
PHYSICAL REVIEW A VOLUME 52, NUMBER 3 SEPTEMBER 1995

Relativistic nuclear recoil corrections to the energy levels of hydrogenlike
and high-Z lithiuxnlike atoms in all orders in nZ
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The relativistic nuclear recoil corrections to the energy levels of low-lying states of hydrogenlike
and high-Z lithiumlike atoms in all orders in nZ are calculated. The calculations are carried out
using the B-spline method for the Dirac equation. For low Z the results of the calculation are in
good agreement with the nZ-expansion results. It is found that the nuclear recoil contribution, in
addition to Salpeter s contribution, to the Lamb shift (n = 2) of hydrogen is —1.32(6) kHz. The
total nuclear recoil correction to the energy of the (1s) 2p i -(ls) 2s transition in lithiumlike uranium

constitutes —0.07 eV.

PACS number(s): 12.20.Ds, 31.30.Jv

I. INTRODUCTION

As is known, in the nonrelativistic approximation the
nuclear recoil correction for a hydrogenlike atom can be
taken into account by using the reduced mass p =
The relativistic corrections of order (crZ) Mmc can be
found by employing the Breit equation [1]. A theory of
the nuclear recoil effect in higher orders in o.Z must be
constructed in the &amework of quantum electrodynam-
ics (QED) on the basis of an exact relativistic equation
for the hydrogenlike atom. Such an equation was pro-
posed by Bethe and Salpeter [2] immediately after the
creation of QED. On the basis of this equation the nu-
clear recoil corrections were calculated in [3] up to terms
of order (nZ) M mc . It was shown in this work that
the nuclear recoil effect in the case of a complex nucleus
is calculated in a good approximation by assuming the
nucleus is a Dirac particle with the charge ~e~Z and the
mass M. Subsequently these corrections were recalcu-
lated by a number of authors [4—6]. Calculations of the
nuclear recoil corrections of the next order in o.Z were
considered in [7—11].

In the theory of high-Z one-electron ions the parame-
ter o.Z can no longer be considered small. For this reason
calculations of the nuclear recoil corrections for such sys-
tems must be carried out without expansion in o.Z. In
contrast to other QED effects in the region of strongly
bound states (crZ 1), the calculation of the nuclear
recoil effect at high Z demands using QED outside the
external field approximation. [Calculations of QED ef-
fects in hydrogen, positronium, and muonium correspond
to the case of weakly bound states (nZ (( 1).] In this
connection a nontrivial problem of derivation of closed
expressions for the nuclear recoil corrections in all or-
ders in o.Z arises. This problem was first discussed in
[12,13]. The work [12] was based on the Bethe-Salpeter
equation. This approach encountered serious technical
diKculties, associated with summation of a complete se-
quence of irreducible diagrams. These diKculties were
partly overcome only in the lowest orders in o.Z. Com-
plete o.Z-dependence expressions were not found in this
way. In [13] a general case of a relativistic few-electron

atom was considered. An eKcient method for summing
the Feynman diagrams in the zeroth and first orders in

M, based on an expansion of the nuclear propagator, was
proposed in this paper. However, because the procedure
of the derivation of the nuclear recoil corrections was not
rigorously formulated, the method considered there gave
several ambiguities in the expressions for the nuclear re-
coil corrections. In addition, certain errors were made
in derivation of the formulas for the contributions with
one and two transverse photons. As result, only a part
of the expressions for the relativistic nuclear recoil cor-
rections was found in this work. The complete expres-
sions for the nuclear recoil corrections for hydrogenlike
atoms were obtained in [14] (the overall sign of the two-
transverse-photons contribution was corrected in [15,16]).
The paper [14] was based on a version of the quasipo-
tential approach that immediately gives the Dirac equa-
tion in the limit of infinite nuclear mass [17,18,5]. [The
quasipotential approach was first introduced in quantum
field theory by Logunov and Tavkhelidze [19] and was
subsequently developed by many authors (see, e.g. , [20]).
This approach is absolutely rigorous and, in contrast to
the Bethe-Salpeter equation, allows one to exclude the
relative time (energy) in the wave function from the very
beginning. The quasipotential equation can be repre-
sented in an evidently covariant form [20,17].] The rele-
vant quasipotential equation in the center-of-mass system
is (the relativistic units h = c = 1 are used)

V (E, p, q) vP (q) dq, (1)

where cx and P are the Dirac matrices acting on the
electron variables. The quasipotential V(E) can be con-
structed by various methods [17,19,20]. One of the meth-
ods consists in using the relativistic scattering amplitude
with one particle (nucleus) on mass shell [17,18,21]. In
this method the quasipotential V(E) may be defined by
the Lippman-Schwinger equation
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V = ~(1+E~) ', (2) II. BASIC FORMULAS

where

I' = [E —(Qp + M + n p+ pm)(1 —iO)]

(~)
+(E p 'q) 2~iP~( p)T(pit P2t qlt q2)ic( 'q) t

P1 = —P2=—P, q1 =-q2=q,
p', = E —QP2+ M2, po2 = QP2+ M2,

q = E —Qq2+ M2, q2 = Qq2+ M2, (4)

p1 and q1 are the electron variables, p2 and q2 are the
nucleus variables; T is the ofF-mass-shell relativistic scat-
tering. amplitude; u(q) is the wave function of the free
nucleus with the positive energy normalized by the con-
dition ut(q)u(q) = 1. In [14] the quasipotential V(E)
was constructed in the zeroth and first orders in ~. So
the closed expressions for the nuclear recoil corrections in
the first order in ~ and in all orders in nZ were obtained.
The most detailed derivation was published in [22]. In
[16] these results were generalized to the case of high-Z
few-electron atoms. For that a more general method was
developed. In the second section of the present paper we
brieBy formulate the results of [16]. In the third section
the calculation of the nuclear recoil corrections for hy-
drogenlike atoms is considered. In the fourth section the
corrections for high-Z lithiumlike atoms are calculated.

We consider the system of Dirac particles: a nucleus
with mass M and % electrons with mass m. Following
the ideas of the quasipotential approach we introduce in
the center-of-mass system the two-time Green function
with the nucleus on the mass shell

mfif IG(t tttp txit ' tx&tp txlt . txiv)

= (p', AlTQ(t', x', ) . .@(t',x~)

x@t(t,x ) . . vjt(t, x, ) l p, A),

where @(x) is the electron-positron field operator in the
Heisenberg representation, T is the time ordered product
operator,

lp &) = a'-(p ~)lo) lp' &) = a-c(p' &)Io)

are the in and out states of the nucleus, and p and A are
the momentum and polarization of the nucleus. Here we
normalize the operators a; and a „z by

(at„(p, A), a;„(p', A') ) = (at„,(p, A), a „c(p', A'))
= 4~ ~(p —p'). (7)

Let us introduce the Fourier transform of G:

~(E —E')~(P —P') G(E, P', Pi, , P&, p, pi, ",pnv)

f dtdt'dxe . dxetdx', dx'et exp ti(C't' —Ct)]
2iri K! 2~ s~

N

x exp i ) (p',. x', —p, —. x;) G(t', t, p', xi, . . . , x&, p', xi, . . . , x~),

where

E = 8 + QP2 + M2 —M, E' = 8' + Qp'2 + M2 —M,
N N

P=p+) p, , P'=p'+) p,'.
In the center-of-mass system we have

the equation

(2~) ~ h(P)C „(p,pi, . . . , P~)

1 1 x, .dx~exp —) p; x;
K! (2vr) ~

N

P= ) Pi&

N

p'= -).p', &&(Pl@(o xi) ".0(o xiv)ln) .

We are interested in the energy of a bound state n of the
atom The spe.ctral representation of G(E) gives

c c~
G(E) =

n

+(terms that are regular at E = E„), (1O)

where E is the bound state energy with the nucleus rest
mass subtracted, and the wave function 4 is defined by

The Green function G(E) is constructed by perturbation
theory after transition in (5) to the interaction represen-
tation. Let the energy level n belong to an m-fold de-

generate level E in the limit M ~ oo if the radiative
and interelectronic interaction corrections are neglected.
[The neglect of the interelectronic interaction in the ze-
roth approximation is justified for high-Z few-electron
atoms (N (( Z).] The m-dimensional subspace gener-
ated by the unperturbed eigenstates making up this level
we designate as O. The projector on 0 is
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Po —) ukuk &

t
k=1

where

) (—1) &k, (»)" 4k~(P~)¹!p
and gk are solutions of the Dirac equation in the
Coulomb field of the nucleus:

H4'k —~k!»('k»

N
E(o) —)

H =n p+Pm+V, ,

(14)

Let us introduce the Green function g:

g = I'OGI'0 (15)

For this Green function, as for G(E), we have

g(E) = + ( terms that are regular at E = E ),
(16)

Po
go(E) =

E —E
Prom Eq. (16) and the identity

g g=1
we obtain for E = E

(18)

g '(E-)+- =o.
Or, introducing the quasipotential operator

v(E) = go g = go doggo

+go
' Ag go

' Ag go
' +, (20)

where Ag = g —go, we obtain

[E( )+,(E )]~ (21)

The equation for determination of the energy levels fol-
lows as

detf(E —E„)b;k —v;k(E)} = 0. (22)

It should be stressed that Eq. (22) is absolutely rigorous
within @ED and gives, in principle, the exact energies

where P = Poc' belongs to the subspace B. Construct-
ing g(E) by the perturbation theory in the interaction
representation we get it in the form of a series in pow-
ers in Q.Z. However, we are interested in an expansion
in another parameter, namely, M. For this reason it is
necessary to sum infinite sequences of the Feynman dia-
grams in the zeroth and first orders in M. We designate
the contribution of the terms of zeroth order in M by go.
In [16] it was found that

(„(i)).„+( (2)).„+(„('-t)).„
N

s 2

(vP));»=) 8;,», . ~ . b; » i. ' k, ),
s=1

(23)

(24)

N OO

s=1 —OO

x(i, l[p„v.]G, ((u+ s;.)[p„v,]lk.),
(v,'"'

);k = —) b;, k, . . . n . b,„k„

d~ b+ ((u)

S(S

x ) (—1) (Pi,Pi, lp, p, lk, k, ), (26)

where li, ) and lk, ) are the one-electron unperturbed
states of the Dirac electron in the Coulomb field of the nu-
cleus, belonging to the N-electron states i and k, respec-
tively, p is the momentum operator, v, —:V, (r, ) = ——,

&e
S

the symbol 0 means that the factor bi I, is omitted
in the product, b+(w) = 2' (u + io), and G(w)
[~ —H(1 —io)] i is the relativistic Coulomb Green func-
tion. [Formally, the matrix element in Eq. (25) at fixed
u is infinite, due to the strong Coulomb singularity at
r = 0. This means that the integration over u must be
carried out at an intermediate stage of the calculation,
depending on which representation of G is used. ] The
contribution &om the diagrams with one transverse and
an arbitrary number of Coulomb photons consists of two
terms. The first term depends on the spin of the nu-
cleus and coincides with the Fermi-Breit expression for
the hyperfine interaction [23]. The second term is

(Vtr(1) )ik

(1)
(v,„(i))*k

(2)
(v,„(i)).k

(1) (2) (i~a)
(vt~(i));k + (vt~(i) ),k + (vt~(, ) );k,

1 ) b;, k, - rl
s=1

x(i l[D. (o) p. +p. D.(0)ll

1 OO

~ ~ ~ ~ ~ ~

~1 1 2N N
S=1 —OO

x (i, I ([p„v,]G, (u + s; )D, (~)
—D.(~)G.(~+ s'. )[p. , v.])lk. )

(28)

did b+ (Cd)

(29)

of the m levels arising &om the m-fold degenerate level

E . In [16] the quasipotential v, k was found in the first
order in M and in the zeroth order in ct (but in all orders
in o.Z) by summing infinite sequences of the Feynman
diagrams in the Coulomb gauge. For that the expansion
of the nuclear propagator from [13] was used. Only the
following kinds of diagrams contribute in the considered
order.

(i) The diagrams with only Coulomb photons.
(ii) The diagrams with one transverse and an arbitrary

number of Coulomb photons.
(iii) The diagrams with two transverse and an arbitrary

number of Coulomb photons.
The contribution from the diagrams with only

Coulomb photons is
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(i~t) 1 ~ s s
(»„(i)) g = ——) 6,,i„. rl . . . V . b;„i,„ III. HY'DROGENLIKE ATOMS

where

s&e'

x ) (—1) (Pi,Pi, l[D, (s~; —sg ) . p,
P

+p. . D..(s~, ,
- s, , )]lk.k. ),

D (u)) = 4~os—Zc»»D» ((u),

For hydrogenlike atoms the nuclear recoil corrections
to the energy of a state a are de6ned by the diagonal
matrix elements [b,E = (v) ] of the one-electrons con-
tributions (24), (25), (28), (29), and (34). The terms
LE~ and LEt 1) are leading at low Z. These terms(1) (1)

can easily be calculated by using the virial relations for
the Dirac equation [27—29]. Such a calculation gives [14]

1 exp (il(sir)
D;i, (u, r iA:4'

[exp (i l(u lr) —1]+ i k
4) T

(32)

The contribution &om the diagrams with two transverse
and an arbitrary number of Coulomb photons is

(vt~(2))'i,

(1)
(v»~(2))'

(int)
(vt~(2) ) ik

{1) (int)
(v (2)),g ~ (v»„(2)),g,

N
Z s

&1~1 XH ICN
2' cvc s=1

x d~ i, D, ~ G, ~+ ei

x D.((u) lk, ), (3
I1 ~ s s p—) h i, . . . rl b i, ) (—1)

s(s' P
x(PisPis lDs(s~, —si, ) D, (s~, ,

—sA, )lk, k, ). (35)

ti& (t = 1, 2, 3) are the Dirac matrices, and D» (~) is the
transverse part of the photon propagator in the Coulomb
gauge. In the coordinate representation it is

( )
m2 (p+ n„)2 2(nZ)
2M

[
N N W(47' —1)

x (K[2r(p + n ) —N] + n„(4p —1))

(37)

b, E»'(, )
———,(~[2r.(p + n„) —N]M¹p4p2 —1

+n„(4q' —1)), (38)
m' (~Z)'
M 2¹I —8'a2 E(')—:LE(') + BEE

'
C t~(1}

(39)

where

N = Qn2 —2n„(lr.
l

—p), n=n„+lrl,

j is the total electron moment, l is the orbital moment,
n is the principal quantum number, and n„ is the radial
quantum number. Only these terms contribute within
the ~ (o.Z) approximation. Expanding (39) in power
series in nZ we find

1
~M M ) Ps Ps'

s,e'

c»Z (cx, r, )r,~s+ 'Ps'
Ts B

(36)

In [25] the relativistic nuclear recoil corrections of order

M (aZ) to the energy levels of two- and three-electron
multicharged ions were calculated using this operator.
The expression (36) can be found by reformulating the
Stone's theory as well [26].

The formulas (23)—(35) were derived in [16]. The cor-
responding formulas for the case of a one-electron atom
were first obtained in [14] (the overall sign of the con-
tribution b,E»„(2) was corrected in [15,16]) and recently
reproduced in [24,10].

(1) (int) (1)'The contributions v, , v~, vt (1), and vt (1) are(int)

leading for low o.Z and completely de6ne the nuclear re-
coil corrections within the M (o.Z) approximation. It
follows that within the M (c»Z)4 approximation the nu-
clear recoil corrections can be obtained by evaluating the
expectation values with the Dirac wave functions of the
operator

(,) m2 (nZ)2 (o.Z)4 1 1
M 2n2 2n3 j+ 21 n

(nZ) n„1 n„
(40)2n'(&+ -')' 4(~+ -')

The terms b.E, AE» (i), and b,E (2) [Eqs. (25),
(29), and (34)] are given in a form that allows one to
use the relativistic Coulomb Green function for their cal-
culations. In addition, this form is convenient for nZ-
expansion calculations [10]. However, in the present pa-
per we transform these equations to ones that are most
convenient for calculations using the finite basis set meth-
ods [30—32].

Integrating over w in (25) we find

&E."= -M ).(alpln)(nlpla).M (41)

[It should be noted here that the formula (41) was first
found in [13). Its derivation was refined in [14]. A similar
formula but with the projector on the negative energy
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states of a &ee electron was obtained in the lowest order
in nZ in [12].] The matrix elements of the momentum
operator are easily calculated using the identity [25]

f(y, r) = exp ( yr—) (1 + yr) —1

1
p = —(nH+ Hn) —cxV, .

2
(42) D(~) = Dg(~) + D2(a),

Rotating in (29) the integration contour in the complex
u plane we And

exp(ilculr)
Dg (u = o.Zcx

(2)
+E~~(x)

~E(2,a)
tr(x)

where

=LE ' +LE ' +LEtr(1) tr (1) t~(x) &

) ((~lpl")("ID(0)l~)
&n 7) &n

+(~llD(o)ll~)(~lit l~))
2 &a En

Re dy
vrM y2 + (~ —s„)2

(-n +&a

x (alp ln) (nls(y) la)

5. ((~llew l~&(~llD(~- —~-)ll~)

+(~ID(~. —~-)l~&(~lr l~&),

S(y) = S) (y) + S2(y),

S~(y) = nZcx
exp ( yr)—

S2(y) = io.Z[H, f(y, r)n],

(43)

(44)

(45)

(46)

D2(a) = inZ[H, f((u, r)n],

(~, r) = 1 —exp (ilculr)(1 —il(sir)
(d2T2

cx zo!Z
D(0) = o(Z — —[H, n],

T 2

~E('(),
)
— Re ) (c„—s ) (alin(t (r) In)

where

x(nl[inC) (r) + n@2(r)]la),

n = —'. The term LE
(&)

has real and imaginary
parts. The imaginary part gives a small correction to
the width of the level. Integrating over y in (45) and

uniting the contributions LE (&), LE (z), and the real

part of LEg (y)
we find

4g(r) =

8'a + 8'n 0!Z

2. '
~

1
ci(A„r) sin(A„r) —si(A„r) cos(A~r) + sgn(s'~ —s„)—' —0(s~ —ls'~l)

vr vr exp (iA„r)

(48)

(49)

1 7r
C2(r) = —sgn(s —s„) —si(A„r) cos(A„r) ——+ E„r+ ci(A„r) [sin(A„r) —(A„r) cos(A„r)]A„r 2 2

7r
(A„r) si(b, „—r) sin(b, „r) ———8(e —ls„l)~f(4„,r), (5o)

0(~) = (&+ I&l)/».

+E(x,a)
Cr(2)

&a &n

~M o
+- y'+ (s —s' )'dy &~

x (alS(y) ln) &nlS(y) I

The contribution LE&„(2) is equal to

AE ) = LE ' +LE ' +LE~~(2) t~(2) tr(2) a~(2) &

(52)

AE('i', ))
—— ) (alD(o) ln) (nlD(0) la),

AE,(„i2))
———) (alD(s —s„)In)

I..I
..

x (nlD(e —r„)la) .

The term LE (2), like LE '&, has an imaginary part
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which gives a small contribution to the width of the level.
After integration over angles that is easily carried out

using formulas presented in the Appendix, the calcula-
tion of the expressions (41), (47), and (52)—(54) was done
using the B'-spline method for the Dirac equation, devel-
oped in [31]. The zero boundary conditions and the grid
selection algorithm proposed in [33] were used. However,

4
we used the grid r; = *&', where po ——gl —(aZ)2,

4
instead of the grid r, =

& [33]. The radial integration
caused no problems and was carried out with high accu-
racy using the Gauss-Legendre quadratures. The integra-
tion over y in (52) was also done by the Gauss-Legendre
quadratures with a suitable transformation to map the
infinite integration range to a finite one. The uncertainty
of the integration was estimated from the stability of the
result with respect to change of the number of integra-
tion points and the grid parameters and was found to
be much smaller than the uncertainty due to the finite-
ness of the basis set. The size of the box was chosen to
be sufFiciently large so as not to a8'ect the results. The
uncertainty due to the finiteness of the basis set was es-
timated by changing the number of splines from 40 to
90. In addition, to make an independent estimate of
the uncertainty of the numerical results we calculated
the corrections LE, and LEt (~) using two difFerent(2) (2)

representations for them. So the correction AE was(2)

calculated by the formula (41) as well as by

~E(2) 2

)0

We found that the results of both calculations coincided
with each other with good precision, and this coincidence
improved when the number of splines increased. The
correction AEt (i) was calculated by Eq. (47) as well as

by (43)—(45). The results of both calculations coincided
with each other with high accuracy.

Tables I, II, and III show the results of the numerical
calculation for the Is, 28, and 2@i states, respectively,

2

expressed in terms of the function P(aZ) defined by

aE(') = ZE(')+SE") +aE("
C t7'(1) tv. (2)

P(aZ)mc
m (aZ)s 2

M ~n3 (56)

P '
(nZ) = ——ln (aZ) ——2.811769 +(2) = 2 8 187

S 3 18 '

(2u. ) 8 7P ' = —0.030 017 ——S

(58)

(59)

are given. The uncertainties given in the tables corre-
spond only to errors of the numerical calculation. In
addition, there is an uncertainty due to deviation from
the point-single-particle model of the nucleus, used here.

The functions P, Pt„(q), and Pt„(2) correspond to the

ributions +E +Et ~, and +Et (2), respectively
For comparison, in the last columns of the tables
Salpeter's contributions [3—6]

P (nZ) = ——ln (aZ) ——2.984 129 + —ln 2 + —,2 8 14 62
S 3 3 9

(57)

TABLE I. The results of the numerical calculation of the one-electron nuclear recoil corrections
to the 1s state energy expressed in terms of the function P(nZ) defined by Eq. (56). Ps(aZ) is
the Salpeter contribution defined by Eq. (57). The number's in parentheses are the uncertainties of
the calculations.

Z
1
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
92
95
100

P, (aZ)
-1.3111(2)
-1.2345 (1)
-1.1586
-1.0994
-1.0537
-1.0192
-0.9946
-0.9790
-0.9721
-0.9740
-0.9849
-1.0059
—1.0383
-1.0845 (1)
-1.1479(2)
-1.2339(3)
-1.3506(5)
-1.512(l)
-1.741(3)
-1.861(5)
-2.084(9)
-2.64(3)

P,„(,) (aZ)
12.568(2)
8.5854(3)
6.9974(1)
6.1340(1)
5.5678(1)
5.1671(1)
4.8744(1)
4.6598(1)
4.5065(1)
4.4048(1)
4.3496(1)
4.3389(1)
4.3739(2)
4.4588(2)
4.6014(3)
4.8153(7)
5.122(1)
5.558(4)
6.186(7)
6.51(1)
7.12(3)
8.6(1)

P, (2)(aZ)
-5.8267(3)
-3.0476(2)
-2.0438
-1.5373
-1.2201
-0.9996
-0.8362
-0.7094
-0.6076
-0.5231
-0.4510
-0.3874
-0.3295
-0.2746
-0.2201
-0.1631
-0.0996(1)
-0.0237(2)
0.0743(9)
0.123(1)
0.212(1)
0.428(6)

P(nZ)
5.430(2)
4.3033(4)
3.7950(1)
3.4973(1)
3.2940(1)
3.1483(1)
3.0437(1)
2.9?14(1)
2.9268(l)
2.9077(l)
2.9137(1)
2.9456(1)
3.0061(2)
3.0997(2)
3.2334 (4)
3.4183(8)
3.672(l)
4.022(4)
4.519(8)
4.77(1)
5.25(3)
6.4(1)

Ps (aZ)
5.4461
4.3731
3.9110
3.6407
3.4489
3.3001
3.1786
3.0758
2.9868
2.9083
2.8380
2.7745
2.7165
2.6631
2.6137
2.5677
2.5247
2.4843
2.4462
2.4315
2.4101
2.3759
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'FABLE II. The results of the numerical calculation of the one-electron nuclear recoil corrections
to the 2s state energy expressed in terms of the function P(ccZ) defined by Eq. (56). Ps(nZ) is
the Salpeter contribution defined by Eq. (58). The numbers in parentheses are the uncertainties of
the calculations.

z
1
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
92
95
100

P (o,Z)
-1.3112(2)
-1.2351(1)
-1.1612
-1.1055
-1.0647
-1.0367
-1.0202
-1.0147
-1.0202
-1.0372
-1.0668
-1.1108
-1.1723(1)
-1.2554(l)
-1.3668(2)
-1.5164(4)
-1.7199(7)
-2.003(1)
-2.413(4)
-2.630(7)
-3.O4(2)
-4.ov(s)

P, (,)(crZ)
13.177(1)
9.1911(2)
7.6075(1)
6.7562
6.2093
5.8352
5.5767
5.4047
5.3037
5.2656
5.2876(1)
5.3711(l)
5.5218(1)
5.7504(2)
6.0743(4)
6.5211(7)
v.13s(2)
7.988(4)
9.205(8)
9.84(l)
11.02(2)
13.9(l)

P,„(2)(nZ)
-5.7103(3)
-2.9225(1)
-1.9080
-1.3908
-1.0621
-0.8294
-0.6528
-0.5115
-0.3935
-0.2908
-0.1980
-0.1105
-0.0247
0.0634
0.1581(1)
0.2651(1)
0.3921(2)
0.5516(4)
o.v64s(6)
0.872(l)
1.070(2)
1.55(1)

P(nZ)
6.155(1)
5.0335(2)
4.5383(1)
4.2599
4.0825
3.9691
3.9037
3.8785
3.8900
3.9376
4.0228(l)
4.1498(l)
4.3248(2)
4.5584(2)
4.8656(5)
5.2698(8)
5.807(2)
6.537(4)
?.ssv(9)
8.O8(2)
9.05(3)
11.4(2)

Ps(c Z)
6.1710
5.0980
4.6359
4.3656
4.1738
4.0251
3.9035
3.8008
3.7117
3.6332
3.5630
3.4994
3.4414
3.3881
3.3387
3.2927
3.2496
3.2092
3.1711
3.1565
3.1351
3.1009

TABLE III. The results of the numerical calculation of the one-electron nuclear recoil corrections
to the 2pi state energy expressed in terms of the function P(aZ) defined by Eq. (56). Ps(aZ) is

2
the Salpeter contribution defined by Eq. (59). The numbers in parentheses are the uncertainties of
the calculations.

Z
1
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
92
95
100

P, (cKZ)
-0.0000
-0.0007
-0.0024
-0.0051
-0.0088
-0.0133
-0.0189
-0.0255
-0.0335
-0.0432
-0.0548
-0.0691
-0.0868
-Q.1Q91
-0.1376
-0.1750
-0.2253(1)
-0.2954(2)
-0.3972(6)
-0.451(1)
-0.554(2)
-0.816(9)

P,„(,) (cxZ)
-0.1440
-0.1492
-0.1526
-0.1535
-0.1524
-0.1493
-0.1444
-0.1375
-0.1284
-0.1165
-0.1012
-0.0814
-0.0555
-0.0211
0.0252
0.0891(l)
0.1?96(1)
O.3123(3)
0.515(1)
0.626(1)
0.842(3)
1.41(1)

P,„(2)(o.Z)
-0.1571
-0.1194
-0.0727
-0.0258
0.0218
0.0706
0.1212
0.1742
0.2304
0.2906
0.3560
0.4278
0.5078
0.5982
0.7018
0.8229
0.9671
1.1429(1)
1.3632(1)
1.468(2)
1.649(3)
2.040(3)

P(ccZ)
-0.3011
-0.2692
-0.2277
-0.1845
-0.1393
-0.0920
-0.0421
0.0112
0.0685
0.1310
0.2000
0.2774
0.3655
0.4680
Q.5894
0.7370(1)
0.9214(2)
1.1598(4)
1.481(l)
1.643(3)
1.93v(s)
2.63(2)

Ps(o Z)
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
-0.3088
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To make a more detailed comparison with the o.Z-
expansion calculations we represent the functions P,
Pz„~z~, and P&„~2~ for the s states in the form

bg ———0.142 178, b2 ———0.261 66,
ci ———0.166666, c2 ——1.308 81 . (66)

P, = ai + aznZ+ as(nZ) ln (nZ) + a4(nZ)
P~ (i) = bi ln(nZ) + b2 + bsnZln(nZ)

+b4nZ + bs(nZ)' ln (nZ)
+be(nZ)'+ bp(nZ)

P,„(2) = ci ln (nZ) + c2 + csnZ ln (nZ)
+c4nZ+ cs(nZ) ln (nZ)
+cs(nZ)z + cp(nZ)s. (60)

The coefBcients a, , b;, and c; can be calculated &om our
numerical results for the P(aZ) functions. Such a cal-
culation for the 2s state using the values of the P(nZ)
functions for Z =1,2,3,5,8,15,30 gives

ag ———1.3333, a2 ——3.156,

by ———2.6662, b2 ———0.091,
b3 ———6.02, b4 ———9.98,
ci ——2.0031, c2 ——4.338,
c3 ——6.46, c4 ——5.92 . (61)

The coefEcients aq, bq 2, and ci 2 are in good agreement
with Salpeter's results,

The coefficients bq and cq are in excellent agreement with
Salpeter's results: bq ———0.142 178 and cj ———0.166667.
Adding to the sum b2 + c2 the corresponding coeKcient
from the equation (40), we find that the total coefficient

of the M, contribution for the 2@1 state is 1.43985.
2

The related analytical result obtained in [ll] is —vr =
1.439 90.

The term LE~ ~ does not contribute to the Lamb shift
of hydrogenlike atoms. The contribution of the di6'er-
ence between LE~ ~ and the Salpeter's correction to the
Lamb shift (n = 2) of hydrogen is —1.32(6) kHz. The
corresponding result for the ground state is —7.1(9) kHz.
These results are in good agreement with analytical cal-
culations of the ™~(nZ)s contributions [10,11]. So ac-

2
cording to [10] the total M (aZ) correction, including
the related term from Eq. (40), is —7.4 kHz and —0.77
kHz for the ls and 2s state, respectively. The M (nZ)
correction for the 2pi state found in [ll] is 0.58 kHz. [We

2
2

note that in [ll] a correction of order M (n)z(aZ) for p
states is also calculated. ]

Let us consider the nuclear recoil corrections for hy-
drogenlike uranium. According to the formula (39) the
first correction is

ay ———1.3333, bg ———2.6666,
ci ——2.0000, c2 ——4.318 .

b, = —0.094,
(62)

AEi, = 0.26 eV, AE2, = EE2„——0.08 eV. (67)

Within the errors of the numerical procedure our values
b3 and c3 are in good agreement with the analytical result
of [8,9],

The second correction deffned by (56) is

LEq, ——0.24 eV, AE2, ——0.05 eV,

b3 — c3 ——27t = —6.2832, b3 + c3 ——0 (63)
AE2„~, = 0.01 eV . (68)

(the coefficient bs was first found in [7]). The coefficient
a2 coincides, within the numerical errors, with the cor-
responding coefficient (a2 ——vr = 3.1459) obtained in [7).
The coefBcients b4 and c4 are in satisfactory agreement
with the results of [10],

In the next section we use these results to find the total
nuclear recoil contribution to the energy of the 2p1-2s

2

transition in lithiumlike uranium.

IV. HICH-S LITHIUMLIKE ATOMS

b4 ———10.996, c4 ——5.569 . (64)

Pq„(i) = bi +. b2o.Z+ bs(o. Z) ln (nZ)

+b4(nZ) + bs(nZ) ln (o.Z)
+bs(aZ) + bp(nZ)

P,„(2) = ci+ c2nZ+ cs(o.Z) ln(nZ)

+c4(nZ) + c5(o.Z) ln (nZ)
+c,(o.Z) + cp(nZ)

For the 1s state we have found a similar agreement.
To make a similar comparison for the 2p1 state we

2

represent the functions Pz„~z~ and P&„~2~ for this state in
the form ).(

—1) @i ~(»)&i ~(P2)@ (P3).
3 p

(69)

The nuclear recoil correction for the lithiumlike atom is
the sum of the one- and two-electron corrections. The
one-electron correction is obtained by summing all the
one-electron contributions considered in the preceding
section over all the one-electron states that are occupied.
According to (26), (30), and (35) the two-electron cor-
rections for the state considered here are

The wave function of a high-Z lithiumlike atom with
one electron over the closed (ls)2 shell in the zeroth ap-
proximation is

Using our values of P(nZ) for Z = 1, 2, 3, 5, 8, 15, 30 we
have found

). (alpl~)(~lpla),
&n =&la

(70)
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Ezl'l,'&l ———) ((alpl~)(n~o(~ —z„)~a)
&n =&la

+(~~In(~- —~-)~l~)(~(peal~)),

b.E,(„'('l) ———) (aiD(s —s„)in)
&n =(-1e

x (niD(s —s„)ia) .

(71)

(72)

The terms AE (i) and LE {2 have real and imaginary(int) (int)

parts and are canceled by the part of the one-electron
terms LEt (i) and ZaEEt (2) which corresponds to the 18(2,c) {i,c)

states. So for the (ls) 2s and (ls) 2@7 states the imagi-
2

nary parts of the one- and two-electron contributions are
completely canceled.

We note here that the nuclear recoil corrections for a
high-Z lithiumlike atom with one electron over the closed
(1s)2 shell can be obtained from the nuclear recoil correc-
tions for the hydrogenlike atom by changing the sign of
iO in the denominators of the electron propagator in the
Coulomb field of the nucleus, corresponding to the states
of the closed shell. It follows, in particular, that the sum
of the one- and two-electron Coulomb contributions can
be represented in a simple form:

). 1(~la l~) I

— ) l(~It I")
I )

. (73)
(-n +(-la &n +(-le

Table IV shows the results of the calculation of the cor-
rections (70)—(72) for the (ls) 2pi state [for the (ls) 2s
states these corrections are equal to zero], expressed in
terms of the function Q(nZ) defined by

~E{i~t) ~E(int) ~E(int)
C tv {i) t~{2)

2' m'
(nZ) Q(nZ) . (74)

Here we have taken into account the known nonrelativis-
2

tic liinit of this correction [34]. Within the M (o.Z)
approximation the function Q(nZ) that we denote by
QL, (nZ) is [25]

29 9
Qr(n )= 7Z+ (oZ)',(

——+ ln —
) . (75)

48 8
For comparison, this function is given in the table as well.
The functions Q, (nZ), Q,„(i)(nZ), and Q, (2) (nZ) corre-

spond to the corrections LE~', LEt'{ ), and LE '(2),
respectively. In leading orders in o.Z they are

q, ( Z) = 7+ ( Z)2( —+ ln —), (76)
55 9

Qi„(,l (o.Z) = ——(n Z) (77)

Q,„(2)(nZ) = —(czZ)
49 4 (78)

For low Z, in addition to the corrections considered
here, the Coulomb electron-electron interaction correc-
tions to the nonrelativistic nuclear recoil contribution
must be calculated separately. The main contribution

2 2
from these corrections is of order & (nZ)

Sometimes, to estimate the nuclear recoil corrections

TABLE IV. The results of the numerical calculation of
the two-electron nuclear recoil corrections AR ' ' for the
(ls) 2p7 state of lithiumlike lons expressed in terms of the

2
function Q(uZ) defined by Eq. (74). Ql. (nZ) is the leading
contribution defined by Eq. (75).

Z Q (o.Z) Q,„(,)(o.Z)
5 1.00168 -0.00233
10 1.00677 -0.00938
15 1.01533 -0.02129
20 1.02753 -0.03830
25 1.04359 -0.06077
30 1A)6378 -0.08920
35 1.08851 -0.12422
40 1.11827 -0.16669
45 1.15370 -0.21767
50 1.19560 -0.27853
55 1.24500 -0.35105
60 1.30322 -0.43751
65 1.37198 -0.54091
70 1.45352 -0.66521
75 1 ~ 55087 -0.81573
80 1.66810 -0.99980
85 1.81092 -1.22771
90 1.98751 -1.51431
92 2.07014 -1.65003
95 2.21001 -1.88186
100 2.49719 -2.36503

Q, (2)(nZ)
0.00000
0.00002
0.00011
0.00036
0.00088
0.00186
0.00353
0.00617
0.01019
0.01607
0.02447
0.03625
0.05254
0.07488
0.10538
0.14699
0.20395
0.28250
0.32196
0.39221
0.54826

Q(o.Z)
0.99935
0.99741
0.99416
0.98959
0.98370
0.97645
0.96782
0.95776
0.94622
0.93313
0.91841
0.90195
0.88361
0.86320
0.84052
0.81529
0.78716
0.?5570
0.74206
0.72035
0.68041

Ql, (oz)
0.99935
0.99741
0.99417
0.98964
0.98381
0.97669
0.96827
0.95856
0.94755
0.93525
0.92165
0.90676
0.89057
0.87309
0.85431
0.83424
0.81287
0.79021
0.78078
0.76625
0.74099

for high Z the nonrelativistic nuclear recoil operator is
averaged with the Dirac wave functions. But, as one can
see from the formulas (75)—(77) and Table IV, as in the
one-electron case [see the formulas (37)—(40)], this con-
tribution is considerably canceled by the one-transverse-
photon contribution.

According to [35] the experimental value of the energy
of the (ls) 2p7-(1s) 22s transition in lithiumlike uranium

2

is 280.59(10) eV. Let us find the total nuclear recoil con-
tribution to the energy of this transition. According to
our calculation the term LE' ' is —0.03 eV. Adding to
this value the one-electron contribution defined by (68)
we find

+E(i8)22p +E(ig)22/

This correction is comparable with the uncertainty of
the experimental value and, hence, will be important for
comparison of theory with experiment, when calculations
of all diagrams in the second order in o. are completed.
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APPENDIX

The integration over angles in the expressions considered here is carried out using the formula

) (nq jqlqmqiAinqjqlqm2)(n2jql2mqiBinq jqlqmq)
m2

1= (—I)""' ' ' . (n»~i~11&'lln»zlz)(n»zl211&'lln»~l~) (AI)
2jy + 1

wh~~~ (n~ j~l&ll&'lln2j&l2)»d (n2 j&l2II&'lln& j&l&)»e the reduced patri~ ~l~me~t~ [36]. F» A = nP(r), nP(r) one
can find

CK)

(n»~l~il~4(r)iin. j2l2) = (—I)" '~6V'2j~+ IV'2j2+ I (-I)"~t, t. . . g.„,t, (r)f-„,t, (r)4(r)r'«— — t

CK)

—(—I)' &t, t. . . , f„„,t, (r)g„„,t, (r)P(r)r. 'dr
2 2

(A2)

(n~j~l~lln&(r)lln2j2l2) = (
—I)" ' &&",t", g, , t, (&)g .j ~ ( r)4( r) r'«+&,",,",

0
f-.'.~. (&)f-.'.t. (&)&(&)&'«

(AB)

where

&t,'t'; = v'(2l~+ I)(2l2+ I)(»~+ I)(»2+ I)
l

(A4)

l' = 2j —l; and g st(r) and f ~t(r) are the upper and lower radial components of the Dirac wave function [37]:

( ) = l~ g""( )~r" (n)
( if„,((r)O, ( (n) )
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