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Monte Carlo study of population and alignment relaxation by trapped line radiation
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Population and alignment relaxation for the Doppler broadening case in the in6nite plane parallel
geometry has been studied in the range of the optical thickness at the line center between 10 and 10 .
The obtained population and alignment relaxation rates are compared with analytical estimates. The va-
lidity of two approximations used in the estimates, i.e., the complete frequency redistribution of ab-
sorbed and successively emitted photons and the pure-parabolic distribution of excited atoms, is dis-
cussed. Also studied is the mixing of the population and the alignment, which is due to the spatial an-
isotropy of the geometry. This mixing leads to the self align-ment effect, which develops at a sufficiently
late time after excitation. A separate simulation with the alignment effect omitted has revealed that, at a
large optical thickness, the population relaxation rate agrees with the result with the alignment effect in-
cluded. It is therefore concluded that the previous estimate on the in6uence of the self-alignment to the
population relaxation rate is too large. The velocity distribution of the excited atoms in the direction
perpendicular to the planes shows an effectively lower (higher) temperature at the center (boundary) than
the base temperature ( =5%) under the self-alignment condition.

PACS number(s): 32.90.+a

I. INTRODUCTION

Radiation trapping has been an important subject in
many fields of science; in astrophysics, for instance, this
phenomenon has long been treated within the framework
of radiative transfer [1] and plays an important role in
studying stellar atmospheres. Various laboratory gas-
phase experiments such as atomic collision experiments
[2] could be influenced by the reabsorption of resonance
radiation. The radiation trapping effect is especially im-
portant in radiative lifetime measurements not only be-
cause it effectively reduces the radiative decay rate [3,4],
but also because it relaxes the alignment originally creat-
ed by spatially anisotropic excitation that causes tem-
poral changes of the spatial intensity distribution and po-
larization of the emitted radiation [5—7]. The latter effect
makes the decay of the observed emission intensity no
longer equivalent to that of the population of the upper
state and leads to errors in measured lifetimes. The align-
ment relaxation manifests itself also in a Hanle signal as a
coherence narrowing effect [8].

The problem was first treated theoretically as a
diffusion of excited atoms [9]. This treatment was based
on the assumption of a definite mean free path for the res-
onance photon. Holstein [3,4] and Biberman [10] intro-
duced a probabilistic treatment for the free path of pho-
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where n (r, t) is the atomic density at position r at time t
and G(r', r)dr' is the probability that a photon emitted
from volume dr' at r' is absorbed by an atom at r. The
quantity y is the transition probability of the resonance
transition. The following type of solution to Eq. (1) is
first looked for:

n (r, t)=n (r)exp( pt), —

which transforms Eq. (1) into

(2)

1 ——n(r)= fn(r')G(r', r)dr' .
r (3)

The homogeneous integral equation (3) yields a set of pos-
itive eigenvalues P" and solutions n "(r). The general
solution to Eq. (1) is therefore expressed as

n (r, t) = g c"n "(r)exp( p"t), — (4)

where c"are coeKcients depending on the initial condi-
tions. After a suKciently long time, only the component
of the smallest p ' in Eq. (4), or p' ', survives, leading to
n (r, t) =n' '(r)exp( —p' t) This last s.urviving com-
ponent is called the fundamental decay mode [3],which is
independent of the initial distributions of excited atoms
and their velocity. For various geometries and line
profiles, Holstein [3,4] solved Eq. (3) by Ritz's variational

tons and derived a Boltzmann type integro-differential
equation

dn (r, t)
yn (—r, t)+ y f n (r', t)G (r', r)d r',
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method under optically thick conditions. Three major
approximations were adopted for the purpose of simplify-
ing the calculation: (i) the alignment of excited atoms is
ignored, (ii) spatial distribution function of the excited
atoms is pure parabolic, that is, the excited atom density
tends to zero at the edges of the cell, and (iii) the frequen-
cy redistribution between the absorbed and the emitted
photons is complete [complete frequency redistribution
(CRD)], i.e., the frequency profile of emission from indi-
vidual atoms P(v) is assumed to be the same as that of
absorption k(v), when viewed in a spatially fixed frame.
For the Doppler-broadening case, this approximation is
fully justified in the infinite cell geometry, since the radia-
tion field density is uniform. The absorption coefficient
for the Doppler-broadening case is given as

d
dt

& T(J)xtq &
= yx—

& T(J)t~q &,

where

(10)

ytt =y(1 —ax ), K =0, 1,2

1 1 E
ax =

—,', (2j, +1)[6+(—1) ] '

j& jj jp
(12)

meanings [13]: these quantities are proportional to the
population, the orientation, and the alignment, respec-
tively, of the excited state. Therefore, Eq. (9) is a general-
ization of Eq. (1). Under the CRD assumption,
D'Yakonov and Perel' [12] have derived a solution for
the cell without boundaries. The state multipoles become
independent of r so that Eq. (9) reduces to a simple form

k (v) =koexp
(1 —v/vo)

(Uo /c)

Up=

1 gi c3ylV

2k T

(6)

(7)

where jp and j, are the angular momenta of the lower
and the upper states, respectively. The value of ez is
tabulated, for instance, in Ref. [8]. As is seen in Eq. (11),
the state multipoles of each rank relax independently. In
other words, there is no mixing of the state multipoles of
different ranks.

For an infinite plane parallel geometry, the symmetric
geometry simplifies Eq. (9) to a large extent

Here X is the atomic number density, vp is the central
frequency of the resonance line, gp and g &

are the statisti-
cal weights of the ground and the excited state, respec-
tively, kz is the Boltzmann constant, T is the tempera-
ture, and m is the mass of the atom. The relaxation rate
P' ' at the high optical thickness limit for an infinite plane
parallel geometry with the half spacing length L is ap-
proximately given by

dt

+y f f dr'dp'Soo(r —r', p, p')( T(J)oo)

+y f f dr'd 'pSo(or r', p, p—')(T(J)zo),

(13)

+y f f d r'd p' g Sxg'(r —r', p, p )
K', Q'

X ( T (J)~~,g. ) . (9)

As seen from this equation, state multipoles are coupled
each other by the matrix S. The state multipoles
( T(J)oo), ( T(J)io), and (T(J)2o) have clear physical

(o) 0.9375

koL (vr 1nkoL)'~

The state of an ensemble of atoms is fully described in
terms of a density matrix, in which the diagonal elements
represent the population of magnetic sublevels and the
off-diagonal elements represent coherence between these
sublevels. Assuming that all atoms have the same speed,
Barrat [11] developed a theory with the density-matrix
formalism that describes the time evolution of the popu-
lation and the alignment in excited states. Later,
D'Yakonov and Perel' [12] extended the theory also to
the orientation with a more realistic velocity distribution,
that is, a Maxwell distribution.

According to D'Yakonov and Perel' [12], relaxation of
various quantities in the excited state by the trapped radi-
ation is expressed in terms of the state multipoles
( T(J)~& )(r, p, t) [13]as

+y r' p'Szp r —r', p, p' T J 20

+y f f dr'dp'S~o(r —r', p, p')( T(J)~),
(14)

where the orientation ( T(J)io) has been assumed to be
absent according to the initial condition. At optically
thick conditions, the contribution from the off-diagonal
term in Eqs. (13) and (14) becomes small because the in-
tegral operator approaches zero in the limit of high opti-
cal thickness [14]

f dr'St~a (r —r', p, p)~(l —ax)5+x, .

%'hen the optical thickness is large enough, this applies
to most positions r in the cell.

By neglecting the off-diagonal term in the equations,
D'Yakonov and Perel' [l2] obtained qualitative estimates
of the relaxation rates of the population (yo) and the
alignment (yz) in an infinite plane parallel geometry.
Again assumed, as in the case of Eq. (10), are the CRD
approximation, the Doppler broadening, and a pure-
parabolic population distribution function. The relaxa-
tion rates are expressed in terms of parameter xz, which
depends on the optical thickness and the cell geometry
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yx. =y(1 a—zxx), K =0, 1,2, . (16)

For the infinite plane parallel geometry, xz is obtained by
the variational method [12]

x2=1— 75/64 (k,L»1) .
koL (vr inkoL)'~

(17)

From Eq. (8), the xo in the fundamental decay mode is
derived as

0.9375
koL (7r 1nkoL)

' (18)

The quantity (1—xo) is called the escape factor for the
fundamental decay mode of the population [3].

After a sufficiently long time, ( T(J)zo) is much small-
er than ( T(J)oo) under optically thick conditions so that
the contribution from (T(J)zo) to (T(J)zo) itself [the
diagonal term in Eq. (14)] becomes insignificant. Accord-
ingly the relaxation rate of ( T(J)2to) becomes small com-
pared to y2 and therefore the left-hand side of Eq. (14) is
negligible. Thus it follows from Eq. (14) that

( T(J)zo) = f f dr'dp'Sz~(r —r', p, p')( T(J)oo) .

Ago
(20)

1

yo ink oI.
It was suggested that, when the self-alignment is des-
troyed by a weak magnetic field, the effective lifetime
would decrease by this amount [14]. This assertion, how-
ever, appears rather puzzling because many experiments
performed so far seem to suggest that Eq. (8), or a corre-
sponding approximation for a cylindrical geometry, de-
scribes the observation rather well.

Unlike the analytical methods reviewed above, the
Monte Carlo method can provide solutions to the funda-
mental equation, Eq. (9) or Eqs. (13) and (14), without
any approximations. The relaxation rates yo and y2 can
be obtained by this method. The present work focuses
especially on the mixing of different ranks of the state
multipoles, the population ( T(J)z~&), and the alignment
(T(J)20) and on the validity of the approximations used
in the analytical solutions Eqs. (17) and (18) such as CRD
and the spatial distribution of the population.

H. MONTE CARLO METHOD

The equation shows that at a sufficiently late time the
alignment relaxes at the same rate as the population.
This situation is nothing but the self alignment [-14]. Al-
though the self-alignment effect has been observed in
discharge plasmas [15], a quantitative interpretation of
the self-alignment due to the radiation trapping has not
been established yet. Using Eq. (19), Perel' and Rogova
[14] also estimated the influence of the mixing of align-
ment into population, expressed by the off 'diagonal term-
of Eq. (13). The equation is solved by treating the off-
diagonal term as a perturbation, leading to a decrease in
the population relaxation rate by

no= —,', n, = —,'(1 —g ), g=z/L . (21)

The atom is given a velocity chosen from the Maxwell
distribution. The original alignment direction is set
parallel to the quantization axis. The emission from this
atom occurs after ht = —(1/y)lnu, where y is the transi-
tion probability of the resonance line and u is a random
number distributed between 0 and 1. The emission is
characterized by the free path p and the polar and azimu-
thal angles 8 and q& with respect to the dipole (alignment)
direction. These angles are determined by using different
random numbers as [17]

O=cos '[2cosj —,'cos '(2u —I )+sr/3] ],
tp =27Tl4

(22)

(23)

which produce the angular distribution of the dipole
emission. Then the velocity component to the photon
direction, or the frequency v of the emission, is calculat-
ed. Assuming a negligible natural hnewidth, the free
path p of the emitted photon is represented as

1

k(v)
(24)

From these parameters, the position of the newly excited
atom and its alignment direction are calculated. The po-
larization direction of the absorbed photon at the newly
excited atom lies in the plane spanned by the direction of
the original alignment and the photon propagation direc-
tion. The resonance scattering in the present case (jo =0,
5j =j, —jo = 1) can be treated identically to Rayleigh
scattering [18]. Therefore, the direction of the induced
alignment is the same as that of the polarization of the
photon. According to this calculated alignment direc-
tion, one of the components (in x, y, or z direction) hav-
ing a unit amplitude is chosen as a new alignment direc-
tion of the newly excited atom. The velocity component
of the excited atom in the propagation direction of the
absorbed photon is calculated from the frequency
v =c(v—vo)/vo. The perpendicular component u„and
its angle P around the photon propagation direction are
determined again by random numbers

in astrophysics (see, for instance, Ref. [16]). In this
method, any relevant quantities, say, the emission direc-
tion of a photon, its frequency, and free path, are deter-
mined by random numbers satisfying the individual prob-
ability density functions. In the present study an excited
atom is described by an oscillating electric dipole that is
equivalent to the pair of the angular momentum quantum
numbers jo =0 and j, =1. The cell geometry is assumed
to be infinite parallel planes with the separation 2L, with a
quantization axis (z axis) perpendicular to the planes. A
Doppler-broadening line profile and a two-level atom are
assumed.

The position of an originally excited atom in a cell is
determined according to the distribution function [3]

P(g) =aono(g)+a, n i(g),

The Monte Carlo method has been employed for the
radiative transfer problem by many researchers especially

v„=—v olnu,

$=2vru .

(25)

(26)
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The procedure is repeated until the photon escapes from
the cell and is then restarted from another originally ex-
cited atom. Finally, all excited atoms existing in a cell at
time t after the start are counted separately according to
their alignment direction. The number of the excited
atoms at time t may be referred to as n„(t),n~(t), n, (t),
from which the population no(t) and the alignment n2(t)
are calculated as [13]

10

10'—

alignment

no(t)=n (t)+n (t)+n, (t),
n~(t) =n, (t) —no(t)/3 .

(27)

(28)

The half spacing (L) of the planes is set to 2.5 X 10
m. A resonance state of helium, the 3 'I' state
(y =5.66X10 s '), is used as a model in the simulation.
The branching transitions (3 'I' 3'S,2—'S) are neglected
for simplicity. The temperature is set equal to 15'C
(288.15 K). The uniform random numbers u are pro-
duced with a special care to ensure its randomness and
uniformity. We use 20 difFerent sets of random numbers
u and summed the results to eliminate systematic errors.
The total number of the initially excited atoms is between
10 —10, requiring typically 1 h of CPU time on a
FACOM M-1800 computer in the case of koL= 13.6.

III. RESULTS AND DISCUSSION

A. Mixing of population and alignment

A typical example of the results is shown in Fig. 1(a),
which plots the population and the alignment integrated
over both the volume and the momentum at each time.
The abscissa is the time after the start in units of the nat-
ural lifetime r= 1/y. The optical thickness at the line
center (koL) is taken to be 13.6. The profile of the popu-
lation distribution at a sufficiently late time is plotted in
Fig. 2(a), which shows good agreement with the initial
population distribution (ao/a& =0.266), represented by
the solid curve. The population distribution is monitored
also during the relaxation to Inake sure that the spatial
profile is the same during the course of time. This en-
sures that the relaxation is essentially in the fundamental
decay mode with the negligible amount of higher modes.
The ratio ao/a& decreases as the optical thickness in-
creases; for instance, ao/a&=0. 219 at koL=45.2. A
similar tendency has been observed for the infinite
cylinder geometry [19] by the propagator function
method [20].

As is seen in Fig. 1(a), the alignment exhibits a double-
exponential decay curve. The slower component of the
alignment has the same relaxation rate as that of the pop-
ulation. This is more clearly presented in Fig. 1(b), in
which the normalized alignment n2(t)/no(t) is plotted as
a function of time. The slower component is attributed
to the mixing of the population (T(J)~~) to the align-
ment ( T(J)zo), or the self alignment eQect [see Eq. (19)].
The spatial distribution of the normalized alignment un-
der this condition is plotted in Fig. 2(b); the self-
alignment is almost constant in the inner region of the
cell, while at the edge, where the optical thickness is ap-
proximately equal to 1, it turns into negative values. This

4)
Ec
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N
~~
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E
Oz 0.01

koL = 13.6

10
I I I

20 30 40 50
Tine /g

n2(/=0)
no(/=0)

1

1.2koL (2n lnkoL)
(29)

which is 1.62X 10 in Fig. 2(b). Their results show that
the normalized alignment changes its sign at a smaller g
value than the present Monte Carlo results. This
behavior is understood by the pure parabolic population
distribution used in the estimate; this distribution sug-
gests that there is no radiation parallel to the plane at the
boundary.

FIG. 1. (a) Typical example of the decay curves of the popu-
lation and the alignment (solid curve). The optical thickness at
the line center (koL) is 13.6. The simulation results with the
alignment effect omitted is also plotted (dotted curve). Note
that the population relaxation in this case is described by a sin-

gle exponential curve. It is also shown that the CRD approxi-
mation gives substantially larger population relaxation rates
(dashed curve). (b) Normalized alignment n2(t)/no(t) as a func-
tion of time. The simulation data are taken from (a). Note that
the n2(t)/no(t) becomes constant after a sufficiently long time.
Also shown is the result of the fitting from which the alignment
relaxation rate y2 is obtained.

means that the alignment direction is perpendicular to
the plane in the inner region, which implies that the ex-
cited atoms are created more by radiation propagating
parallel to the plane than radiation perpendicular to the
plane. On the contrary, atoms near the boundaries are
excited more by radiation propagating perpendicularly to
the plane. This picture is consistent with the population
distribution of the excited atoms [Fig. 2(a)] showing that
the atoms are concentrated near the central region.
Perel' and Rogova [14] obtained the spatial distribution
of the alignment by assuming a pure parabolic distribu-
tion (a0=0) for the population. The self-alignment cal-
culated from their results is also drawn in Fig. 2(b) for
comparison. The value at (=0 in their approximation is
given as [14]
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FIG. 2 (a) Spatial distribution of the population at a
suSciently late time with koL=13.6. The initial distribution
(ao/a] =0.266) is also shown for comparison. (b) Spatial distri-
bution of the self-alignment. The analytical result by Perel' and
Rogova [14] is also shown.

(30)

As seen on the right-hand side of this equation, the self-
alignrnent gives an efFective value of the off-diagonal mix-
ing matrix component. The normalized alignment at
t »r in a plot such as Fig. 1(b) gives the self-alignment
averaged over volume and momentum, which is shown in
Fig. 3 for several values of kol. . The figure shows that
the self-alignment decreases as the optical thickness in-
creases, consistent with Eq. (1S). The fact that the self-
alignrnent is constant in the central region where the
most excited atoms are concentrated allows us to use Eq.
(29) as an estimate of the integrated self-alignment. As
seen in the figure, this estimate is systematically larger by
a factor of 2.5.

For the purpose of investigating the inhuence of the
self-alignment on the population relaxation rate as dis-
cussed in Ref. [14],a separate simulation is done in which
the alignment effect is omitted: the emission distribution
from an atom is set isotropic by replacing the emission
distribution function Eq. (22) with O=cos (1—2u). The
results (dotted line in Fig. 1) show that after a sufficiently
late time the population relaxation rate agrees with the
one obtained with the alignment effect included [Fig. 1(a)]
within 1/o at ko1.=13.6. This agreement appears quite
reasonable when we note the small self-alignment ( & 0.01)

From Eq. (19), the amount of the self-alignment may
be defined as

(T(J)t ) f f dr'dp'S2p(r r', p, p')(T—(J)IXI)

e Monte Carl
Perel' and

i iiiIj

0.1
I I I I I llli I I I I I I III

10
Optical thickness

I I I I I

Illa'

100

FIG. 3. Self-alignment against koL. Values at koL (0.1 are
not obtained because of the poor statistics. The solid line
represents Eq. (29) from Perel' and Rogova [14].

at koL & 10 in Fig. 3, because the mixing of the align-
ment to the population would be insignificant in case of
(T(J)pp) »(T(J)2p). On the other hand, Eq. (20) gives
an about 40% decrease due to the rank mixing effect.
The reason for the large discrepancy is not fully identified
yet, but the overestimate of the self-alignment shown in
Fig. 3 caused by the nonrealistic distribution of excited
atoms would be responsible, at least partly, for this
difFerence.

The solid line in Fig. 1(a) shows a trace of the mixing
effect in the population relaxation at t & 37 1/(yp y2),
where the relaxation rate is found to be about 8% lower
than the rate at t &1/(yp —yz). This is because the
alignment ( T(J)zp) is so large in the beginning of the re-
laxation that the contribution from the mixing term be-
comes substantial. The lengthening of the effective life-
time in this time domain by this mixing is understood
from Eq. (13). This slow relaxation is not observed in the
separate simulation with the alignment efFect omitted
(dotted line).

B. Population and alignment relaxation rates

The population relaxation rate yo is estimated from the
straight-line part of the relaxation curves at

1 /( yp y 2 ) where the mixing effect is minimal. The
faster component in the alignment relaxation in Fig. 1(a)
corresponds to the alignment relaxation rate y2. We
derive yz from the decay curve in Fig. 1(b) by fitting it to
a single exponential curve with a constant background.
The fitting is done in the same time region as for yo. The
population relaxation rates obtained at koL ) 1 are re-
garded as that for the fundamental decay mode since the
rate and the population distribution stay constant during
the relaxation. The situation is less clear for alignment
since, because of the self-alignment effect, the alignment
distribution profile is not fully examined to have the same
profile in the course of time. However, an excellent fit to
a single-exponential curve, such as the one shown in Fig.
1(b), may imply the presence of the fundamental decay
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mode for the alignment, although no clear theoretical
demonstration has been presented yet [12]. The accuracy
of the obtained relaxation rates is estimated to be about
0.1% at high optical thicknesses.

Obtained relaxation rates yo and yz for the present
geometry are expressed in terms of parameters xo and x2
through Eq. (16). In Fig. 4, (1—xz) are plotted as a
function of koL, For low to intermediate optical thick-
ness (kIIL ( 1), obtained relaxation curves should be treat-
ed with caution since the large mixing between the popu-
lation and the alignment (Fig. 3) makes it difficult to
separate these two components. Therefore, only efFective
rates boih for the population and the alignment relaxa-
tion are plotted in Fig. 4 for koI. (0.1. For comparison,
also shown are the analytical estimates by Holstein for
population [Eq. (18)] and by D'Yakonov and Perel' for
alignment [Eq. (17)]. As seen in the figure, the estimate
by Holstein shows good agreement with the present re-
sults at high optical thickness with a discrepancy of 8.9%%uo

and 2.1% at kIIL= 13.6 and 45.2, respectively. Holstein
estimated the error in Eq. (8) due to the CRD approxima-
tion to be less than 20% at koL = 100 [3].

Figure 5(a) shows the radiation field in the direction
perpendicular to the planes at the center and at the boun-
daries of the cell, respectively. The solid angle of detec-
tion is 0.79 sr. The distribution of velocity component in
the z direction of excited atoms is shown in Fig. 5(b). The
profiles are narrower at the center and wider at the
boundary than the Maxwell distribution at the base tem-
perature, respectively. This is explained from the radia-
tion field density [Fig. 5(a)]. At the center of the
geometry, the atoms experience a stronger radiation field
at the line center than at the line wings, while at the
boundaries of the geometry the radiation field is stronger

0.1—

0.01—
o population (1-xo )—Holstein

—- —- Perel' and Rogova
o alignment (1-x~ )

------ DrYakonov and Perel'

I I I IIII I I I I I IIII I I I I I IIII

0.001 0.01 0.1
I I I I I I III I I I I I I III

10 100
Optical thickness

FIG. 4. Relaxation parameters of the population (1—xo) and
the alignment {1—x2) for the infinite plane parallel geometry
plotted as a function of koL. The quantity (1—xo) at koL) 1 is
considered to be values in the fundamental decay Inode.
Analytical estimates by Holstein [3] [Eq. (18)], D'Yakonov and
Perel' [l2] [Eq. (17)], and Perel' and Rogova [14] [Eq. (20)] are
also shown for comparison. Only effective values are plotted for
koL(0. 1 because of the large mixing between the population
and the alignment.
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FIG. 5. (a) Radiation field intensity in the direction perpen-
dicular to the plane as a function of the frequency. The solid
angle of detection is 0.79 sr. The self-reversal effect is observed
at the boundary. (b) Velocity distribution in the perpendicular
direction to the plane after a sufficiently long time. The
effective temperature is also presented, which is obtained by the
Gaussian fit to the distributions.

at the line wings than at the line center (self reversal-
e+ect) Therefor. e the velocity distribution at the center
(boundary) is enhanced at the center (wings) of the
profile. The diA'erence between the two profiles in Fig.
5(b) is not as pronounced as expected from the radiation
field shown in Fig. 5(a) since excited atoms are also creat-
ed by the radiation propagating parallel to the plane and
these atoms have the Maxwell velocity distribution of the
base temperature in the direction perpendicular to the
plane. The inhuence of velocity relaxation from the ini-
tial to the distribution shown in Fig. 5(b) on the relaxa-
tion rates yo, yz is considered to be negligible because the
velocity relaxation is estimated to be so fast (the rate is of
the order of y) [21] that the component has relaxed out
at the time interval when yo and y2 are estimated.

In Fig. 1(a) also plotted is a decay curve obtained with
the CRD approximation with the alignment effect includ
ed (dashed line). At this optical thickness, the population
relaxation rate increases significantly (9.9%). The in-
crease in the population relaxation rate is found to be
smaller (7.8%%uo) at k&L=45 2 This increas. e .corresponds
to the increase of the filled circle in Fig. 4. Thus the re-
sult of the CRD simulation is larger than Eq. (18), or the
solid curve in Fig. 4, by 5% at ko1.=45.2. When the
more realistic distribution of excited atoms as expressed
in Eq. (21) are adopted in deriving Eq. (8), the population
relaxation rate will be reduced by an amount [3]
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which is about 2% at kpL=45. 2, leading to even a larger
difFerence (7%) in (1—xp) from the simulation result. In
Fig. 4 also plotted is the quantity ( 1 —xp ) obtained from
yp with the correction proposed in Ref. [14], Eq. (20), in-
cluded. It is clearly shown that the influence of the rank
mixing effect is overestimated in Ref. [14],as discussed in
Sec. III A.

Figure 4 clearly shows that (1—x2) is systematically
smaller than (1 —xp), in contrast to the analytical esti-
mate [12]. A separate simulation with the CRD approxi-
mation at kpL =45.2 yields (1—x2)=5X10 and
reduces the large discrepancy between the present result
and the estimate. The residual discrepancy may be attri-
buted to the spatial distribution assumed in deriving Eq.
(17), since the radiation field at the center of the cell is ex-
pected to become more isotropic when the distribution
Eq. (21) is assumed, leading to a faster relaxation of the
normalized alignment. If we compare the results by the
simulation and the analytical method in terms of yz rath-
er than (1—x2) as in Fig. 4, the difference is less pro-
nounced because of a small a2 value in Eq. (16). For in-
stance, the difference in y2 corresponding to the open cir-
cle and the dotted curve in Fig. 4 is only 1% at
koI. =45.2.

A time-resolved measurement of yx. (%=0,1,2) have
been reported [22] for the He 3 'I' state by the crossed
electron-atom beam method. A comparison with the
present results is, unfortunately, impractical, since the es-
timate of the atomic density in an effusive beam is
difficult. Instead, the authors [22] suggested the use of
the relaxation rate, or the relaxation parameter x, as a
measure of the effective atomic density in the collision re-
gion.

The present authors have estimated the disalignment
rate y2

—
yo of the Ne 2p2 level in a cylindrical discharge

plasma [23] by the same method as described in Ref. [24]
with a modification in the apparatus [25]. A disalign-
ment rate 1.7X10 s ' has been obtained for the optical
thickness at the line center 0.04, 0.10, 0.01, and 0.04 of
the branching transitions to the 1s2, 1s3, 1s4, and 1s5
states. Although the geometry assumed in the present
simulation is different from the experiment, we may com-
pare the experiment with the simulation result
(3+0.5) X 10 s ' (see Ref. [3] for the case where branch-
ing transitions are present). If we take into account the
difference, the agreement between these results is satisfac-
tory since the plane parallel geometry is more effective in
disalignment by, roughly speaking, a factor of 2 under
the condition of low optical thickness.

The inAuence of the alignment relaxation by radiation
trapping upon radiative lifetime measurements has been
discussed recently [5,7,26]. The present Monte Carlo
simulation has clarified the following two points. First,
at t & 1/(y2 —yp) the proportional factor of the observed
emission line intensity to the upper level population
varies with time and therefore the observed decay rate is
different from the real decay rate of the population. The

error in the apparent lifetime estimated from the emis-
sion intensity increases as the optical thickness increases.
Second, at t ) I/(7'2 7'0) the proportional factor is al-
most constant so that the apparent or prolonged lifetime
by radiation trapping under the given experimental con-
ditions can be correctly determined free from alignment
effects. Assuming that atoms are optically excited and
that the emission is observed perpendicularly to the
quantization axis (the direction of electric vector in case
of linearly polarized light excitation), errors in measured
lifetimes induced by the alignment relaxation in the
former time domain may be given as b, r p/rp

II 2( Y2 7 0)+0 [(y2 yp)&0 « I, W2 )0] [27], where
rp=1/yp and W2 is the dePolarization coefficient [28].
Here the sensitivity of the detection system is assumed to
be independent of the polarization directions. Our. simu-
lation has shown that the error hrplrp reaches values as
large as —0.8 at koR =13.6 in the present geometry. In
general, the sense and magnitude of the error depends on
the angular-momentum pairs of the transition through
8'2 and on the experimental conditions, such as the
direction and magnitude of the initial alignment and the
direction of observation. When the emission is observed
along the quantization axis in the present geometry, even
an increase, instead of a decrease, in the observed intensi-
ty may be seen at an early time. The error br 0/7 p is also
affected by the relative sensitivity of the detection system
for different polarization directions of radiation.

An absorption line profile often provides information
on external perturbations to the atomic states involved in
the transition. Collisional broadening of resonance levels
of rare gases has been subjected to extensive studies in
discharge plasmas [29]. In these experiments, atoms in
resonance levels are, in effect, produced by radiation
trapping. The profiles of absorption lines originating
from these levels are observed and the Lorentzian com-
ponent of the profile is interpreted as due to the reso-
nance broadening besides the natural broadening. As
shown in Fig. 5(b), atoins in the resonance level actually
have different temperatures depending on the location of
the medium when viewed in the direction perpendicular
to the plane; the best-fitted Gaussian profile to the veloci-
ty distribution in the perpendicular direction to the
planes gives the effective temperature, which is 4—5%
lower (higher) at the center (boundary) than the gas tem-
perature (288.15 K) under this simulation condition (i.e.,
plane parallel geometry, Gaussian broadening with opti-
cal thickness of 13.6 at the line center with no frequency
redistribution in the frame of atoms). For cylindrical
geometry, it may be assumed that the deviation is larger
because at the boundary, excitation by the radiation com-
ing radially with the self-reversal profile is more effective
in determining the radial temperature than the corre-
sponding excitation for the plane parallel geometry. Fur-
thermore, since the line profiles in Fig. 5(b) are slightly
different from a Gaussian shape, the absorption profile
deviates from a Voigt profile, which is a convolution of a
Lorentzian and a Gaussian, when the absorption line
profile is measured in the direction perpendicular to the
axis of a discharge tube.
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IV. CC)NCLUSIE3N

The Monte Carlo method has been applied to study the
population and alignment relaxation by the trapped line
radiation in the infinite plane parallel geometry. It has
been found that both population and alignment exhibit
nonsingle exponential relaxations, which are interpreted
as being due to mixing of the population and alignment
caused by the anisotropy of the geometry. After a
suKciently long time, the alignment relaxes at the same
rate as the population (self alignm-ent). The inAuence of
the self-alignment to the population relaxation rate is
found to be negligible within the uncertainty of the simu-
lation (( l%%uo), in contrast to the analytical estimate by
Perel' and Rogova [14]. The population relaxation
affected by the alignment mixing is instead seen in the be-
ginning of the relaxation when the alignment is large.
The population and alignment relaxation rates in the

range of the optical thickness at the line center between
10 and 10 are derived in a time interval when these
mixing effects are negligible. A discrepancy between the
simulation and the analytical estimate [3„12] has been
found. It has also been demonstrated that the velocity
distribution of excited atoms in the direction perpendicu-
lar to the planes, both at the center and at the boundaries
of the geometry, is substantially different from the distri-
bution at the base temperature.
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