symmetry of the Schrodinger equation, one finds
a natural q analog of the Floquet theory.

Despite their simplicity, group-theoretical roots of su-
perpositions of canonical coherent states comprise an in-
trinsic possibility for construction of complicated physi-
cal systems whose coherent states share common proper-
ties with these superpositions. The author considers the
description of the relationship between self-similar poten-
tials and superpositions of coherent states as an impor-
tant physical result of this paper. However, a wider aim
of the work is to discuss exactly solvable potentials and
their coherent states &om the general functional-analytic
point of view on the basis of old and new examples.

The paper is organized as follows. Before moving to
the analysis of complicated situations, at the end of this
section we give a brief account of the canonical coherent
states of the harmonic oscillator. In Sec. II we con-
struct nonstandard coherent states of the same system
and consider their relation to the Titulaer-Glauber co-
herent states. In Sec. III we discuss a universality of the
derived superpositions of coherent states. An interesting
set of coherent states of the &ee particle determined by
the pantograph equation and its generalizations is consid-
ered in Sec. IV. The simplest potentials with q-deformed
symmetry algebras and nontrivial discrete spectra are de-
scribed in Sec. V, where some properties of the associated
coherent states are analyzed. In Sec. VI we present a gen-
eral hierarchy of Schrodinger operators whose discrete
spectra consist of N geometric series generated by the
specific polynomial quantum algebras. Two particular
systems arising &om N = 2, q = —1 and N = 3, q = 1
closures of the dressing chain are considered in Sec. VII.
In Sec. VIII, a q-analog of the Floquet theory is outlined.
Section IX contains a discussion of integrable potentials
and coherent states from the differential ("quantum")
Galois theory point of view. Some concluding remarks
are given in Sec. X. The paper has a formal character;
we consider mostly theoretical aspects of the chosen (sta-
tionary) systems rather than their possible experimental
implementations. The present analysis of coherent states
for the self-similar potentials arose &om the investigation
of q-oscillator algebra at roots of unity performed in [13].
The results of this work have been reported by the au-
thor in [14, 13], and a part of them has been published
in [15].

In practical applications it is convenient to use the co-
ordinate representation of (1.1), where p =

ibad/dx.

For-
simplicity we use the system of units where Planck's con-
stant 5 is equal to 1. In terms of the ladder operators
at, a:

(at=
l

——+x l,2E d* )
(1 2)

relation (1.1) takes the form of the bosonic oscillator, or
Weyl algebra:

[a, ot] = 1. (1.3)

The number operator N—:ata satisfies the relations
[N, at] = at, [N, a] = —a. In appropriate units the
Hamiltonian of a harmonic oscillator is equal to N up
to a constant term: 2H = (at, a) = —d /dx2 + 2: . The
energy spectrum and orthonormal eigenstates are

ao. =o. o. , (1.4)

or as a result of the application of the displacement op-
erator to the vacuum,

(1.5)

Both definitions are essentially equivalent and give

2

(1 6)

The states (1.4) are defined up to a phase factor
exp iy(a, n'), where y(a, n*) is an arbitrary real func-
tion such that y(0, 0) = 0. Only a special choice of y
corresponds to (1.6). Note that the shift of x by a real
constant xo is a canonical transformation which is not
completely equivalent to the shift of o.:

Since the bound state wave functions are expressed
through the Hermite polynomials II (x),

the relations (1.5) and (1.6) lead to the generating func-
tion for these polynomials,

OO

) —,H„(*)=."'-',

The strongest quantitative measure of diAerences in
the behavior of quantum and classical particles is ex-
pressed by the Schrodinger-Robertson uncertainty prin-
ciple [16]:

where the vacuum state [0) is defined from the equation
alO) = 0, (xlO) = vr ~ exp( —x /2) (we set the phase of
this state equal to zero).

Coherent states of the harmonic oscillator may be de-
fined either as eigenstates of the annihilation operator
a,
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(1.8)

where o'g, =
2 (bc+ eh) —(b) (c), and the angular brackets

denote averaging over an arbitrary normalizable state for
which the mean values are well defined, (b) = (@Ibli/2).

Averaging over the coherent states In) one finds (z2) =
—,'+ (x)', (p2) = —,

' + (p)', (px+ xp) = 2(x)(p), where

(*) = (~ + ~*)/~2 (p) = (n —n*)/i~2.

In this case 4 = 1/4. Since o „=0, this is the lower
bound of the Heisenberg uncertainty relation as well:
(r o„„=1/4. Note that the latter equality does not
determine uniquely coherent states. One may scale x in
(1.6) by a real number and preserve minimality of the
product o. o„„.The resulting states are called squeezed
states; a wider class of states corresponds to the lower
bound of (1.8). It is necessary to impose additional con-
straints in order to get (1.6) uniquely [16, 17].

The elementary example considered here illustrates
three possible definitions of coherent states for an ar-
bitrary system: (1) as eigenfunctions of some symmetry
operators lowering the energy, (2) as an orbit of states
generated by a chosen group element &om a fixed state,
and (3) as minimum uncertainty states for some physi-
cally significant operators. It is the first definition that
we employ in this paper.

their analogs for a nonstandard realization of the bosonic
oscillator algebra. It is easy to see that this algebra has
a nontrivial automorphism (i.e. , a map onto itself), or
canonical transformation associated with the parity op-
erator P:

PzP = —x, Ps» = —u P' =1, Pt =P.
(2.1)

Moreover, the transformation of x and p to the Hermitian
variables

z zpP) p =ixP

At=
I

——+x IP,
1 f d

v~ E d* )
A= Pl —+z I,

fd
(dz j

(2.2)

so that A+ At = ~2x, A —At = imp. Evidently, the
algebra, Hamiltonian, and vacuum state of the harmonic
oscillator defined by the operator A coincide with the
ones considered in the preceding section. However, there
is an essential difference in the structure of energy eigen-
states generated by At:

is also canonical: [x,p] = i. Although this is a quite sim-
ple fact, it leads to the nontrivial reshaping of coherent
states. Let us define new creation and annihilation oper-
ators,

II. PARITY INVARIANCE AND
SUPERPOSITIONS OF COHERENT STATES

The formulas (1.2)—(1.6) are well known and widely
used in quantum physics. First, we would like to find

I

in)-- —=
,
(A')" Io) = (—1)'-In)

where the sign factor (—1)'" has the form

(2.3)

n = 4k, 4k+1,
n = 4k+2, 4k+3.

k = 0, 1, 2, . . . (2.4)

(d/dx+ z)@ (x) = ~2ng~( —x), &.(*) =(*I ) .

(2.5)

This is not an ordinary difFerential equation, but it can
be easily solved using the relation A = —a . Picking out
the appropriate combination of two linearly independent
eigenstates of a2 with the eigenvalue —o, , we find

1
Io.)J = e ' ) lin) + e'

I

—in) (2.6)

This follows from the relation (At) = —(at) and the
parity invariance of the vacuum.

Denote by Io.)~ the eigenstates of A, AIn)~ = nln)~,
or

I

We call (2.7) the parity coherent states, because the par-
ity symmetry plays a central role in their definition. As
is argued below, analogous states can be constructed for
an arbitrary symmetric potential. Since In)~ is defined
by (1.5) with A, At instead of a, at, one can derive the
following generating relation for the Hermite polynomi-
als:), H„(e) = V2e' cee (2te ——

) . '

n=O

The Ia)z's are not minimal uncertainty states for the
variables x and p when o. g 0:

~(PI~)~ = (Pl~) = exp(P*~ ——,'l~l' ——.'I~i')
where In) are the canonical coherent states. In the coor-
dinate representation one has

(e) =,
&

exp
~ ~

cce (&2cee ——
) .

4
(2.7)

~pp

so that

[1+(n+ n*) + (n —~*)2e 41~1 ]/2,

(o."—n')(1+ e 1 I )/2i,

(2.8)
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1=-(+ [
—(+ ) '])

4 C =41ul'

and the minimum is reached only for p = 0. However,
by construction itself, the parity coherent states mini-
mize the product of uncertainties in the new canonical
variables x and p.

The minimum of 0 (2.8) is reached for u = u*
kl/2: o. . = (1 —e i)/2 = 0.32, i.e. , there is a
squeezing for small lul. However, the states lu)~ differ
from the squeezed states [17] arising as eigenstates of the
annihilation operator after the canonical transformation

lcoh) = e ~~~ ~ ) e's ln). (2.12)

These are the generalized coherent states of Titulaer and
Glauber [10]. The states (2.6) belong to their particular
subclass characterized by the periodicity condition

respond to a rotation of n through an angle depending
on energy: U nU = e'~( )o., which is obviously a sym-
metry of the system.

Applying the operator Ut (2.11) to lu), one finds eigen-
states of the operator A = e'+( )a:

z
A = StaS = cosh lzl a + —sinh lzl at, 0(n + M) = 8(n), (2.13)

generated by the unitary operator

g( )
(zat —z'a )/2 (2.9)

1
a1, O.2 ~ —— e ' ia1 1 ZO. 2 2

2

+ e'" '~ —eeee)i~ —eeee)e), (2.10)

where
l u) ~ are the canonical coherent states of the jth de-

gree of &eedom. This formula is obtained by choosing an
appropriate linear combination of the a operator eigen-2
states. Generalization of (2.10) to an arbitrary number
of oscillators is obvious.

The unitary operator U that transforms (1.2) into (2.2)
(or its multidimensional analog) is easily found due to the
relation between the operators P and N in Hilbert space:
P = (—1) = expi7rK It is.

~'N (W —1)/2 A = Ut U, At = Ut tU.

If one multiplies this A by the parity operator &om the
left, then eigenfunctions of the resulting operator will be
given again by superposition (2.6), but now with the lu) s
on the right-hand side (rhs) being replaced by squeezed
states. Note that in the Bargmann-Fock representation of
the harmonic oscillator algebra, when A = Pd/dz, At =
zP, one has @ (z) oc cos(uz —m/4).

It is easy to construct analogs of (2.6) for the two-
oscillator algebra: [az, a&] = b~g, [ai, ai, ] = 0, j, k = 1, 2.
Again, the combinations A~ = Pa~, where P is an op-
erator which inverts both space coordinate axes, satisfy
the same algebra. Such a transformation a8'ects only the
sign of the energy eigenfunctions. Eigenstates of the Az
operators, Azlui, u2)~ = u~lui, u2)J, are given. by the
superposition

imposed upon the function 0(n) [in our example M = 4;
cf. (2.4)]. In this case, one has [20, 21]

M —1

lcoh) = ) C„l."u),
Ic=0

2~i/M M
)

lu+) =
Q2 + 2e-'!~!'

The general root-of-unity analogs of these states lui), l =
0, 1, . . . , M —1, (uilu~) = bi~, have the following form:

M —1

lu, ) =C, (u) ) e-'-le u)
m=o

~M I(:+l
= MC, u. -~- '~!'

„sQ(Mk+1)!
xlMk+ l),

fM i—
I(-"i(u)l'= ).e ' exp(e lul')

(2.14)

It is easy to derive these formulas using the kernel of the
Rnite-dimensional Fourier transformation F,

1
(P)i- —=

M

i.e., lcoh) is a superposition of M coherent states with
the parametrizing variable o. modulated by the powers
of a primitive Mth root of unity. The states le"u) are
linearly independent, so that they can be orthonormal-
ized. For the simplest M = 2 case these orthonormal
superpositions take the form of even and odd coherent
states [12],

This is a special case of the canonical transformations
generated by the operator

Ut U= ' (~)a

E =E, E =1.
The states (2.14) do not belong to the class (2.12) be-

cause for arbitrary values of o. they cover only a part of
the Hilbert space,

p(N) = 0(N) —8(N + 1), (2.11)

where g(1V) is a nonsingular function (such transforma-
tions were discussed in [18, 19] without relating them to
superpositions of coherent states). In the classical case,
when II,~

= u'u, u = (x +ip)/~2, relations (2.11) cor-

d'u lui)(ural = ~i

&l&m —7t m ~lm q

d2u —= d(Re u)d(Im u)/n. ,

M —1

) 7ri =1,
l=O
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whereas the Titulaer-Glauber coherent states form an
overcomplete set of states. The possibility of splitting
the Hilbert space of the harmonic oscillator into an ar-
bitrary number of orthogonal subspaces is related to the
fact that the projection operators m~ are conserved,

states, are easily found:

@.(*) =-, (1+ -")~-(*)+(1- -")~--(*),1-

(2.17)

M —Z

m(N —~~

m=o
[a, ~,] =o.

The distinguished property of the parity operator is
that it is the only symmetry of separate kinetic and
potential terms of the harmonic oscillator Hamiltonian.
Moreover, the definition Pf(x) = f( x) w—orks for any
function independently of its membership in the Hilbert
space (for complex x this is just the rotation of the com-
plex plane by vr). It is only for the functions which can
be expanded over the normalizable states ln) that the
operator exp ivrN coincides with parity, e.g. , for the non-
normalizable eigenfunctions of the Hamiltonian the ac-
tion of this operator is formally equivalent to multipli-
cation by some phase factor which is not related to the
transformation x ~ —x. Therefore it is not clear what
are the analogs of the operators exp i0(N) beyond the
Hilbert space context.

Although the finite-dimensional truncation of the
Titulaer-Glauber coherent states was discovered a long
time ago [20, 21], only recently in [ll] have Yurke and
Stoler derived explicitly the superposition (2.6), with in
being replaced by o.. In their approach it emerged as a
result of a fixed period time evolution of the standard co-
herent states governed by a specific Hamiltonian oc N,
k even. The squeezing and other properties of these and
more general finite-term superpositions of coherent states
have been analyzed in [22—24]. The states (2.10) belong
to the class of so-called two-particle entangled coherent
states [22, 25, 26], which have the intrinsic property of
nonfactorizability into the product of one-particle states.
For the construction of multimode analogs of the even
and odd coherent states, see [27]. Recent interest in su-
perpositions of macroscopically distinguishable quantum
states (Schrodinger cat states) like (2.6) or the entan-
gled states like (2.10) is inspired by possibilities to create
them with the help of optical techniques. This in turn
provides interesting experimental tests of the basic prin-
ciples of quantuin mechanics (see, e.g. , [11,22, 25, 26, 28]
and references therein).

The general set of coherent states constructed with the
help of canonical transformations based upon the parity
operator has the following form. Consider the unitary
operator V,

with @ (x) defined in (1.6). Calculating the uncertainties
of 2: and p in these states, we obtain

A(rp) = —(1+psin y[l —(1+p)e ~]j, p = 4lnl~.
1

V = cosp+iPsiny, VtV = VVt = 1, (2.15)

A= Va=aV~, At = atVt = Vat, (2.16)

[A, At] = [a, at] = 1, A =a, (&')' = (a')'.

The eigenfunctions of the operator A, or parity coherent

where y is an arbitrary parameter, and construct the
Weyl algebra generators analogous to (2.2):

It is seen that the choice Ip = z./2, which corresponds
to the Yurke-Stoler coherent states, is extremal —for it
the value of 4 is maximally deviated Rom the standard
coherent states case rp = 0, when A = 1/4.

Let us discuss the Titulaer-Glauber states when the
phases 0(n) satisfy the following q-periodicity condition:

0(n+ M) = q0(n), (2.18)

~n
lcoh) = e ' ! ~ ) e'~~ ln)

n!n=o

)-(&)"
l ) (2.19)

However, when the parameter q is a primitive Mth root
of unity, q = 1, the sum (2.19) is truncated:

M —1 M —'i

lcoh) = ) &i(&)lq'n) &i(&) =
M ).q

' e"
I,=o m=o

The coeKcients B~ are defined by the finite sums of ex-
ponentials which were already encountered in the cal-
culation of normalization constants for the orthonormal
states lni) (2.14). We would like to note that the q de-
formation (2.18) is not related to the q-coherent states
to be discussed below, although the discrete energy spec-
trum of the corresponding Hamiltonians is found kom
the similar formula E +M ——q E~.

III. UNIVERSALITY OF SUPERPOSITIONS
OF COHERENT STATES

Let us discuss whether the superpositions of a finite
number of coherent states considered above are charac-
teristic only for the harmonic oscillator case or if their
form carries universal character applicable to any sys-
tem. Unfortunately, there is no completely satisfactory
definition of coherent states ln) for an arbitrary Hamil-
tonian

which is a simple q deformation of the condition (2.13).
When q -+ 1 one can renormalize 0, 0 = 0 —P/(1 —q), and

get 0(n+M) = 0(n)+P, which is a quasiperiodicity condi-
tion. However, the effect of such a shift by P is equivalent
to the multiplication of n by the factor exp i//M, which
is harinless for the representation of lcoh) as a finite-term
superposition of canonical coherent states.

For generic values of q there is no split of ln) onto a
superposition of a finite number of coherent states. For
M = 1 one has 0(n) = Pq, and
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d2

, +u(x), (3.1)

even if the potential u(x) is an analytical or infinitely dif-
ferentiable function of x (i.e. , when the random, singular,
and potentials from C", k & oo, are excluded). Denote
by lA) the physical eigenfunctions of the Hamiltonian:

HiA) = E(A)iA),

where A is some index labeling the spectrum; A = n =
0, 1, . . . for the discrete eigenvalues [the ordering E(n) &
E(n+ 1) is assumed], and for the continuous spectrum A

may be thought of as some continuous variable such that
the spectrum E(A) is monotonically covered by variation
of A, say, &om Ao to oo. We assume that the contin-
uous spectrum states are normalized by the condition
(Ala) oc b(A —o'). From the completeness of generalized
eigenfunctions of H in Hilbert space,

nQ 1 OO) in)(ni+ dAiA)(Ai = 1,
n=p Ap

(3.2)

where ng is the number of bound states, it follows that
for any definition of coherent states in), these states can
be expanded over ln) and lA):

ng —1 OO

l~) = ).c-(~) ln) + dA c~(~) IA).
n=p Ap

(3.3)

The continuous spectrum exists whenever, for x —+ oo
(or —oo), the potential is not bounded from below or
it is bounded &om above. In these cases one cannot ex-
clude in general the second term in expansion (3.3). Such
possibilities are rarely discussed in the literature; some
models of coherent states built only &om the continuous
spectrum states are described in the next three sections.

Suppose for a moment that the Hamiltonian H has
only a discrete spectrum, i.e., nb = Ap = oo. Then, fol-
lowing many existing examples [1],it is natural to assume
that coherent states in) represent a generating function
for stationary energy states of the form

n = o. c o. n .
n=p

(3 4)

f d'~&(l~l)l~)(~l = ). In)(~l
n, m=o

X dop n o. ncc

Since the coeKcients c depend only on the modulus of
o;, these states are complete,

H = ata+ Eo) a = d/dx+ f(x),

at = —d/dx+ f(x), (3.5)

where Eo is some constant. The potential u(x) and su-
perpotential f(x) are related by the Riccati equation,
u(x) = f2(x) —f'(x) + Eo. The zero mode of a,

separate, c„(r) = c g(r), which is typical for the ladder
operator approach, this is a moment problem. Theo-
retically it is possible that p(r) is defined nonuniquely,
in which case there are many physically distinguishable
representations of observables in the coherent state basis.

An interesting definition of coherent states based on
the uncertainty principle was suggested in [29] for a wide
class of potentials. It uses the fact that for a classical par-
ticle moving in a convex potential one can make a non-
canonical nonlinear change of phase space variables such
that in the new "coordinates" the particle's dynamics
is described by the harmonic oscillator equations of mo-
tion. After quantization, the minimum uncertainty states
of these harmonic motion "position" and "momentum"
operators are called coherent states. By definition, this
procedure is tied to the quasiclassical approximation. Its
general group-theoretical meaning is not clear to the au-
thor; probably the approximate dynamical symmetry ap-
proach of [18] can be useful in this context. Another con-
structive definition of coherent states for generic discrete
spectruxn systems has been suggested by Klauder [30].
In this approach, the requirement that time evolution of
coherent states be equivalent to the change o. ~ e' o.
is taken as a basic property. Such states do not spread,
but for them one has more complicated expansions than
(3.4).

In the following we utilize a different definition of co-
herent states; namely, we assume that they are de6ned as
eigenstates of some lowering operator A, i.e., the operator
which maps a part of physical solutions of a given station-
ary Schrodinger equation to the physical ones with lower
energy. Even for systems with purely discrete spectra
this requirement does not necessarily mean that A anni-
hilates the ground state or that A is the lowering oper-
ator mapping the discrete spectrum eigenfunction ln) to
the closest from below state ln —1) (it may jump over
some physical states, which is always so for the continu-
ous spectrum). For example, similarly to the situation in

[6, 7], A may play the role of both lowering and raising
operators for different ranges of energy.

We use the factorization method [8, 9] as a tool for
searching for such a symmetry operator A. Let us factor-
ize the Hamiltonian (3.1), i.e. , represent it as a product of
two first-order differential operators conjugated formally
to each other:

provided there exists a measure density p(io. l) which sat-
isfies the relations

f
OO

2 1«~(r)r'"" lc-(r) I' =—
p 2

for arbitrary n = 0, 1, . . . . When the variables of c (r)

ago(x) = 0, @,(x) ~ e-~ f~~l"~,

is the generalized eigenfunction of the Hamiltonian with
the eigenvalue Eo. When this function is normalizable
and nodeless, Ep is the ground state energy. If a is a
symmetry operator, i.e. , if it maps physical eigenstates of
the Hamiltonian H onto themselves, then coherent states
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could be defined as eigenstates of a, but there may be
nonuniqueness even in this simple situation. Indeed, the
factorization involves an arbitrary unitary operator T:

A~A = a~a, A~ = a~T,

A —T—ia (3.6)

A(x) d
= ~&@-(x)

d @-(x)
x 0 x

(3.7)

Actually, one may write A~ = a~C, A = Da, where C
and D are two operators satisfying CD = 1. The oper-
ators A~ and A are conjugated to each other if C = D~,
i.e. , when D is an isometric operator [31]. Only the addi-
tional requirement DD~ = 1 makes D unitary; we restrict
ourselves to this case.

Coherent states of potentials for which A = T a is
a symmetry operator, for some unitary operator T, are
thus defined by the equation

ator Pa). We come thus to the conclusion that the no-
tion of "parity coherent states" is less universal than that
of even and odd coherent states and their higher root-
of-unity generalizations defined by the abstract formula
(2.14). The special name for the states (2.17), and simi-
lar ones, was introduced in order to distinguish Titulaer-
Glauber states with the M = 2 periodic phases for sym-
metric and asymmetric potentials (in the first case there
is no need for the abstract operator N).

Single-valuedness of the expansion (3.4) under the ro-
tation o. —+ e 'o. is the key property allowing to build
Bnite-term superpositions of coherent states (2.14). In
general such a property does not hold. In the next sec-
tion we consider a model where only the continuous spec-

—1 A 1trum piece is present in (3.3) with cg(n) oc n
In this case the change o. ~ e"o., e = 1 does not pro-
vide a split of Hilbert space onto the finite number of
orthogonal components.

where @0(x) is an eigenstate of the Hainiltonian (not nec-
essarily a physical one). The natural extension of this
definition involves on the lhs of (3.7) a differential op-
erator of the Nth order. In that case A~A is equal to
an order N polynomial of a Hamiltonian, i.e. , one has a
generalized factorization scheme, which will be described
in Sec. VI.

Suppose now that the expansion (3.4) takes place (it
does not mean that there is no continuous spectrum;
there may be accumulation points such that the set ~n)
is closed under the action of A). Then, one can intro-
duce the formal number operator N satisfying N~n) =
n~n). Acting upon such ~o.) by the unitary operator
U~ = e' ~ ~, one gets the Titulaer-Glauber-type coher-
ent states for the chosen class of potentials. The perio-
dicity condition B(n+M) = 8(n) leads again to the finite-
term superpositions of ~e"a). Therefore the farm (but not
the normalization constants) of the superpositions ~ni, )
(2.14) is universal —for any H they perform a split of
discrete spectrum Hilbert subspace onto orthogonal com-
ponents. Note, however, that the symmetry properties of
these superpositions may be diferent; in particular, the
general even and odd coherent states are not eigenstates
of the parity operator. For instance, for the shifted har-
monic oscillator potential u(x) = (x —xo)2 one has

(x~c„& ix e
—(~—&0) /2 v&(~ —xo)n y v2(~ xo—)n—X 0!gg OC Q e e

(3.8)

which are eigenstates of the Hermitian conserved charge
P exp(2xod/dx). For the general asymmetric potential,
~o.~) are eigenstates of the abstract operator expivrN,
which does not have a simple form in the coordinate rep-
resentation.

Similarly, one can always define upon the discrete spec-
trum an analog of the Yurke-Stoler coherent states, but
they will be eigenstates of the operator Pa, an analog of
(2.2), only in the case when Pa = aP, which assumes—
that the potentials are symmetric, u( —x) = u(x) (if one
has Pa = aP, then the symmetric and antisymmetric
eigenfunctions of a diagonalize simultaneously the oper-

IV. COHERENT STATES
OF THE FREE PARTICLE

The above definition of coherent states (3.7) is appli-
cable to systems with continuous energy spectra. Con-
sider the simplest possible case of zero potential, H =
—d2/dx, for which the generalized eigenfunction of low-

est energy is a simple constant. Solutions of the Heisen-
berg equations of motion x = pot + xg, p = po, where
t is the time variable and po, xo are operators at t = 0,
are identical with the classical ones. If this coincidence
would be taken as the basis for the definition of coherent
states, then any normalizable state of the &ee particle has
to be considered as coherent. However, despite the same
form for the equations of motion, even for the (po) = 0
case, when the classical particle stays at the point xo,
the quantum particle tries to occupy the whole space:
cr oc (po)t, t -+ oo, and nonspreading wave packets do
not exist.

The simplest factorization of the free-particle Hamil-
tonian is obvious and we have a = d/dx. I et us find
eigenfunctions of A = Ttd/dx when T is a unitary op-
erator performing an afBne transformation, or the parity
operator. If T = 1, then g (x) oc e, which are bounded
(but unnormalizable) functions far purely imaginary n:
n = ip, —oo ( p ( oo, so that @;&(x) coincide with the
momentum eigenstates. If T is a translation by the h,

operator, then

dg (x)/dx = a@ (x+ h)

and again there are simple solutions of the form @ (x) oc

e'J', but now o. has a real part: o. = ice '"". If T = P,
the parity operator, then one gets superposition (2.6),
@+(x) oc cos(nx —a/4), n real. Since these states are
not physically realizable (they belong to the continuous
spectrum), their "coherence" is formal. This is related
to the fact that the chosen symmetry operators A are in-
tegrals of motion commuting with the Hamiltonian. As
seen Rom the considerations given below, such A's ap-
pear &om real lowering operators in a special limit such
that, in fact, all Hamiltonian eigenstates acquire a Bavor
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»(x) = v lql&(qx) (4.1)

where q is some real parameter, 0 ( q ( 1. For positive
q, T is just the squeezing operator in a special form: T =
S(z = lnq) = q~ 1~, where at, a are given by (1.2);
and for negative q it is a product of the same 8 and the
parity operator: T = SP. For simplicity we assume in
this section that q is positive. Now the operator A = Tta
is not an integral of motion, but the ruising operator for
the A & 0 solutions of the Schrodinger equation

H@(x) = @"(x)=—Ag(x) (4.2)

The commutation relations

of coherent states (this is reminiscent of the approach
of [2], where coherent states are defined as eigenstates
of some combinations of integrals of motion). Examples
of symmetry algebras for which the Hamiltonian eigen-
states might be counted among the coherent states are
given below. In the corresponding cases the operator A
may be simultaneously the lowering and raising opera-
tor, and an integral of motion for di8'erent parts of the
spectrum.

Let T be the scaling operator:

0'(x) = —~q '~'4-(q '*) 0 ( q ( 1. (4.5)

The formal series solution of this equation with the
boundary condition vP(0) = p looks sixnilar to (4.4), with
q being replaced by q . But the radius of convergence
of this series is equal to zero, i.e., there are no solutions
analytical at zero. This does not mean that there are no
solutions at all; in [34] it was shown that, in fact, there
are infinitely many nonanalytical solutions of (4.5) from

satisfying boundary condition @(0) = p. Moreover,
for any n there are solutions with the Ixl ~ oo asymp-
totics oc exp(ln Ixl/lnq ), i.e., there are functions vP (x)
which are normalizable. One can expand such @ (x) over
the basis of Hamiltonian eigenfunctions

@-(x) = dp ""*&-(p)
0

(4.6)

which is the positive momentum part of the standard
Fourier integral. Similarly one can consider the expan-
sion over e '" (for negative q the two regions of p
should be considered simultaneously). Substituting this
expression into (4.5) and solving the corresponding finite-
difFerence equation for the form factor P (p), we find

AA~ = q A~A,
ln pia

g (x) = dp e'"*h(p) exp
0 21nq

(4.7)

look similar to some of the defining relations of quan-
tum groups [32, 33]. In fact, they are the progenitors
of q-deformed. oscillator algebra (see below). Eigenfunc-
tions of the operator A are determined by the differential
equation with deviating argument,

where h(p) is an arbitrary function periodic on the loga-
rithmic scale, h(qp) = h(p), normalized by the condition

I@-(x)I'dx = 2~ dplh(p) I'
—OO 0

g' (x) = nag (qx), 0&q(1. (4.3)
ln p/Ical —(argia)

X exp = 1.
lnq

~(n —x)/2
0-(x) = ~): „, (~Vq*)" (4.4)

which is an entire function of x for any finite lnl. How-

ever, as shown in [34] (see also [35]), the x M oo asymp-
totics of any solution of (4.3) is dominated by the factor
exp( —ln x/lnq2), i.e., all solutions grow at infinity so
that the functions @ (x) do not describe physical states.
Actually, this could be expected &om the fact that we
were diagonalizing t;he raising operator.

Consider eigenfunctions of the lowering operator At,

or

&'@-(x) = ~@-(x), At Td
dx

The initial value problem for (4.3) is qualitatively dif-
ferent from that for the ordinary differential equations
because the initial conditions now have to be fixed on
the interval [qxo, xo]. When xo is a fixed point of the
scaling transformation, i.e., x0 = 0 or oo, this interval
shrinks t;o one point. When x0 ——oo, one Gxes solutions
by taking the asymptotic form of g (x) from some class
of permitted functions [34]. For xo ——0 it is natural to
impose the initial condition @ (0) = p ( oo. Then Eq.
(4.3) has the unique analytical solution

Due to the freedom in choice of h(p) these states can take
various forms.

Let us take, for exaxnple, the following h(p):

h(p) = a ). q b(p —bq )

which does not correspond to the normalizable @ (x).
Despite the formality of the consideration in this case, we
obtain the &ee particle's "coherent states" in the form of
a Dirichlet series (cf. [36, 35]),

1n b/in
(x) = aexp

2lnq
OO n

X n(n+2)iZ i i ibq" x (4.8)

which de6nes a function bounded for any real x and
0 ( lnl ( oo. This is an example of the bounded but
non-normalizable solution of (4.5). The derived expan-
sion could be interpreted as a q-Fourier series for @ (x)
because the sum goes over the trigonometric functions
whose argument is modulated by the powers of q [after
renormalizations, P c exp(iraq ) may become the stan-
dard Fourier series in the limit q ~ 1 due to the relation
(q —1)/(q —1) ~ n; in our case this gives a divergent
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Tf (x) = ~qf (qx + l), 0&9&1, —oo &l (oo,
(4.9)

where q and l are 6xed parameters, it can be seen that
A = T 1a is the raising operator for positive energy
states. In order to save space we shall describe the whole
hierarchy of such symmetry operators at once. Let us
introduce the operators

series]. This situation does not seem to be related to the
q-Fourier transformation considered in [37]; it resembles
more the wavelet transform [38] or the generalized Taylor
expansions for atomic functions [39].

In the above factorization of the &ee-particle Hamil-
tonian we took Eo ——0. A richer situation arises when
Eo ———P2, where P is a nonzero real number. This gives
H = ata —P2, a = d/dx+P. Evidently a is an integral of
motion, but &om the properties of afBne transformation
operator T,

The wave functions Q&l"l (x) are not physical; their eigen-
values accumulate near the A = 0 point &om below. One
can take the Pi, in (4.10) to be purely imaginary num-

bers. Then @&" (x) describe continuous spectrum states
whose eigenvalues accumulate near the zero from above.
In this case At is not a Hermitian conjugate of A but still
one can use representations of the algebra (4.11), (4.12).
The highest weight representations appear as follows (in
the same notations):

At@&ol(x) = O, q'"(x) ~e&" '

@„"(x) oc A"lj„(x),

H@(~) ( ) P2 —2n —z@(~)
( )

The eigenvalues of these states are unbounded &om below
for real Py and they go to infinity for imaginary Pi, . In
any case operator A is the lowering operator for negative
A eigenfunctions, but it raises the energy of continuous
spectrum states.

Physical eigenstates of the Hamiltonian H = —d2/dx2
have the form

(4.1o)

AtA = (H+P„), AAt = (q H+Pf, ),

where P~ are N arbitrary real positive constants. It is
easy to check that At and A satisfy the following nonlin-
ear algebraic relations:

@„+(x)= exp(+i@ Ax),
27r

d* @„"(x)g;,(x) = b..b(VX —~W),

where o, a' = +. The algebra generators act upon them
in a simple way,

(4.11)
(+*&~+p.) @„' .(*), (4.14)

aAt =,2Ata, AH=q HA. (4.12)
&'@,+(*) = v"' (w'q~&+P~) 4',+.(*). (4.15)

For N = 1 these relations de6ne a q analog of the Weyl
algebra, or q-oscillator algebra (see, e.g. , [40—42]),

~ = Pi(1- q') (4.13)

For N = 2 one gets a q analog of the su(l, l) algebra
in the form considered, e.g. , in [43, 44]. For N ) 2 one
has polynomial quantum algebras [6, 7]. Note that in the
limit q ~ 1 one does not get nontrivial algebras since
the operators A and At start to commute, still being the
differential-difference operators for l g 0. For q g 1 it
is possible to set l = 0 by going to the reference &arne
where a 6xed point of the aKne transformation is taken
as the zero point; we shall assume this choice below.

Discrete series representations of the derived algebra
are constructed by the action of the operators A and At
upon the Hamiltonian eigenstates with A g 0. The lowest
weight series have the form

A@q (x) =0, Qq l(x) oce ~", k=1, 2, . . . , N,

y„'"'(x) ~ (At)"@„"l(x),

H@„'"'(x) = P„'q'"@~&"-'(x), ~ = 0, 1, . . . , ~.

We conclude that the &ee particle's Hilbert space pro-
vides a unitary realization of the quite complicated sym-
metry algebras. In the following sections we describe a
generalization of this construction to nontrivial poten-
tials along the lines of [6, 7].

Consider coherent states of the above algebras defined
as eigenstates of symmetry operators lowering the energy.
Let us analyze first eigenstates of the "annihilation" op-
erator A, Ag (x) = o.g (x). For the q-oscillator algebra
such a definition has been considered, e.g. , in [40, 45—49,
37] and many other recent papers. In our model these
coherent states for N = 1 are de6ned by the diKerential-
delay equation

0' (*) = ~~~M-(qx) —Pi@-(x), (4.16)

known in the literature as the pantograph equation [34,
35]. Note that the initial value problem for this equa-
tion is highly nontrivial. Using the results of the detailed
analysis of (4.16) given in [34], it is possible to see that
solutions g (x) having finite fixed values at x = 0 are
normalizable near the x = oo point when In[ ( Pi but
for x —+ —oo they diverge exponentially fast. A similar
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4' (z) = ~q '~—'0-(q 'z) + piq '0 (z) (4.i7)

This time there are infinitely many normalizable func-
tions @ (z) for ~n~ & pi, decreasing as z", q"
n/q ~ Pi, for ~z~ ~ oo. All of them have finite values
at z = 0 but they are not analytical near this point (i.e. ,
Taylor series expansion does not converge). For arbitrary
N, coherent states of this type are defined by the gener-
alized pantograph equation [35]

d
I

——+ p~
I
&-(qz) = ~q '"@-(z)

dzk=1
(4.is)

whose solutions are not expressible in terms of the clas-
sical special functions. Expansion of the normalizable
solutions in the basis of Hamiltonian eigenfunctions is
given by the integral

situation holds for the general N ) 1 symmetry algebras.
We conclude that there are no physically acceptable co-
herent states of this type in the free-particle model. This
is caused by the absence of a discrete spectrum. In the
more complicated realizations of (4.11), (4.12) such states
do exist.

A diff'erent type of coherent states for the q-Weyl alge-
bra has been constructed in [15]. These coherent states
are defined as eigenstates of the operator A~, which low-
ers the energy of the A ) 0 states, At@ (z) = n@ (z).
For the &ee-particle realization of the q-oscillator alge-
bra these states are determined again by the pantograph
equation, but now the dilation parameter is bigger than
1:

This constant is finite for ~a~ ) p, which is the region of
definition of the coherent states. For any N the states
(4.19) have the common qualitative feature of nonana-
lyticity near the x = 0 point. The origin of this property
and possible physical consequences deserve further inves-
tigation.

One can look also for solutions of (4.18) in the form of
series similar to (4.8). For example, for N = 1 one can
write

@-(z) ~ ). l l ('«/pi q)-e" *
)

(4.21)

N
q i 1

@.(*)=*+
1 —q Pg

(4.22)

where 0 is an arbitrary constant, q & 0 & 1. These non-
normalizable solutions are bounded for any x provided
~n~ & q ~ pi, however, it is not clear whether they should
be taken into account in order for coherent states to be
complete.

It is worth mentioning that the pantograph equation
appears in various problems. It has been encountered in a
description of the light absorption by interstellar matter
[51], the collection of current by the pantograph of an
electric locomotive [52], some number theory problem,
etc. (for a list of applications, see [35]). Here we have
described another physical application of this equation
as the one determining the &ee-particle coherent states
within the ladder-operator definition context.

Two linearly independent A = 0 solutions of (4.2) can
be represented in the form

C(o,)
i/47r 0

wads
+IV Ax Qp

s—:pi .p~,

(kiqv A/pg, q)
k=1

ln p/nq ~ + 2vris

1n q2

(4.19)

A&~(z) = Sq"' '@~(z) A'@~(z) = Iq' "@~(z)

Only the first one is bounded and belongs to the con-
tinuous spectrum of the free particle. Formally upon
v)~(z), both operators A and At are diagonalized simul-
taneously:

where 8 = 0, +1, . . . is an integer enumerating linearly
independent states and it is assumed that 0 & arg n &
2~. In (4.19) and below we use the standard notations
for q products [50],

(~ q)- =
h

k=O
(1 —aq"), (~ q)-

(~q"; q)

For positive integer n one has

(~ q)- = (1 —~q")
k=0

q/+)nqn(n —i)i2

(q/-')
The normalization constant C(n) is given by the integral

(4.23)

These are the simplest models of the c-number "conden-
sate" representations of quantum algebras discussed in
[13,5S].

In a similar manner one can consider the free particle
on the half-line. In order to make the Hamiltonian self-
adjoint it is necessary to impose boundary conditions at
x = 0. The scaling operator defines physical symmetry
only in the special cases Q(0) = 0 or @'(0) = 0 [54]. Then
one can define again coherent states as eigenstates of the
lowering symmetry operators, but we shall not consider
them here.

A curious fact is that for N = 1, q = i, Pi ——1/ii2,
one arrives at a simple differential-difFerence operator re-
alization of the fermionic oscillator algebra. Indeed, it is
not difBcult to check that upon the states

l&(~)l * = f
4 I

k=1
(—~q'/4' q')-

»~/l~lq
lnq

(4.20)

A~O) = O, ~0) ~ e-*~~, ~i) = At~0) ~ e-'*i~2

(4.24)

the relations At~i) = 0 and A~i) = ~0) are satisfied, which
means that AAt + AtA = 1, A = (At) = 0. It is not
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[A, At] =1, At =zr (4.25)

define some deformation of the Bargmann-Fock realiza-
tion (when q is complex the operator T scales and rotates
z; we assume that 0 ( q ( 1). The measure density
p(]z~ ) in the scalar product

(I'll'4) = /d zp(lzl )4x(z)Qm(z) (4.26)

is found &om the requirement for At to be a conjugate
of A. This gives the equation

clear whether this formal two-dimensional representation
has a unitary' setting.

The scaling operator T also provides an interesting
possibility of a nonstandard realization of the ordinary
bosonic oscillator algebra. Let Tf (x, y) = f (qz, qy) and
z = x + i y; then the relations

AAt —q AtA = (u, [A, ~] = [At, (u] = 0, (5.1)

A = T ' [d/dx+ f(x)], At = [—d/dx+ f(z)]T,
(5.2)

where T is the scaling operator (4.1), satisfy (5.1) pro-
vided f (z) is a solution of the equation

—[f(*)+ qf(qz)] + f'(*) —q'f'(qz) = ~
dx

(5.3)

derived in [5] as the simplest self-similar reduction of the
dressing chain for the Schrodinger equation. The Hamil-
tonian of this system,

H = AtA —v = —d /dx + u(z),

in the realization described in [6]. Let us consider this
system in more detail. One can check that the pair of
formal operators

dp(t) ( t l
dt (q2)

(4.27) tL X = X — X —V) v = ~/(1 —q') (5.4)

which we have just encountered in (4.5). Its solution
satisfying p(0) = const can be represented in the form

satisfies the relations

AH=q HA, aAt = q2AtH. (5.5)

ln pq
p(t) = dp h(p)e "'exp

0 4lnq ' h(q2p) = h(p).

Acting by At upon the zero mode of A, Agp(z) = 0,
@p(z) =const, one finds the Fock space basis vectors:

(z) = C (q)z (x (zT) 1.

The normalization constants C have the form

(4.2S)

qn(n —i) ( ~ ~2I 2) (—1)"hi, expn!/4' lnl/q ) q
lnq )

(4.29)

where hA, are arbitrary constants appearing due to the
nonuniqueness of the measure. More precisely, hp are
the coeKcients of the Fourier expansion of an arbitrary
periodic function entering the measure h(p),

~ik ln p
h(p) = ) h), exp

lnqk= —oo

The relation between hy and C„shows that the moment
problem for this measure [i.e. , determination of p(t) from
a given C ] does not have a unique solution. Physical ap-
plications of the described realization of the Heisenberg-
Weyl algebra are not known.

V. COHERENT STATES OF THE q-DEFORMED
HARMONIC OSCILLATOR POTENTIAL

In Sec. II we gave a simple derivation of the Yurke-
Stoler states (2.6) on the basis of a canonical transfor-
mation associated with the parity operator. Actually, it
was inspired by the analysis of coherent states for the
q-oscillator algebra,

For q = 1 one has f(x) = uz/2, i.e., the standard har-
monic oscillator. Suppose that f ( x) = f—(x), w—hich
corresponds to the symmetric potential. Then, in the
limit u ~ 0 the solution f(z) analytical at x = 0 van-
ishes due to the initial condition f(0) = 0, and we get the
zero potential model considered in the preceding section
with the factorization constant Ep ——0 [the Ep g 0 case
corresponds to the symmetric solution f (z) = ~v.

The analysis of [13] shows that for complex values of
x and q, a solution of (5.3) analytical near x = 0 ex-
ists and it is unique provided ~q~ ( 1 or q is a primitive
root of unity of odd degree, q

"+ = 1. For q = 1
a solution may exist only for special initial conditions
which, however, do not guarantee uniqueness. If ~q~

= 1
but q g 1 then f(x) = 6~v are the only analytical
solutions known to the author. For 0 ( ~q~ ( 1 the func-
tion f (x) cannot be expressed in terms of known special
functions. %hen q

"+ = 1, and in the restricted case
of q = 1, the problem is solved in terms of particular
hyperelliptic functions characterized by the presence of
additional symmetries of the lattice of periods. Since in
the simplest cases, q = 1, q = 1, q is just the modular
parameter of elliptic functions, the function f (z) (and
its generalizations to be described below) comprises hid-
den "second" q-deformation properties of hyperelliptic,
or finite-gap potentials.

In [55] the system (5.1)—(5.5) has been derived from
a special quantization of a simple model of classical me-
chanics (a particle in a finite-depth potential) character-
ized by a quadratic Poisson algebra. In this picture Eq.
(5.3) has the form

[f( ) + hl7f(
5'p

)j + f2( ) 257/f2( sv7e)zd

dx
= c(1 —e'""), (5.6)

where h is Planck's constant, q = e"",and g and c are pa-
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rameters of the classical potential. Expanding this equa-
tion over h one finds successively the classical, quasiclassi-
cal, and so on approximations to the exact solution f (x)
(note that in this approach the potential is an infinite
series over 6, there is a large nonuniqueness, etc.

Let x and q2 be real, u ) 0, and f(x) antisymmet-
ric, f( x—) = f(x—). For q ) 1 the function f(x) has
singularities [6] so that At is not conjugated to A and
the realization of (5.1) is not unitary. For 0 ( q2 ( 1 the
function f (x) is bounded and has only one zero [5]. These
are the crucial properties sufIicient for At and A to be
well-defined operators in the Hilbert space. In particular,
the zero mode of A, A~O) = 0, (x~O) cc exp[—j f(y)dy],
is normalizable and. describes the ground state of Hamil-
tonian H. As a result the whole spectrum of H is found
from unitary representations of the algebra (5.1).

It is not diKcult to see &om (5.5) that the spectrum
may consist of three parts: a discrete one, describing
bound states accumulating near the zero energy level
from below, a continuous part going from zero to in6n-
ity and corresponding to scattering states, and, finally,
a zero energy piece. The discrete spectrum is described
by the lowest weight discrete series generated by At &om
the vacuum state ~0):

(At)n
~n) = ~0), A~O) = 0, (n~m) = b„

~n ~ t

[n]! = [n][n —1]!) [0]!= 1,

[-] = (1-"-)/(1-"),

in [42, 13]; cf. also [56]; note that it is not defined for
q ~ 1.) Theoretically these states could be normaliz-
able, but in our case this is not so —they belong to
the continuous spectrum. Indeed, &om (5.7), (5.8) it
follows that the scaled potential qzu(qx) has the same
spectrum as u(x) except for the lowest state with the en-

ergy Eo ———v. Similarly, qz"u(q" x) does not have the
k lowest states. Taking the limit k -+ oo, one gets a
system without a negative spectrum, whereas the states
(5.8) are not washed away. Prom the boundedness of
the initial potential it follows that q2"u(q"x) -+ 0 for
k —+ oo because q & 1. This means that our potential
is reflectionless, being obtained by a special infinite step
dressing of zero potential. But for zero potential the se-
ries (5.8) with u = 0 (removal of the levels is equivalent
to rescaling ~ -+ qz"u -+ 0) correspond to the contin-
uous spectrum (see the preceding section). A rigorous
proof of the absence of positive energy bound states re-
quires an estimate of the asymptotics of the potential
[57]. The ~x] -+ oo asymptotics of (5.4) proposed in [58]
decreases suKciently fast in order to guarantee the ab-
sence of such exotic states, u(x) ~ h(x)/xz + O(1/xs),
where h, (qx) = h(x) is a bounded function.

Upon the zero modes of the Hamiltonian the opera-
tors A and At behave like integrals of motion, i.e., they
commute with H. Since the relations AtA = AAt = v
can be satis6ed by an arbitrary invertable matrix, the
dimension of this representation is not restricted. It may
be either in6nite-dimensional under additional require-
ments [42] or just one-dimensional. In the latter case
the creation and annihilation operators degenerate into
complex numbers [13,53],

1 q2{n+1)
At~n) =~'~2

1 —q

H)cl) = 0, A)cl) = ~ve ' ]cl),

A [cl) = ~Pe' ]cl), (5.9)
q2n

1 —q

Hin) = E„in), E„=—vq ". (5.7)

Hin)p = Aq "in)g,

A~n)p = Qv+ Aq2" ~n —1)p,

At~n)~ = gv+ Aq2& +i!]n+ 1)„

n = 0, +1,+2, . . . (5 8)

where A ) 0 is an arbitrarily chosen eigenvalue of H.
(This representation of the q-Weyl algebra was discussed

It consists of one geometric series. Since zero modes of
A are determined by the 6rst-order difFerential equation,
it follows that (5.7) are the only physical states for E (
0. Indeed, suppose that we missed one physical state
]E) with energy E ( 0. Acting by powers of A upon
]E) we get a sequence of states of lower energies. Since
the potential is bounded this series should be truncated,
which is possible only if ]E) is annihilated by some power
of A, i.e. , if the state ~E) belongs to the series (5.7).

The same argument shows that the states with positive
energy, E ) 0, appear in the form of a geometric series
infinite in both directions,

where we assume that the state ~cl) is normalizable. Note
that the limit q + 1 is not de6ned. In our case these
"classical" states correspond to the boundary between
discrete and continuous spectra. As we shall show be-
low, in the q-oscillator model (5.2) with f(0) = 0 the
corresponding wave functions are not bounded and their
eigenvalues differ &om those in (5.9).

Remark. Actually, the existence of the nonzero c-
number representations is not very rare for quantum al-
gebras. For example, for the Cartesian version of the
slq(2) algebra

q Jg J2 —qJ2Jg ——J3, q J2J3 qJ3J2 ——Jg,

q J3Jp —q Jp J3 ——J2,

describing dynamical symmetries of some discrete reBec-
tionless potentials [59], one can set Ji, = 1/(q i —q) and
the algebra is satis6ed. Such exotic representations are
often skipped in discussions of applications of quantum
algebras.

As we have discussed already, coherent states of the
first type of the algebra (5.1) are defined as eigenfunc-
tions of the annihilation operator A. These states are
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built &om the lowest weight discrete series representa-
tion (5.7) (see, e.g. , [40]):

Z" 1
Ic( )I

' —= . ( ) = ).(, ,
)

—
(, ,

))q

Pin, q) = nln, q),

where

l~ q) = C(~) ). I~)A!

(5.10)

l~l'(1 —q')

is a q analog of the exponential function, or iso(0; q, z)
basic hypergeometric function. The general q series of
such type is defined as follows [50]:

l ait o2) i a~
I (oli q)ta(o2i q)n (ov'i q)n rs wn n(ra —i)/2&1+8 —v rares Z

( bi i b2) ~ ~ I b8 ) (qi q)1L(bi i q)A . . (bsi q)B

where r and 8 are arbitrary positive integers, and
aq, . . . , a„,bq, . . . , b, are &ee parameters. The states
(5.10) are normalizable only for Ial ( v. Since the
Hilbert space of our model is larger than the discrete
spectrum Fock space spanned by In), the states (5.10)
are not comp/etc. There remain two parts corresponding
to zero and positive energy eigenvalues. Although the
latter are not normalizable, one cannot discard them.
Expansion of the eigenfunctions of A over the fixed en-
ergy states should contain in general an integral over the
continuous spectrum. This situation difFers drastically
&om the q = 1 algebra case, where the Fock space was
complete.

Note that the definition (5.10) works for q2 ) 1 as well
since A remains to be the lowering operator for positive
energy states. Then, the states Io.) are normalizable for
arbitrary values of o.,

I

The normalization constant C(n) is related to the bilat-
eral basic hypergeometric series o@i,

IC(~) I

' = o@i(b; q', z) b = —v/A, z = —inl'/A.

t'oi, ",~. & ) - (~i q) (o;q)' (bi, . . . , b. ' '
/

- (bi, q)„.. . (b, ;q)„

1) q ( —i)/2 Z".

Using the Ramanujan sum for the i@i series [50] one can
express C(n) in terms of the infinite products

(q'q')-(-Aq'/l~l'q')-(-l~l'/A q')-
(—v/A; q2) (v/lnl2; q2)

The general bilateral q-hypergeometric series is defined
as follows [50]:

n —n(n —1)
IC(~) I

' —= Eq- (z) = ): iq n

=(-z q ')-

l~l'(I —q ')
(5.11)

The states (5.13) are normalizable when Ial ) v, i.e. , n
should lie outside of the region where the states (5.10)
were defined.

When positive eigenvalues of the abstract Hamiltonian
II, IIIA) = AIA), form a continuous spectrum, the states
In, q) are defined by the integral over IA),

itin, q) = o. ice, q), (s.i2)

since for E ) 0, not A but At lowers the energy [13].
Suppose that for some A the states of the series (5.8) are
normalizable (this is not so in our case, but in principle
it is possible). Then we find

~n/2
n, q)~=C(ci) 10)~+ ) (—Aq'/v;q')„' 'In)

where E~ ~ (z) is another analog of the exponential func-
tion, or o&po(q, —z) basic hypergeometric function. In
this case coherent states are complete because the Hamil-
tonian has only a discrete spectrum, as in [40].

For q & 1, coherent states formed by the positive
energy states should be defined as eigenstates of the op-
erator At,

A ~y(A, o.) IA)

o Q(—Aq'/v; q')
ln vtv/q'a

ln q2

(5.14)

AIA) = Qv+ A IAq ), AtlA) = Qv+ Aq IAq ),

one finds the form of the scalar product,

where y(A) is an arbitrary function periodic on the loga-
rithmic scale, y(q A) = y(A). In principle the continuous
spectrum may have an infinity of gaps, each type of gap
appearing in the form of a geometric series. Here we as-
sume that it fills the whole interval 0 ~ A ( oo. Prom the
requirement for A and At to be Hermitian conjugates of
each other, with the action (which is defined only up to
an arbitrary phase factor depending on A)

l~nqn(n —1)/2+,/, I
-~)i

I

A"/~( —v/A; q2) / )
(5.13)

(Aio) = Ab(A —o). (s.is)

In our case there are two sets of states (5.14) because the
continuous spectrum is doubly degenerate. Expanding
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2''Ls
d, =d+, s=0, +1, . . . ,lnq2' (5 16)

which are normalizable for lnl ) v. The normalization
constant is calculated exactly, being determined by the
special case of the Ramanujan q-beta integral [50],

dA A~
IO(~) I

(q 2;q2) f v)
sinvrw (q;q ) (q

where w = 2Re d+1. The fact that there exists an inanity
of norinalizable states (5.16) leads to an interesting effect
in the model of a q oscillator interacting with a classical
current [60].

Consider the structure of coherent states of the Grst
type (5.10) in the realization (5.2), (5.3). Denote

(x) = (xlo. , q). These wave functions are defined by
the equation

[d/d*+ f (*)1&-(z) = ~v lql&-(qx), (5.17)

where f(x) is a solution of (5.3). Unfortunately, a full
description of the properties of @ (x) is not accessible
at present. Nevertheless, several crucial points can be
brought into view.

Suppose 0 ( q ( 1; then in the x —+ oo limit we get
the equation

0' (*) = ~~VW-(qx) —V v0-(x), (5.18)

which is exactly the pantograph equation encountered in
the &ee-particle model. Using the corresponding analy-
sis, we conclude that the x ~ oo asymptotics of coherent
states is

h(z, n) ln nQq/v
K = )x lnq

where h(x) is some function satisfying h(qz) = h(x). A
similar asymptotics of @ (x) holds for x + —oo because
in this limit f(x) + —~v. Therefore coherent states
are normalizable near infinity provided Re K ) 1/2, or
lnl & v, consistent with the previous considerations.
Due to the arbitrariness of h(x, n), asymptotics (5.19)
corresponds to a countable set of solutions of (5.18) for
Axed n, whereas it is possible to construct only one coher-
ent state by superposing discrete spectrum states. Prob-
ably it is the requirement for analyticity at x = 0 that
determines the latter solution uniquely. Then the non-
analytical solutions should not be normalizable near this
point. Por Re e & 0 the functions @ (x) are not bounded,
and so not physical. The significance of the bounded at
infinity but not normalizable solutions of (5.17), appear-
ing in the range 0 & Re r & 1/2, is not yet clear. This

(5.19)

the function y(A) into a Fourier series, we obtain an in-
finite number of linearly independent coherent states of
the form

dA A" lA)
l~ q). = O(~)

o (—Aq2/v; q2) ~

problem is related to the analysis of the completeness of
coherent states, which is beyond the scope of the present
work.

Consider the zero modes of the Hamiltonian for the
solution of (5.3) determined by the condition f(0) = 0.
Denoting @,i(x) = (xlcl), we have

@."i(z) = ~(x)& i(z). (5.20)

The first several terms of the Taylor expansion of the
functions f (x) and u(x) are easily found:

(ux (q2 —1)u) 2xs
x 1+ q 3(1+.q )(1+q )

+ + x

(dX
&:i" "(z)=1+,

+ +Ox
2+ 4)~2 4

3(1 + q4)(l —q4)'

odd (dX
@:i (*)= z+ 3(, ,)

(2 —3q' + 2q')(u2x'
+ 15(1+q )(1 —q )

+Ox

Since the operator A maps the space of zero modes onto
itself, there should be at least one eigenfunction of A.
Taking the linear combination of the above solutions we
find that there are two such functions,

A@,+i ——+i~vq

4.+i(z) = 4:i"'"(x)+ i~~q "&:i'"(z). (5.21)

Evidently @,+& are eigenfunctions of the operator At as
well, At/, +&

——~iq~v@+i. The eigenvalues of A and At
are not complex conjugate to each other. Hence, the
"condensate" representations of the q-oscillator algebra
do not belong to the discrete spectrum; actually, /+i are
not even bounded. This can be verified by the direct
estimation of the asymptotics of these functions using the
fact that they satisfy Eq. (5.17) with n = +i~v/q. We,
however, choose a slightly difFerent approach. Consider
the eigenvalue equation for A.t,

[ d/d*+ f(x)]v «-.+~(qz) = +'q~v&.+i( ) (5 22)

Eliminating the derivative part from (5.17) and (5.22),
we get

[f(z) + q 'f(q 'z)]&.+(z)

= +i~vq ~ @„(qx)—Q+, (q x), (5.23)

i.e. , zero energy wave functions satisfy the second-order
purely Bnite-difference equation. Since for x —+ oo,
f (x) ~ ~v, the leading asymptotics of @+& are found as

2(d 2(d z
4 +

( 2)2( 4)

Looking for g, i(x) in the form of a Taylor series, we find
the first three terms of the odd and even wave functions:
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solutions of the free finite-diff'erence Schrodinger equa-
tion, which are

+( )
iky in+ x+(q*) = x+( ). (5.24)

[ d/dx+ f—(z)]~qQ (qz) = o,@ (z), (5.25)

where we use the same notations as in (5.17). In the
x ~ oo limit one gets again the pantograph equation,
but with the scaling parameter q

vP (z) = (xq ~ @ (q —z) + q i/vi)(z). (5.26)

Prom the preceding section we know that this equation
has solutions with asymptotics,

@ (x) m ', h(qz) = h(x),
h(x, a) ln vq/o.

These coherent states are normalizable provided Re v &
1/2, or ~n~ ) v. Their expansion over the continu-
ous spectrum states was presented in the abstract form
(5.16). For Re v & 0, or ~n~ & qv, the functions @ (x)
are not bounded. For 0 & Re r & 1/2 we get again wave
functions that are bounded at ~z~ -+ oo but unnormal-
izable. It looks like they do not have an expansion over
the eigenstates of the Hamiltonian and the reason for this
needs clarification. In the considered models there are no
norinalizable coherent states for the circle ~o.

~

= v. In
principle it is possible that zero modes of a Haxailtonian
H are normalizable, in which case it is natural to count

Substituting this ansatz into (5.18) with n = kiev/q,
one finds 2ik~ = 1 ~ im/1nq. The derived asymptotics
of g,+i(z) look like Bloch wave functions for a particle in
a periodic potential with the coordinate variable being
lnx. Note that the quasimomenta k~ are complex, which
forces the wave function to increase at infinity as ~z,
unlike the u(z) = 0 case when a symmetric constant wave
function was bounded. A more detailed consideration of
such nonstandard implementation of the Bloch theorem
is given in Sec. VIII.

Let us discuss brieBy the —1 ( q ( 0 case. Due to
the parity symmetry one has the relation: A2

q(0
—A2 . It means that the q ) 0 coherent states ~in, q)q&0
and

~

—in, q) provide independent eigenstates of A2
q(0

The parity transformation changes only the sign of o..
Therefore, the eigenstates of A for q ( 0 are given by
the parity coherent states (2.6) where on the rhs one has
q-coherent states for q ) 0. Moreover, the precise realiza-
tion (2.2) and superposition (2.6) appear in the q ~ —1
limit of the q-oscillator system under consideration [13].
Indeed, the general solution of Eq. (5.3) for q = —1 is
f(x) = urz/2, and the variation of q &om 1 to —1 per-
forms a transition &om the canonical coherent states to
the parity coherent states (2.6). Note, however, that if
one takes the solution of (5.3) satisfying asymmetric ini-
tial condition f(0) g 0, then the q + —1 limit simply
o.oes not exist and for —1 ( q ( 0 the parity operator
does not help in the analysis.

Coherent states of the second type are defined as eigen-
states of the At operator (5.12):

them among the coherent states (otherwise there will be
no completeness).

VI. GENERAL CLASS OF SELF-SIMILAR
POTENTIALS AND THEIR

COHERENT STATES

It is well known [61] that the one-dimensional
Schrodinger equation

~4(z) = —0"(*)+ u(z)@(z) = &@(z) (6.1)

L, = d2/dx' + u, (x), —j = 0, +1,+2, . . . , (6.2)

and represents them as products of the first-order differ-
ential operators,

has an important nonquantum mechanical application in
the theory of nonlinear evolution equations. In particu-
lar, the Korteweg —de Vries (KdV) equation can be solved
with the help of the inverse scattering method for two
classes of initial conditions u(x, t = 0). The first one
consists of the potentials u(x) satisfying the restriction

f (1+ ~z~)~u(z)~dz & oo, which guarantees that the
number of bound states is finite. ReQectionless poten-
tials with N discrete eigenvalues are the simplest exam-
ples Rom this family. Since they generate N soliton so-
lutions of the KdV equation they are called the soliton
potentials. The second class is related to nonsingular
periodic (or quasiperiodic) functions, u(x + I) = u(x),
characterized by the presence of N gaps of finite width
in the spectrum of (6.1). These finite-gap (hyperelliptic)
potentials [62] are reduced to the solitonic ones in the
limit l -+ oo. They can be thought of as superpositions
of an infinite number of solitons ("periodic solitons"), but
there is no scattering problem for such objects, i.e., the
solitary character of the ingredient waves is lost. There is
a third relatively simple class of self-similar solutions of
the KdV equation related to the Painleve transcendents
requiring a different treatment.

Recently, re8ectionless potentials with an infinite num-
ber of discrete levels have been systematically considered
in [63, 5, 6, 64, 65, 13, 58]. For x + oo such potentials de-
crease slowly and the standard inverse scattering method
does not produce constructive results. These potentials
deserve to be named the infinite soliton ones, since they
do not reQect and may be approximated with some ac-
curacy by the ¹oliton potentials (N & oo). Moreover,
this class absorbs the finite-gap potentials which emerge
for special limiting values of parameters. The related
problem of the approximation of confining and band spec-
trum potentials with the help of reBectionless potentials
was discussed earlier [66, 67].

l,et us describe briefiy the factorization method [8, 9]
that allows us to find the particular subclass of infinite-
soliton potentials characterized by the q-deformed sym-
metry algebras. This method was invented in quantum
mechanics by Schrodinger; it is deeply related to the
Darboux (Backlund, dressing, etc. ) transformations for
linear differential equations. Vilithin this approach, one
takes a set of Hamiltonians,
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dX+= ——+ f (x),dz
= —+ f (x),j dx 2 (6.3)

up to some constants A~'

L, =A+A,. +W,-, (6.4)

i.e. , u~(x) = f (x) —f'(x) + A~. Then one imposes the
following intertwining relations:

I A+. = A+L A. I~
= I~+gA~ ) (6.5)

which constrain the difference in spectral properties of
L~ and L~+~ and are equivalent to the equations

A~+~~ A~+~ + A~+g ——A~:A~+ + A (6.6)

The same results are obtained if one starts &om the linear
equations

@,+i = &, @,. (6.7)

p~ = A~+g —A~, (6.8)

which is called the dressing chain [5, 68]. Any spectral
problem with a known nontrivial discrete spectrum gen-
erates some solution of (6.8) such that the ordered dis-
crete eigenvalues are given by the constants A~. The fac-
torization method works with the inverse problem —to
find such solutions of (6.6) or (6.8) for which the spec-
trum of the associated Schrodinger operator will be deter-
mined automatically. Note that in some cases the spec-
trum can be found even if A~ do not belong to it, e.g. ,
such a situation can take place for hyperelliptic potentials
[62, 69—71].

The variable j was playing, above, the role of a label.
It could therefore be removed in favor of other notations,
e.g. , f~ = f, f~ +i = f, etc. However, it is convenient to
think ofj as a discrete set of points on a continuous mani-
fold. Then one can consider j (or its function) as a contin-
uous variable and look for solutions of (6.8) in series form
f~(x) = Pgg(x)j" Infeld and H. ull [8] have considered
such an ansatz and have found that the series contains a
finite number of terms if' fz (x) = o.(x)j+P(x-) + p(x)/j,
where o., P, p are some elementary functions. This does
not mean that the infinite-series solutions are meaning-
less; it indicates rather that truncation of the series is
related to some simple symmetries [9]. It is difficult to
work with formal power series; often even their conver-
gence is not known. Analysis of solutions characterized
by separation of variables or by some special dependence
on them is essentially simplified. In the Lie theory of
differential equations solutions of such type are called

The compatibility condition of (6.7) is given by (6.5).
Resolving the latter relations, one finds A~ as the inte-
gration constants such that the factorization (6.4) takes
place. These are the basic ingredients of the factoriza-
tion method which allows us to construct new solvable
Schrodinger equations &om a given one.

Substitution of (6.3) into (6.6) yields the chain of dif-
ferential equations:

f,'(*) + f,'+i(*) + f,'(x) —f,'+i(*) = ~~

the similarity or self-similarity solutions. Unfortunately
for the differential-difference equation there is no coxn-
plete theory of such solutions; a subclass of them can be
found using the methods developed for purely differen-
tial equations [72]. An additional complication associ-
ated with Eq. (6.8) consists of the fact that there are
two unknowns, f~(x) and pz, i.e., the system is highly
underdetermined.

According to definition, (self-)similarity solutions are
the solutions invariant under symmetry transformations
of a given equation. The potentials we are interested in
appear as fixed points of the combination of an aKne
transformation of the coordinate, x —+ qx+ l, and a shift
along the discrete lattice, j ~ j + ¹ Indeed, the change
in numeration of solutions by an integer maps solutions
of (6.8) to the solutions f~(x) ~ f~+~(x), p~ -+ p~+iv.
The same is true for the affine group, fz(x) ~ qfz(qx +
I), p~ ~ q2pz. We may look for the class of solutions in-
variant under the combination of these transformations:

A+~(x) = qA(qx+ t) 2
v&+~ = v v& ~ (6.9)

M. = A.+~ ~. . .A +~A. )

which generate the intertwinings

(6.10)

L~M+ = M+L~+~, M L~ = I~+~M (6.11)

The structure relations complimentary to (6.11) appear
as

M+M-. =
2 2 1

k=O
(I' —&~+~)

M M+
2 2

N —1

h

k=o
(4+~ —&~+~). (6.12)

Equations (6.11) and (6.12) can be rewritten as the
higher-order polynomial supersymmetry algebra [74]:

(q+, q-) =
N —x

~ ~ I

k=0
(K —Ag), (q+)' = [I~, q+] = 0,

(6.13)

where

These relations define a class of potentials that we are
going to analyze below. The simplest reduction of such
type, f~ (x) = q~ f (q~ x), A~ = q~~, corresponding to
N = 1, I = 0 in (6.9), has been found by Shabat [5]. Ac-
tually, the general class of closures of the dressing chain
(6.9) has been introduced in a way diferent &om the
above [7], namely, &om q deformation of the parasuper-
symmetric quantum mechanics based upon some polyno-
mial algebras [73].

At the operator level, the relations (6.9) lead to the
Schrodinger operators with nontrivial q-deformed sym-
metry algebras. Let us consider the products

+ + + +M. = A. A-+~. . .A.+~
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~o M+
0 0

(o 01 —[fo(x) + fi(x)]+ fo(x) —fi (*) = I"dx

Lo 0
(0 L~) ' [fi(x) + f2(x)] + fi'(x) —f2'(x) =»

the index j = 0 was Gxed for simplicity of notation. The
presence of nonlinearity brings essentially new features
with respect to the standard supersymmetric quantum
mechanics case corresponding to N = 1.

The identities (6.11) show that if the operators L~ and
L~+N are related to each other through some simple sim-
ilarity transformation, e.g. ,

L&+N = q TL&T + (d, (6.14)

where T is some invertable operator, then the combina-
tions

B+ = M+T
2

B:=—T M

map eigenfunctions of Lz onto themselves, i.e. , they de-
scribe symmetries of I~. The form of T is restricted by
the requirement for the Lz's to be of the Schrodinger
form. The closure (6.9) corresponds to the choice of T as
the afline transformation operator, Tf (x) = ~~q~ f (qx +
I). Fixing the indices and removing their irrelevant part
(L—:Lo, B+ = Bo ), we get the symmetry algebra [6, 7]:

[fn -i(*)+ qfo(q*+ ~)] + f~ i(x)-

q fo—(q*+ ~) = V~-i (6.18)

fo, i(x) = +—+Px,
2(Po + pi)

PO+ P1
)

Note that the limit q ~ 1 is not trivial. For the nonzero
parameter / we get a realization of the algebra (6.15),
(6.16) at q = 1, which generalizes the one described in
[68]. Below we assume that I = 0 (for q g 1 this corre-
sponds to the fixed point reference kame, but for q = 1
this gives a nontrivial simplification). The zero potential
model considered in Sec. IV corresponds to a particular
solution of this system, f, (x) = Pz ——const, which thus
determines the simplest self-similar potential.

Consider some examples. The N = 1 case describes a
q deformation of the harmonic oscillator potential, since
for q = 1 one has f(x) = px/2 and u(x) oc x2. The N =
2, q = 1 system coincides with the conformal quantum
mechanical model [75],

IB+ —q B+L = ~B+, B L —q LB =~B
(6.i5) ~o, i(x) =, + 0 x —0(1 W 2V) + &o,i.~(~+ i)

(6.19)

k=O
(L —Ai),

I ~

k=O
(q L+(u —

AA, ).

(6.16)

H=—L—
1 —q

&k —= &k—
1 —q

the algebra takes a simpler form:

HB+ =q+ B+H,

N —1

k=O
(II —Eg), (6.17)

N —1

After the shift of the zero energy point,

This is the singular oscillator potential whose physical
spectrum consists formally of two arithmetic series, but
only one of them is physical due to the boundary con-
dition at x = 0. Coherent states of this model defined
as eigenstates of the symmetry operator B were con-
structed by Barut and Girardello [76] (for some amend-
ments, see [77]). The N = 2, q = —1 system obeying the
same symmetry algebra will be considered in the next
section.

It is natural to call the physics of the N = 2, qz g 1
models as the q-deformed conformal quantum mechanics
because their symmetry algebra is su~ (1, 1). A general
solution of the basic equations (6.18) is not available in
a closed form already for N = 1. I et us find fo i(x) as a
formal series near x = 0. Consider 6rst singular solutions
with the pole-type singularity. Such solutions appear to
be odd functions with a simple pole at zero:

~ I el a

k=O

(q'H —El,). fo(x) = —+ ) b;x '
i=1

fi(x) = ——+ ) c;x '
x i=1

This algebra was already met in the discussion of coher-
ent states of the free nonrelativistic particle.

Let us write out explicitly the system of nonlinear dif-
ferential equations with the deviating argument that one
needs to solve in order to 6nd the explicit form of the
self-similar potentials:

i—1
cocci ~

—b~bbi+ci = g 2i —1+ 2ai=1
i 1 2iz.

q 'b-bi
~

—c ci
Oi + Ci-

2z —1 —2ai=1
(6.2o)
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where i = 2, 3, . . . and a is an arbitrary parameter; the
coefI»cients 6», c» have the form

1 ( po
1 —q2 (1+2a

1 f pi
C» =—

1 —q2 (1 —2a

pi
1 —2a)
q pp

1+2Gp

1
fp(x) = (u +xf(x), —CO = Pp + P» + P2,

1 1
&i,2(x) = —-&(x) + (~'(x) +»)

2 2f(x)
/2 2

2f 2
+ f + 2uxf + (—ur —x + p2 —pp) f ——.

2f
(6.22)

In general, the series diverge at q —+ 1, but for the special
choice of a one gets the truncated solution (6.19). In
the limit q m 0, the function qfp(qx) does not vanish,
qfp(qx) ~ a/x, and then the potentials up i are obtained
by simple dressing of the potential a(a + 1)/x . It is
natural to expect that for 0 & q & 1 there exist J]MO»

such that the series converge for arbitrarily large x. The
condition a(a + 1) & 3/4 guarantees that normalizable
wave functions and their first derivatives vanish at zero
[75]. The spectrum of such a system would arise from
only one geometric series (for the same reason that there
is only one arithmetic series for the singular oscillator).

Due to the presence of the singularity one can restrict
the space to be a half-line, 0 & x & oo, and interpret
x as a radial coordinate appearing &om the separation
of variables in a three-dimensional Schrodinger equation.
The constant a acquires then an interpretation of orbital
momentum of a particle when it takes integer values a =
t. Then in addition to the standard term /(t+1)/x there
is a very complicated dependence of the potential on the
quantum number l, indicating that in this picture the
"q-deformed Laplacian" is a nonlocal operator.

For the solutions that are nonsingular at zero one has

fp i = P p 5, 'x', w. here bp
' are two arbitrary con-(p, ») (O, »)

stants. Again, in general the series diverge at q ~ 1. A
particular choice of initial conditions gives the solution
which in this limit corresponds to (6.19) with a coordi-
nate shift. In the 0 & q & 1 region, the solution that is
nonsingular for all real x defines an infinite soliton poten-
tial whose spectrum is composed from two independent
lowest weight irreducible representations of su~(1, 1). In
the limit q —+ 0 it shrinks to the smooth two-soliton po-
tential. It is this solution that reduces to the q-oscillator
one (6.12)—(6.16) (with q replaced by qi~ ) after the re-
strictions fi(x) = qi~2 fp(qi~2x), pi ——qpp. Probably
without such a restriction this solution does not have a
q ~ 1 limit. In any case, at q —+ 1 the spectral series be-
come equidistant, which means that the potentials start
to be unbounded at infinity. Obviously a more complete
and rigorous analysis of the structure of the solutions of
the N = 2 equations is necessary.

When q = 1, already the N = 3 case corresponds to
transcendental potentials, namely, the f~(x) depend now
on solutions of the Painleve-IV (PIV) equation [68]:

Thus, a simple generalization of the harmonic oscillator,
characterized by the split of its linear spectrum onto N
independent terms, is connected with highly nontrivial
ordinary differential equations whose solutions are tran-
scendental over the solutions of linear differential equa-
tions with coeKcients given by the rational and algebraic
functions. For the N = 3, q g 1 system it is not possible
to reduce the order of the equation (i.e., no first integral
is known). Because in this case there are solutions of
(6.18) reducing in the limit q -+ 1 to the PIV functions,
it is natural to refer to this system as the q-deformed PIV
equation.

The notion of q periodicity (6.18) and the correspond-
ing algebraic relations are central in this section. Sup-
pose that superpotentials f~ (x) are not singular and that
the operator B is well defined [B+ = (B+)t] and has
N normalizable zero modes (the necessary condition for
this is Ei, ( Ey+i),

Hin) = E„in), E„+N ——q'E„, E„&E„+» & 0,

EIN+) ——E)q ", /=0, 1, . . . , % —1, k = 0, 1, . . . , oo,

(6.24)

~Nk+1) = ci, (B+)"~l), (Nk+ t~Nk'+1') = hi/, hid .

The normalization constants CI, are determined up to an
arbitrary energy-dependent phase factor

/Ci
/

= v
N —» A:

e=p m=»
(1 —q Ei/E, ),

v=( —1) EpEi . Eiv i &0,N

and similar freedom exists in the action of raising and
lowering operators,

B+~kN yt) =
h

s=p
QEiq2i"+'~ —E,~(k+ 1)N + l),

B IkN+l) =
N —»

~ & h

s=p
QEi q2" —E,

~
(k —1)N + I) .

(6.25)

In the "crystal" limit q ~ 0 there remain only first N
levels and we get the general N-soliton potentials.

There may be intermediate situations, when only some
of the zero modes of B' satisfy necessary boundary con-
ditions (the singular oscillator model is a known exam-
ple). Then some of the spectral terms disappear; we do
not consider such possibilities in detail here. Note that
for q & 1 the above formulas probably only have formal

I, m= O, 1, . . . , N-1.
(6.23)

Then ~l) represent the first N bound states of self-similar
potentials and the whole discrete spectrum consists of N
independent geometric series:
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meaning in the diHerential Schrodinger equation case due
to a too rapid growth of the spectrum. Analysis of the
N = 1 potential showed that, for q & 1, it has singu-
larities, and thus the symmetry operators are not well
defined [6]. The finite-difference Schrodinger operators,
or the Jacobi matrices, have a richer spectral structure
[37, 78, 59]. In particular, the spectrum may consist of a
discrete set of points only and be compact; it may grow
exponentially fast, and the geometric series may accumu-
late near zero both from below and &om above, etc.

Let us summarize what one can do with the help of
Darboux transformations. Starting &om the zero poten-
tial u(x) = 0, and performing % dressing transforma-
tions, one can get ¹ oliton potentials. Starting &om
the latter and performing an infinite number of dressing

I

B In) = nNlo), (6.26)

where for convenience we denote the eigenvalue as the
Nth power of o, . Since B has N linearly independent
zero modes, there are N independent states:

transformations in the particular self-similar manner, we
get a subclass of infinite soliton systems. Taking the
q + 1 limit we derive the Painleve-type potentials, some
of which degenerate into the finite-gap potentials in the
limit u ~ 0. All these complicated systems are thus
equivalent in some sense to the &ee Schrodinger equa-
tion.

Consider coherent states of the algebra (6.17) defined
as eigenstates of the operator B

(6.27)

2
I I

I2N/
r

I

2(AN+i�)

l«(~)l '=).
g=o II.=o' II" =i(El q' —E.)

( 0). . . )0
NON —i I l li)' ') N —i

bi = Elq /Eo) . ) bi+i El'q /El+i) ~ ~ ~ bN i = Elq /EN —i ~

These coherent states are normalizable for lnl ( v. In
order to And coherent states corresponding to the limit
q ~ 1 it is necessary to replace the q products by the
Pochhammer symbols. The spectrum of the resulting
system is found &om the formula E„+N ——E + u. The
hierarchy of potentials with such a linear spectrum was
investigated in [68]. Representation theory of the q = 1
algebras was considered in [79, 80]. Their possible phys-
ical applications were discussed also in [81—83]. In the
limit El —+ Eo + lu/1V, t = 0 1, . . . , K —1, one finds the
harmonic oscillator such that the states lnl) constructed
above coincide with the generalizations of even and odd
coherent states (2.14).

The positive energy states are described by the follow-
ing representation:

( oo

l~)~ = &(~)
I ).
(n=o AN(2

~nN Nn(n —1)/2

N —1

V'(E. /A q')-
I L L

a=O

oo n/2 N —1

+ ~ OnN
n=1 s=O

V'(Aq'/E. q')-I Aq'")
)
(6.29)

where

1)N)) Nn()). —1)&n
I(=( )I '=).

(E,/A; q')„
) L L

a=O

II IA) = A IA), A & 0,

N —1

ao n N —1

+ ) N (Aq2/E, ; q')„
n=1 a=O

B+ IA) =
I L L

s=O
QAq2 —E, IAq ), 2= o@N(bi). . . ) bN —i q ) &)

B IA) =
N —1

~ ~ L L

s=O
gA —E, IAq ). (6.28) z=(—1) Inl /A, b =E/A.

When the states generated by B+ from IA) for some fixed
A are the only eigenstates of the Hamiltonian, generaliza-
tion of the coherent states (5.13) has the following form:

These states are normalizable for lnl ) v.
Analogously, one can find the countable set of coher-

ent states in the case when positive energies form the
continuous spectrum:
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dA A"' ]A)I~). = &(~)
0

v'(&g'/&~ g')-
l=0

ln v v/a~q' + 2~i s
ln q2

s = 0, +1, . . . , (6.30)

where the normalization constant C(n) is given in (4.20)
with P&2

—— E~.—Zero modes of the Hamiltonian H may
be eigenstates of the operators A and At in the same way
as in the q-Weyl algebra case; there is no need to describe
them again.

We conclude that coherent states of the self-similar
potentials are related to the basic hypergeometric series

i(z), ogN(z) or to some integrals over the lat-
ter functions. However, we do not know the explicit
form of these coherent states because the Hamiltonian
eigenstates involve new complicated transcendental func-
tions whose complete analytical structure is not accessi-
ble at present. I et us mention in passing that the 6nite-
difference analogs of some of the above self-similar poten-
tials associated with the discrete Schrodinger equation
have been described in [78]. The discrete dressing chain
in this case happens to de6ne a discrete time Toda lattice
[59]. A q-deformed supersymmetric interpretation of the
models considered in this and the previous two sections
was given in [84, 7, 74].

VII. TW'O PARTICULAR EXAMPLES

Consider in more detail the N = 2, q = —1, and a
special subcase of the N = 3, q = 1 closures of the
dressing chain. In the erst case, the system of equations
determining superpotentials has the form

d [fo(z) + fi(z)]+ fo(z) —fi'(z) = &o (7.1)

—[fi(z) —fo(—z)] + fi (z) —fo (—z) = pi
fix

where we assume that po + pi g 0. Prom the algebraic
point of view this case is related to the su(l, l) algebra,
which serves as the formal spectrum generating algebra.
If one assumes that fo(x) [or fi(x)] is antisymmetric,
fo( z) = fo—(z), then —our system is equivalent to the
N = 2, q = 1 case, or to the singular harmonic oscillator
model (6.19). The coordinate region of this problem is
restricted to the half-axis which forbids the parity oper-
ator. Indeed, the wave functions are not single-valued
near x = 0 for noninteger values of the parameter p and
the action of the parity operator is not well de6ned. As a
result, the eigenvalue equation for the lowering operator
B = P(d2/dz2+ . .) is also not well defined (for integer
p, half of the wave functions are singular, the coherent
states have fixed parity, and the action of B and B P
may difFer only by sign).

It is easy to see that fo(x) or fi(x) cannot be sym-
metric; therefore the nontrivial solutions of (7.1) do not
have fixed parity. In spite of its simplicity, the system
(7.1) is hard to solve. Let us represent f~(x) as sums of
symmetric and antisymmetric parts:

1f, (*)=
2 [fo(z) + fo(-z)]
1

g,-(z) = 2[fi(z) + fi(—*))] (7.2)

and substitute this splitting into (7.1). Then it is not
diKcult to 6nd &om these equations and their x —+ —x
partners two "integrals, "

and

f (z) + g (x) = o.z,
1

~ = -(so+Pi),
2

(7.3)

f.'( z)+f. (z) = g. (*)+g.(z)+~
1

~ = —(Vo —ui).
2

(7.4)

1
g (z) (f2 2+ 2 2

) (7.5)

Eventually the original system of functional-difFerential
equations is reduced to the form

f.'(z) = 2g. (*)g-(*) g.'(*) = —» (z)f-(*) (7.6)

This system of ordinary differential equations is related
to a Painleve-V equation, which follows &om the fact
that we are considering a subcase of the N = 4, q = 1
closure analyzed in [85].

For the special choice of initial conditions f (0)
g (0) = 0 one has f, (0) = g2(0) + w. Then the sin-
gularity at x = 0 cancels and one obtains a formal non-
singular solution of the equations (7.6). It is possible
that this solution defines a smooth potential growing in-
definitely when lxl ~ oo. Under this asuxnption, conse-
quences of the presence of the symmetry algebra su(1, 1)
in this model are d.ifferent &om those for the singular
oscillator potential. Namely, the spectrum consists now
of two arithmetic series, each being determined by irre-
ducible representations of the su(l, l) algebra. The co-
herent states ln~), t = 0, 1, or even and odd coherent
states, are both physical but they are not eigenstates of
the parity operator because the potential is not symmet-
ric.

Another example that we would like to discuss in more
detail concerns the N = 3, q = 1 closure considered in
[68] (note that in this paper all Hamiltonians L, admit-
ting Nth-order d.ifferential operator B as a symmetry
operator satisfying the relation [L,B] = B, were charac-
terized). The PIV function appearing in this context has
an infinite set of rational solutions emerging for the spe-
cific choices of the parameters po, pi, p2 [86]. Consider
the following rational solution:

x 2x
fo(x) = 2+

x 1
1 x )2 x'

x 1 2x
f2(*) = —+ ——

2 x x2+1

(7.7)

As a result, it is possible to express f and g via their
symmetric partners,

1f (z) (g2 f2+ ~2 2+ )
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which corresponds to the constants p, o ——4, pi ——1, p2 ——

—2. The symmetry algebra has thus the form

[L,B+] = +3B+,

B+B = L(L —4)(L —5),

B B+ = (L+.3)(L —1)(L —2),
where the Hamiltonian I is

(7 8)

d 4
dx2 z2+ 1

+ (x2+ l)2 4 2
(7.9)

There are three normalizable eigenstates of the lowering
operator B corresponding to the lowest energy state,
and second and third excited levels. Acting by B+ upon
these three "vacua" one finds the whole spectrum. It
consists of three arithmetic series forming the sequence
0, 3, 4, 5, 6, . . .; i.e., there is a hole between 0 and 3 after
which the spectrum becomes equidistant (the first excited
state with the energy 3 is generated by B+:

~
1) oc B+~0)).

The explicit form of the coherent states, B ~n)
as~a}, is deterinined &om the equation

a trivial one-dimensional irreducible representation of the
algebra. One may thus conclude that the spectrum gener-
ating algebra of a given potential, and hence the coherent
states, may be nonunique.

The explicit form of the coherent states of the second
symmetry algebra are determined by the equation

X"'(x) -*
I
1+ . I

~"(x)
6

x +1)

8+ 2 + x2+ 1

where y(x) is defined in the same way as in the first case.
Simple solutions of this equation also are not known to
the author [87]. There should be only one physically ac-
ceptable solution because now the coherent states have a
unique expansion over the Hamiltonian eigenstates for

0 (i.e. , there is no connection with the root-of-
unity superpositions). An analogous situation has been
described recently for a difFerent particular Hamiltonian
with an equidistant spectrum [88). It would be interest-
ing to find physical characteristics of the coherent states
(7.10), (7.13) and similar ones.

where

(7.10)
VIII. SCHRODINGER OPERATORS

WITH DISCRETE SCALING SYMMETRY
~(*) —= (*'+1) *"(*I )

The author does not know any simple solution of this
equation. Each of the three linearly independent solu-
tions defines a particular coherent state. Evidently, they
have some common origin with the cubic root-of-unity
superpositions of the coherent states (2.14).

The structure of the spectrum hints that there are
some additional symmetries in this model, and, indeed,
there is a difFerent set of raising and lowering operators
satisfying the difFerent algebra found earlier in [82]. It
corresponds to a different solution of the dressing chain
for the same Hamiltonian (7.9):

x 2x
fo(x) = —f2(x) = —+

2 x +1 fi(x) =—2' (7.11)

for which p,o ——3, pz ———2, p2 ——0. Now the symmetry
algebra has the form

[L,B+] = +B+,
B+B = L(L —3)(L —1),

B B+ = (L + 1)(L —2)L.

(7.12)

The operator B has only two normalizable zero modes
corresponding to the 6rst two levels of the Hamiltonian.
The principal important feature of this realization is that
the lowest energy state is also a zero mode of the raising
operator. As a result, it is the first excited level which
serves as the lowest weight vector of the discrete series
representation of the above algebra &om which the rais-
ing operator B+ creates an infinite tower of states. In this
picture the spectrum consists of only one arithmetic se-
ries with step 1, and the isolated zero energy state forms

Spectral theory of the one-dimensional Schrodinger
equation (6.1) for the bounded periodic potentials,

u(x+ l) = u(x), (8.1)

is well known [89]. The Bloch, or Floquet, theorem states
that there is at least one wave function @(x) which can
be represented in the form

@(x) = e ~(x) (8.2)

Tta = q'HTt, HT=q TH,

(8 3)

where T is the unitary 6xed afFine transformation oper-
ator (4.9). The algebra (8.3) corresponds to the degen-
erate case of (6.17) when the polynomials of H on the
rhs are replaced by a constant. It is equivalent to the
following constraint upon the potential:

q u(qx+ l) = u(x), (8.4)

which for q = 1 is the periodicity condition (8.1). Note,
however, that the limit q ~ 1 is not de6ned uniquely.
After the shift u(x) —+ u(x) + cr/(1 —q2) the condition
(8.4) is reduced in this limit to u(x + l) = u(x) + o.,
which shows that u(x) is the sum of a periodic and Airy
potentials. Only the additional requirement o ~ 0 leads

where P(x) is a periodic function, P(x+1) = P(x). When
vP(x) is a bounded function it defines a physically accept-
able state. This requirement restricts the quasimomen-
tum k to be real.

Consider a class of Schrodinger operators which satisfy
the relations
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to the standard Bloch-Floquet theory.
For the shifted potential v(x) = u(x + x'), where x'

is the fixed point, qx* + & = x', the constraint (8.4) is
converted into q2v(qx) = v(x). This means that

v(x) = h(x)/x, h(qx) = h(x), (8.5)

where h(x) is an arbitrary function obeying the indicated
property of periodicity on the logarithmic scale. In the
following we restrict ourselves to the case when h(x) is
bounded for 0 & x ( oo, which is a natural coordinate
region of the problexn. In this case the potential v(x)
is singular at x = 0 and vanishes in the limit x ~ oo.
The value of h(x) is not defined at zero unless it is a
constant. This means that one cannot soften the singu-
larity by requiring h(x) to vanish at x = 0. The formula
(8.5) defines a class of potentials whose spectral theory
we propose to call the q-Floquet theory.

It is instructive to rewrite the resulting Schrodinger
equation using the change of variables x = expy and
renormalization of the wave function @(x) = ~zy(y):

d'x y +
I h(y) +

4 I x(y) = &e'"x(y), (8.6)

where h(y+lnq) = h(y) is now a periodic function. This
equation has a form similar to the original one but the
normalization condition for bound state wave functions
x(y),

I&(x) I'd* = ""I~(y)I'dy = 1
0 —OO

(s.7)

contains a nontrivial factor e2" in the measure, which
diverges when y ~ oo.

The presence of the nontrivial symmetry constrains the
structure of the wave functions. The operator T acts
upon the wave functions as follows:

Tg; (x, A) = ~qQ, (qx + I, A)
2

= ) c;~g~(x, q A), (8.8)

[H, D] =iH, [K, D] = —iK, [H, K] = 2iD,

(8.9)

where g;(x, A) are two linearly independent solutions of
the Schrodinger equation. On the one hand, this q-
difference equation shows that if @(x,A) is normalizable
for some Gxed A = A0, then T does not change its normal-
izability. On the other hand, the resulting wave function
has the eigenvalue A = q A0, which thus also belongs to
the physical spectrum. Applying the T operator one
gets a wave function with the eigenvalue A = q A0. This
simple argument shows that if our Hamiltonian has phys-
ical states with negative energy, then it exhibits the "fall
onto the center" phenomenon [90,91]: the energy is not
bounded &om below.

The class (8.5) unifies periodic potentials with the con-
formal one corresponding to the special choice h(x)
const [75]. Indeed, the Hamiltonian H = —d2/dx2+h/x2
enters the following conformal symmetry algebra:

where D = i(x, d/dx)/4 and K = x /4 are the Hermitian
scaling and special conformal transformation generators.
In this case dilatation by arbitrary parameter maps so-
lutions of the Schrodinger equation onto the solutions,
which means formally that the spectrum of II is purely
continuous (such a situation holds only for h ) —1/4). If
h(x) g const the discrete spectruxn consists of a number
of geometric series infinite in both directions, with A = 0
and A = —oo as the accumulation points. Note that
(8.5), with some unknown h(x), was suggested as the
asymptotic form of the self-similar potential with one ge-
ometric series of bound states truncated from below [58].
In the more general case one has % such series [7]; it is a
matter of conjecture that in all cases asymptotics of the
potentials have a similar form.

Prom the symmetry point of view we have the following
situation. The simple conformal potential has a large
group of continuous symmetries which fixes the dynamics
completely. We can add an interaction term which does
not remove all symmetries, but preserves a discrete part
of them. This situation is similar to the case where a
free particle is put into a periodic potential —instead
of the group of continuous translations one has only a
discrete subgroup of it. Note that the generator of the
discrete subgroup is now considered as an element of the
symmetry algebra characterizing the spectrum —this is
one of the ways of building quantum algebras out of Lie
algebras.

Due to the nonanalyticity of the potential at x = 0, the
accurate spectral analysis requires some rigorous math-
ematical tools. The main problem is to 6nd restrictions
upon h(x) for which the Hainiltonian is self-adjoint, or
for which it has self-adjoint extensions. Here we give only
a qualitative picture. From (8.5) we see that there are
three essentially diferent regions of the spectrum. Posi-
tive energy states form continuous spectrum because the
potential goes to zero suKciently fast. Degeneracy of
these states depends on the boundary condition imposed
upon the wave functions at x = 0. Only for bound-
ary conditions that are invariant under the taken scaling
transformation does the operator T represent a physical
symmetry.

The second region of energy corresponds to zero modes
of the Hamiltonian. It is especially interesting because
upon these zero modes T commutes formally with the
Hamiltonian. For A = 0, (8.6) looks like the standard
Schrodinger equation for a periodic potential with the
spectral parameter equal to —1/4:

—X"(y) + h(y)X(y) = —4X(y)

h(y+ inq) = h(y).

If both independent solutions of this equations are
bounded, i.e., if the eigenvalue —1/4 belongs to the per-
mitted band of h(y), then the original wave function @(x)
does not describe physical states, being unbounded at in-
finity. For boundedness of @(z) at x = oo the quasimo-
mentum A: of the Bloch eigenfunction y(y) = e'""P(y),
P(y + Inq) = P(y), has to have an imaginary part Im
A: & 1/2 [for Im k = 1/2 one has @(qx) = q'n' "g(x)].
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Normalizability of @(x) near x = 0 imposes the restric-
tion Im k & 1. For Im k = 1, wave functions Q(x) are
generalized eigenfunctions of T with eigenvalues of mod-
ulus 1, as it should be for a unitary operator. The zero
energy states of the Hamiltonian H may thus belong to
the continuous spectrum when the quasimomentum k of
the Bloch function g(y) is complex and 1/2 & Im k & l.

For any A & 0 there is a wave function vP(x) which is
normalizable at infinity, so that it is the boundary con-
dition at x = 0 which determines the quantization of the
spectral parameter. If h(x) & 0 then there are no bound
states at all. When squares of the absolute values of both
solutions of the Schrodinger equation are integrable near
zero, the Hamiltonian is not self-adjoint. Its self-adjoint
extensions are fixed by the requirement of a particular
dependence of wave functions near zero.

Let us consider the case h(x) = const, which exhibits
already basic features of the q-Floquet theory. This
model was considered by Case [91] who has shown that
when h & —1/4 one can choose an orthonormal basis
of states such that the energies of bound states form
an infinite geometric series in both directions. Such a
spectrum is stipulated by the presence in the model of
a discrete scaling symmetry. More precisely, the opera-
tor D in (8.9) is not a physical syinmetry operator any
more, but the group element q

' is —it maps wave
functions of the discrete spectrum onto each other. Let
us consider in more detail how this situation appears us-
ing the Wronskian technique of self-adjoint extensions of
singular Schrodinger operators [92]. According to this
approach, one takes two solutions of the original equa-
tion for some fixed eigenvalue satisfying Pi ——cosa,

sinn and P2 = sin&& ~2 coscx at some
regular point x = h' (evidently, PiPz —Pi/2 ———1).
Then it is necessary to take arbitrary linear combination
P(x) = A/i(x) + BP2(x), A, B real constants, and look
for solutions of the Schrodinger equation whose Wron-
skian with P(x) vanishes for x + 0:

&(qx)@'(qx) —4'(qx)&(qx) ~ &(x)
d@ qx

—+0,

dP(x)

it is seen that if g(x) satisfies (8.10), the same holds for
the scaled wave function @(qx), i.e. , scaling by q is a
physical symmetry of the problem. This fact guarantees
that discrete eigenvalues appear in the form of a geomet-
ric series. Since the behavior of the general solution of
the Schrodinger equation for small x is known, the Wron-
skian vanishes only if near zero @(x) has the form of P(x)
taken with the same angle 8, which is a free parameter of
the self-adjoint extension. The spectrum itself is found
&om the requirement of normalizability of wave functions
with such a property. The described technique of fixing
the boundary condition at zero seems to be valid in the
arbitrary case.

As was remarked in [7], eigenfunctions of the
Schrodinger operators with self-similar potentials resem-
ble discrete wavelets [38] —the functions @(x) affine
transformations of which, gz (x) = 2~~ @(2~x + n),
generate an orthonormal basis of Hilbert space L2(R),
(@z „~vga ~) = b~ib„~. In the above q-Floquet theory, we
have a partial realization of this construction because
the scaling of the coordinate of the wave functions by
q creates an orthogonal function. The connection with
wavelets originates, of course, &om the group of afIine
transformations, because wavelets can be interpreted as
coherent states associated with unitary representations
of this group [93] according to one of the definitions
mentioned in the Introduction. An interesting fact that
differential-delay equations similar to those determining
coherent states of self-similar potentials may have solu-
tions with finite support, or atomic solutions [39], indi-
cates also a hidden relation with wavelets.

scaling of the coordinate by a speci6c constant q = e /'

P(qx) = —~qP(x). Therefore, from the scaled form of
the condition (8.10),

~(& &) —= &(x)@'(x) —&'(x)@(x) ~ o xm0.

P(x) = a~icos(o lnx+ e), o. = Q[h) —1/4,

where a and 8 are some real constants. Substituting it
into the above relation one 6nds

d g(x) + o tan(o. ln x + 8) m 0, x -+ 0.@(x)

The chosen auxiliary function is homogeneous under the

(8.10)

Physically this means that the particle's behavior near
the point of singularity is fixed by the choice of auxiliary
function P(x). When P(x) and its derivative take finite
values at x = 0, the constraint (8.10) becomes equivalent
to the well-known condition g'(0) = c@(0), where c is a
real constant.

For h & —1/4 derivatives of all wave functions are sin-
gular at x = 0, and one needs to use a limiting procedure.
Let us take as the auxiliary function the general zero en-
ergy eigenfunction

IX. FACTORIZATION METHOD
AND "QUANTUM GALOIS THEORY"

Let us discuss the problem of integrability of a
given equation. If this equation is algebraic, P(x)

o a~x~ = 0, with coefficients a~. from some fixed num-
ber 6eld k, then its solvability in terms of the radicals
is determined by the solvability of its Galois group [the
group of permutations of roots of P(x)] [94]. One can
say that the algebraic equation is exactly solvable when
the latter situation takes place, but this criterion is sen-
sitive to the choice of k —there exists a universal field
of complex. numbers for which any algebraic equation is
exactly solvable.

Integrability, or exact solvability of difFerential equa-
tions, is a looser notion. The weakest de6nition requires
the existence of a solution of an initial value problem an-
alytical in a bounded domain. The class of equations in-
tegrable in this sense is too large —the field of functions
determined by formal power series can be thought of as a
universal one since solutions of any difFerential equation
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with coeKcients &om this field are given by functions of
the same type. Another extreme definition consists in
demanding that solutions belong to differential fields of
elementary or classical special functions, i.e., the fields
built Rom the simplest functions and their derivatives.
The question of integrability acquires precise meaning
when the functions entering the equations and those al--
lowed in the solutions are completely specified. In short,
the problem is to understand transcendence of solutions
over the given field of functions.

In fact there exists a natural analog of the Galois the-
ory for fields with operators [95,96], which can be consid-
ered physically as a "quantum" (first-quantized) Galois
theory. The main notions of it are the Picard-Vessiot
(PV) extension and the differential Galois group. Let
u(x) in y"(x) = u(x)y(x) belong to the difFerential field
k = C(x) (field of rational functions). Roughly, the PV
extension M = k{yi, y2) is built &om rational functions
of independent solutions of this equation and their deriva-
tives with coefficients &om k. The group of automor-
phisms of k{yi, y2) which commute with the derivative
and keep k fixed is called the Galois group Gal(M/k).
For a general nth-order linear ordinary differential equa-
tion (ODE) it is isomorphic to the group of invertable
matrices GL(n, C). Roughly, the equation is solvable in
terms of Liouvillian functions {exponentials, integrals, al-
gebraics of the functions &om k) when Gal(M/k) is solv-
able (or, more simply, when all eleinents of it can be
made triangular). This theory is not widely known, al-
though it forms the basis of the intensively used computer
programs of symbolic integration of differential equations
[»1

Let D be an indeterminate over some number field;
then permutations of roots of a polynomial of D pre-
serve this polynomial (D —zi) . (D —x„) = 0
(D —z;, ) . . (D —x; ) = 0. In the quantum picture,
when D is an operator, e.g. , d/dz, there are two analogs
of these "classical" permutations —the automorphisms
figuring in the definition of the Galois group, which
preserve the differential equation, and the permutations
f;(x) ++ f~(z) in [D —fi(z)] . . [D —f„(z)]y(z) = 0. The
latter do not, in general, preserve the initial equation,
but cyclic permutations of such type play a key role in
the factorization method [8, 98], which thus should be
considered as one of the ingredients of "quantum" Galois
theory.

Consider the &ee Schrodinger equation with the zero
spectral parameter,

y"—:(D + 1/x) (D —1/x) y = 0 (9 1)

over the field of complex numbers C. The PV exten-
sion coincides with C(z) and the Galois group consists of
nontrivial triangular matrices. Permutation of operator
factors in (9.1) gives the equation

(D —1/x) (D+ 1/x) y = y" —(2/x )y = 0, (9.2)

which is different &om the initial one, e.g. , the poten-
tial lies now in C(x). Its Galois group is trivial (con-
sisting of the uiut matrix), because the general solution
y = a/x + bx belongs to C(x). In general, the Dar-

boux transformation changes the field of coeKcients of
the ODE and its Galois group. However, an important
feature is preserved in the chosen example; namely, solu-
tions of both equations belong to one and the same field.
If one factorizes the second equation using its general so-
lution and permutes the operator factors, the solutions
of the third equation,

6z(2t —x') )
(i(. + x3)2 yz =0, (9 3)

[D+ &(x)][D+ &(*)1»,2(z) = Ayi, &(z). (9 4)

Let y(x, A) be a particular solution of the first equation.
Then

dx'
yi(»A) = y(z A)

l
~i+ib, (9.5)

is a general solution. Consequently, y2(z, A) = [D—
f (x)]yi(x, A) gives a general solution of the second equa-
tion for A g 0. For A = 0 one has

yg(x, 0) =
~

am+by f 0 (z', 0)Ch'
~

. (0.0)
y x, 0

This function belongs to the PV extension of the first
equation when the derivative dy(z, A)/dA at A = 0 does
so. Indeed, one can verify by direct differentiation that

y (x, A)dx = y (x, A)
' + const.f d2lny x, A

dxdA
(9.7)

This relation shows that Darboux transformations pre-
serve the differential field generated by solutions of a
spectral equation and their derivatives over A for arbi-
trary values of A. This is a very wide field, but it exists
and may be used in a search for such potentials, u(z),
and values of A that y(x, A) are Liouvillian over the field
&om which u{x) is taken. It seems that the diKeren-
tial Galois theory, in conjunction with the equivalence
up to a change of variables, can be used for a construc-
tive definition of the notion of self-similarity. Indeed, for
u(x) = 0 and fixed A the PV extension contains only
exp(+n~Az), n p 8, and this hints immediately at the
form of the spectrum, A oc An2, for which Darboux

belong to C(x) again. This procedure of building rational
potentials out of the zero one with the help of Darboux
transformations with zero eigenvalue level has been con-
sidered in [99—101]. It can be shown that solutions of
all equations built in this way lie in the PV extension
of (9.1), i.e., the corresponding Galois groups are always
trivial (an analogous situation takes place for repeated
Darboux transformations with nonzero eigenvalue level).
A similar iso-Galois picture prevails, e.g. , for the Bessel
functions. It would be interesting to investigate &om this
point of view the finite-gap potentials for which one has
a simple factorization of the Hamiltonian.

It is not dificult to describe a differential field which
is preserved by any Darboux transformation. For this,
consider spectral problems generated by two Hamiltoni-
ans neighboring in the factorization chain
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transformations preserve this field. Analogously, defin-
ing relations of the self-similar potentials resemble the
requirement of preservation of the PV extension after N
Darboux transformations.

In a sense, the power of the factorization method (or of
Darboux transformations) stems from its relation to the
Galois theory. This explains also a large number of its
applications. For instance, we mention its effectiveness
in numerical calculations [102], in approximation theory
[103],in search of bispectral equations [104], in the theory
of orthogonal polynomials [78, 59], its connection with
symplectic structures [105], etc. In particular, Darboux
transformations with zero eigenvalue appeared to play an
important role in the construction of equations satisfying
the Huygens principle [100, 106].

In conclusion, let us summarize the criteria which al-
low us to call potentials "exactly solvable. " First, such
potentials should belong to some suKciently simple dif-
ferential field k, e.g. , to C(x), but not to the field of for-
mal power series. This requirement assumes that a full
analytical structure of potentials is known. Then one
can say that the Schrodinger equation is exactly solv-
able if the solutions satisfying the taken boundary condi-
tions (i.e., when A belongs to the spectrum) are given by
Liouvillian functions over k. This definition is tied to the
differential Galois theory, where one has a simple test
of such solvability. Note that in this case a change of
boundary conditions may change the "solvability" of the
equation. A weaker definition of exact solvability refers
to the availability of global structure of solutions [107],
i.e., it demands knowledge of various asymptotics of so-
lutions, which often may be found even if the solution
is not Liouvillian. The latter requirement is natural for
spectral problems, since in order to satisfy boundary con-
ditions one should be able to connect solutions at various
distances. In this respect, presently only classical special
functions provide a completely satisfactory bank of infor-
mation.

The situation with self-similar potentials is instructive.
It is difIicult to specify the field of functions to which they
belong [in particular, to find analytic properties of f~ (x)],
but once it is done the normalizable wave functions are
given by Liouvillian functions. The discrete spectrum of
these potentials corresponds thus to the exactly solvable
problem in the difFerential Galois theory sense. Analy-
sis of the continuous spectrum states, or of the solutions
satisfying different boundary conditions, requires infor-
mation which is not available at present, i.e., the rank of
special functions for solutions of Schrodinger equations
with self-similar potentials is not yet established.

Coherent states provide a basis of the Hilbert space
of states of quantum particles different &om that deter-
mined by the Hamiltonian eigenstates. It would be in-
teresting to understand their role &om the differential
Galois theory point of view. For the standard harmonic
oscillator case the picture is simple. The second-order
difFerential (Schrodinger) equation is replaced by a first-
order one whose solutions provide an overcomplete set of
Hilbert space vectors. Certainly this provides a simpli-
fication and "minimization" of the problem —the non-
physical eigenfunctions of the Hamiltonian are removed

in this procedure. Such minimization of the types of
functions relevant to the given physical problem is char-
acteristic for some coherent states &om the functional-
analytic point of view. This is evident for coherent states
de6ned as orbits of states generated by physical sym-
metry groups. The ladder operator approach does not
obey such a property in general because, starting &om
N = 2, coherent states of the self-similar potentials are
determined by differential or differential-delay equations
of higher order, which may contain nonphysical solutions
as well. Moreover, for q g 1 solutions of the latter equa-
tions contain some functional arbitrariness with respect
to the Schrodinger equation.

X. CONCLUSIONS

The conclusions are short. The superpositions of co-
herent states in the abstract form (2.14), generaliziiig
the even and odd states of [12], are applicable to a very
wide variety of systems. The parity coherent states (2.6),
(2.17) are less universal —their meaning and the way of
derivation are strongly tied to the presence of the parity
symmetry. For any parity invariant potential admitting
ladder operators At, A, one can make the canonical trans-
formation A ~ VA, A~ —+ At V, where V is a unitary op-
erator linear in the parity operator (2.15), which does not
change the algebra satis6ed by these operators and the
Hamiltonian. This is the simplest physical observation
of the present work. For the discussion of experimental
implementations of superpositions of coherent states we
refer to the papers [11,22, 23, 25, 26, 28] and references
therein.

Coherent states of the &ee particle, constructed in Sec.
IV, differ qualitatively &om those of the harmonic oscil-
lator. First, they are built &om the continuous spectrum
states, which does not allow us to form superpositions
similar to (2.14). Second, their analytical properties are
quite unusual, so that at present it is not even known
whether or not they are complete. It would be inter-
esting to investigate the physical characteristics of these
states.

In many respects the results of this paper are not com-
plete. This is caused by the complicated structure of
self-similar potentials and their limiting cases, namely,
by the appearance of Painleve transcendents and their q
analogs. However, the author believes that this is a tem-
porary situation and later many things will be simplified
and, more importantly, the appropriate phenomenologi-
cal applications of the coherent states for self-similar po-
tentials considered in Secs. V and VI will be found. Be-
cause of such expectations, the open problems indicated
in this paper are interesting primarily from the physical
point of view. Among the problems worth further investi-
gation, we mention the detailed analysis of various limit-
ing cases of the type discussed in Sec. VII, the q-Floquet
theory, connections with wavelets, etc. On the mathe-
matical side, it is necessary to find general structure of
q-special functions behind the self-similar potentials and
to understand in a more appropriate way the difFerential
Galois theory origin of the notion of self-similarity.
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