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We argue that a photon wave function can be introduced if one is willing to redefine, in what we feel is
a physically meaningful way, what one wishes to mean by such a wave function. The generation of a
photon wave function by a spontaneously emitting atom is discussed.
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I. INTRODUCTION

An intrinsically relativistic particle, the photon fits un-
comfortably within the framework of elementary, nonre-
lativistic quantum mechanics. With no rest mass it can-
not be "stopped, " except by an absorption process that
destroys it; thus separate spin and orbital angular
momentum are not physically meaningful and only a heli-
city can be introduced. Also associated with the absence
of rest mass is the lack of photon localizability first dis-
cussed in detail by Newton and Wigner [1]: There is no
probability density for the position of the photon and
thus a position-representation wave function cannot be
consistently introduced.

This latter property is a disappointment from the per-
spective of quantum optics, where thought and real ex-
periments involving one and few photons abound. Al-
though full calculations can of course always be made
with quantum electrodynamics, one would like to obtain
by introducing one- and few-photon wave functions the
kind of insight achieved in atomic and molecular physics
by introducing one- and few-electron wave functions.

In this paper we argue that a photon wave function can
in fact be introduced, if one is willing to redefine, in what
we feel is a physically meaningful way, exactly what one
wishes to mean by such a wave function. In Sec. II we be-
gin along the naive route one would take to introduce a
photon wave function. After sketching diversions from
this path that have been taken in the past, we introduce
what we feel is a reasonable way to proceed and present
our wave-function description of the photon as a kind of
minimum modification of the naive route. On the basis
of this we construct in Sec. III a second-quantized,
many-photon theory. This reproduces, in the main, the
usual field theory obtained by quantizing the free radia-
tion field. The viewpoint, however, is quite different: the
quantized electromagnetic field is achieved here through
the approach of many-particle physics rather than
through canonical quantization. The single-photon
theory of Sec. II can then be recovered by looking at the
manifold of one-photon states.

That such a photon wave-function perspective is
reasonable and useful can only be confirmed by consider-
ing its description of simple quantum processes. In this
paper we begin such a consideration. After an outline in
Sec. IV of aspects of the Power-Healy transformation [2],
which we wish to employ in treating the interaction of
atoms with the radiation field, we turn in Sec. V to the
calculation of the photon wave function generated in a
single-photon spontaneous emission event. We find that
the wave function generated is a causal field, propagating
away from the atomic source at the speed of light. The
result is discussed in Sec. VI, where we also summarize
the approach we have taken, consider alternatives, and
present our concluding remarks.

As this work was being completed, we became aware of
a publication by Bialynicki-Birula [3] that also addresses
the issue of photon wave functions. The initial perspec-
tives of our two contributions are certainly at least for-
mally different: We begin with the idea of photons as
particles (see Sec. II), while Bialynicki-Birula [3] begins
with the Maxwell equations. Much is similar: We both
end up arguing for the same normalization condition
(2.13), for example, although the definitions of 4'(r, t) we
adopt are different. Despite similarities in spirit, howev-
er, there are issues addressed here that Bialynciki-Birula
does not consider. He considers only the free radiation
field, although in more detail than we do here, and does
not go on to establish a connection between his wave
functions and the usual second-quantized theory; that
connection and the generation of a photon field by spon-
taneous emission are two of the foci of this work.

II. SINGLE-PHOTON WAVE FUNCTIONS

We begin from the simplest point of view, basing our
formulation on two properties we assert for photons:
they can be of positive and negative helicity and, being
massless, the relation between their energy and momen-
tum is E=cp, where p =

~p ~. If we then introduce proba-
bility amplitudes for photons of momentum p and helici-
ty 6, y+(p, t), we would expect these momentum-
representation probability amplitudes to satisfy a
Schrodinger-like equation
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ay~(p, t)
iA =cpy+(p, t) .

c}t
(2.1)
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It is useful to introduce vector amplitudes associated with
r+(p, t), which identify the helicity in three-space. For
each p introduce two unit vectors e, (p) and ez(p) such
that the unit vectors [ei(p), e2(p), p=p/~p~] for a right-
handed triad. %'e introduce helicity vectors associated
with each p;

e+(p) = + —[ei(p)+'e2(p)]V'2 (2.2)

and define the vector amplitudes r+(p, t) according to

r+(p, &)=e+(p)r+(p, &) .

Then we associate

(2.3)

r*+(p r) r+(p r)dp=r '+(p r)r+(p r)dp (2.4)

with the probability of detecting a photon of positive hel-
icity and momentum between p and p+dp and likewise
for photons of negative helicity. Note that

r+(p, t) r (p, t)=0. (2.5)

At this point it is natural to define Fourier transforms
of these functions

(2.6)

BN+(r, t)
iR —=+cA'VX@+(r, t) . (2.7)

From the assumption that we are dealing with a single
photon follows the normalization condition

f [r+(P ~)'r (P i)+r'—(P r) r —(p r)]dp=l:
which is equivalent to

f [4+(r, t) @+(r,t)+@'(r,t) @ (r, t)]dr=i .

(2.8)

(2.9)

Of course, the dynamical equations [(2.1) or (2.7)] guaran-
tee that if Eqs. (2.8) and (2.9) are satisfied at one time,
they are satisfied at all later times. In fact, it follows
from the dynamical equations that

(r i ) f Pr(p0)e icpt /A'eipr/s.
(2M)'

(2.10)

Now the natural temptation is to try and identify the
@+(r,t) as the position-representation probability ampli-
tudes of photons of positive and negative helicity or
perhaps their sum @(r,t)=N+(r, t)+@ (r, t) as the
position-representation wave function of a photon. But
from very general principles Newton and Wigner [1]have
shown (see also Wightman [4]) that the photon, being a
particle of zero rest mass, is not localizable. In particu-
lar, there does not exist a probability density for the posi-
tion of the photon; thus a probability amplitude, at least
in the usual sense of a position-representation probability
amplitude, cannot exist.

To illustrate the consequent difBculties that would en-
sue in practice if one nonetheless insisted on using the

It is then easy to verify that Eq. (2.1) is satisfied if the
@+(r,t ) satisfy

4+(r, t ) as position-representation probability ampli-
tudes, it is useful to compare the photon problem with
that of a (nonrelativistic, spinless) electron. There one
certainly can define a position-representation probability
amplitude, the usual wave function ili(r, t) of
Schrodinger s equation for an electron. Here it is com-
mon to think of "introducing" an electron in a small re-
gion of space at, say, t =0 and following the subsequent
evolution of the wave function. Indeed, this kind of pic-
ture is the basis of Feynman's path-integral formulation
of nonrelativistic quantum mechanics [5]. And of course
one can even contemplate injecting a free electron in such
a manner by, for example, ionizing an atomic bound state
with a very short laser pulse, producing a wave packet of
continuum states initially located in the neighborhood of
the nucleus, but which will then subsequently spread
away from it.

The corresponding "introduction" of a photon into a
system is even easier to imagine: simply start with an
atom in an excited state and let it spontaneously emit. If
one had a reasonable description of a (position-
representation) photon wave function, one would certain-
ly want it to be confined to within c~ of the atom at a
time ~ after the atom was placed in the excited state.
Yet, if @(r,t) or something like it is adopted as such a
wave function, this property does not hold, as we discuss
in Sec. V. This provides a rather striking illustration of
the problem of nonlocalizability discussed in a more for-
mal sense by Newton, Wigner, and Wightman [1,4].
Note that this problem occurs despite the fact that Eqs.
(2.7), which hold the absence of any photon generation,
are clearly local and lead to propagation at the speed of
light.

One way around these difBculties was pointed out by
Jauch and Piron [6], who showed that an operator
representing the number of photons in an arbitrary
volume V can be rigorously defined, but not as the in-
tegral over V of a photon density operator. Earlier, Man-
del [7] had defined an operator representing the number
of photons in a volume V as the integral over V of a so-
called "detection operator" and showed that when the
linear dimensions of V are large compared to the photon
wavelengths this led to a simple formula for the probabil-
ity that n photons are present in V. It was later shown
[8] that Mandel's operator agrees with the rigorous
theory of Jauch and Piron in the stated limit. Cook
[9,10] extended the work to show the existence of a pho-
ton current density operator in such a limit, leading to a
full theory of photon dynamics that he demonstrated was
Lorentz covariant. The vector fields he uses to describe
the photon in fact satisfy Eqs. (2.7) above, although their
physical interpretation is somewhat different.

This school of thought then leads to a focus on what
Cook [10] has called "coarse-grained" photon density
and current density operators. The approach we take
here is different, in that we aim for more "microscopic"
operators. %'e do this, despite the constraints indicated
by the work of Newton, Wigner, and Wightman [1,4], by
redefining what we wish to mean by the position-
representation wave function. Our motivation for this is
massless nature of the photon and is thus related to the
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source of the localizability difficulty pointed out by
Newton, Wigner, and Wightman [1,4].

Return for a moment to the description of an electron
by a wave function %(r, t). We argue that it is physically
meaningful to talk about the measurement of the position
of the electron because there are rest quantities of the
electron, such as its charge e and mass m, which signal
such a detection. Indeed, we can interpret

m %*(r,t)%'(r, t)dr (2.1 1)

as the expected value of the mass to be detected about dr
of r. But for a photon there is no such rest quantity that
can be used to signal detection. What can be used to sig-
nal detection at a certain position is the energy detected.
This suggests that, in attempting to write down a
position-representation wave function, we should be seek-
ing a probability amplitude 4'(r, t) for the photon energy
to be detected about dr of r. The expected value of the
energy to be detected there would then be given by

%'"(r, t ) % (r, t )dr (2.12)

and that still respect the momentum representation dy-
namics (2.1).

Perhaps the simplest way to do that is to set

%(r, t)=%+(r, t)+4 (r, t)

and take the %+(r, t) to be given by

(rt) —f P P y ( t) ipr/a&c d
(2M)" "

Note that like the N+(r, t) the 4+(r, t) satisfy

BV+(r, t)i' =+cfiV X'Ir+(r, t )
at

(2.14)

(2.15)

(2.16)

and its integral over all space would give, or in any case
be proportional to, the expected photon energy. Now
that will be different for different photon states y+(p, t),
so we must give up the idea of a position-representation
wave function %(r, t) normalized in the usual sense.
Rather, we should seek wave functions normalized in the
sense that

f e'(r, t).%(r, t)dr= f cp[y+(p, t).y+(p, t)

+)'*—(p t ) r —(p t ) ]dp

(2.13)

tion we argue that it is only meaningful to introduce a
wave function describing the probability amplitude for
measuring the expected energy of the photon in a given
region of space. It is given by Eq. (2.14) and satisfies the
dynamical equation (2.16), subject only to the initial con-
dition given by the t =0 case of Eq. (2.17). Since y+(p, t )

and 4+(r, t) are not Fourier transform pairs the argu-
ments p (the usual photon momentum) and r (the "pho-
ton position, "more precisely the position associated with
the photon energy) are not conjugate variables. Nonethe-
less, we argue in the following section that the wave func-
tion %(r, t ) is a useful quantity to use to describe the dy-
namics of a photon. In particular, we show in Sec. V that
it leads to a photon wave function propagating at the
speed of light away from a spontaneously emitting atom.

III. MANY-PHOTON STATES
AND SECOND QUANTIZATION

In nonrelativistic many-particle physics [11]one usual-
ly begins with the description of a single particle, be it a
ferinion such as an electron or a (composite) boson such
as He. One can then write down many-particle wave
functions to describe a number of such particles, by tak-
ing antisymmetrized or symmetrized forms of product
wave functions, as appropriate. Such many-particle wave
functions then form the foundation for introducing a
Fock space and second quantizing the system.

Since we now have wave functions to describe a single
photon, we can move along this route and introduce
many-photon wave functions. We plan to turn to the in-
terpretation and use of such many-photon wave functions
in a future paper. In this paper, however, our main in-
terest is in single-photon wave functions and how they
evolve in, say, a spontaneous emission process. Since a
photon is created in such a process, we will need to derive
the wave-function equations from a second-quantized
theory. For use in Secs. IV and V we therefore here
build up a quantum field theory of the free radiation field
from the single-particle description of the results. But
the approach is rather different, since a canonical formu-
lation of the electromagnetic field [12] is not the basis of
the quantization and is not even required; the route, rath-
er, is that of many-particle physics.

To do this and be able easily to compare our results
with well-known expressions, it is convenient to normal-
ize our functions in a cubic box of volume V=L . We
introduce

e+(k)
u+(k;r)—: e' '

Vy
(3.1)

where as usual k = ( k„,k, k, ) =2n. ( n„,n, n, ) /L, where
n, n, n„are integers, not all zero. These are box nor-
malized eigenfunctions for N+(r, t), respectively, in Eqs.
(2.7), with eigenvalues iiicok=—A'c~k~. The orthogonality
conditions are

[cf. Eq. (2.10)].
This then completes our description of the quantum

mechanics of a single free photon. In the momentum
representation we have probability amplitudes (2.3) satis-
fying Eqs. (2.1). The moduli squared of these amplitudes
give the probabilities of detecting the photon with
specified helicity and momentum. They are normalized
in the usual way [Eq. (2.8)]. In the position representa-

u (k;r) u (k;l')dl =5kk ~sr (3.2)

where the subscripts s and s' can be + or —.Instead of
Eq. (2.6) we now have

[cf. Eqs. (2.7)]. However, they must be chosen to satisfy
an initial condition given by the t =0 case of

( r t )
P P

y ( p 0 )e icPt/'se iP r/fi (2 17).&c d
(2M)" "
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%+(r, t)=g ic+(k;t)u+(k;r),
k

(3.3) r}g~(r, t )
ih' =kch'V X fz(r, t)

at
(3.12)

where the cz(k;t) are expansion coefficients and the fac-
tor of i is introduced for later convenience. The normali-
zation condition (2.8) and (2.9) then becomes simply

(3.4)

[cf. Eq. (2.16)], where

y, (r) =y ia~(k)&e~„u+(k;r)
k

(3.13)

k, s

the expected value of the energy is

E=g ficok
~ c, ( k; t )

~

k, s

and the evolution of the @+(r,t) is given by

@~(r,t )=g ic~(k;0)e " u+(k;r) .
k

(3.5)

(3.6)

are the positive and the negative helicity parts of f(r).
From the form (3.13) and Eqs. (3.12) we see that

cVX[g+(r, t)+f (r, t)]=i [f+(r, t)+ft (r, t)],= a
Bt

(3.14)
V.[g+(r, t)+ft (r, t)]=0 .

Maxwell's equations for the free space radiation field
satisfy

The initial condition (2.17) for a photon wave function
then becomes

cV X[E&(r,t)+i B(r, t }]=i [ET(r,t)+iB(r, t)],= a
Bt

(3.15)
V.[ET(r, t ) + iB(r, t) ]=0,

(3.7)iIr(r) =pic, (k;0)QAco&u, (k;r) .
where the subscript on ET(r, t) indicates the transverse
nature of the free-space electric field. Comparing Eqs.
(3.14) with Eqs. (3.15), we are led to identify the operator
for the field combination Er(r)+iB(r) as proportional to
g+(r)+f (r). If we choose that proportionality con-
stant to be 2&2m, we find that

k, s

Second quantization now follows from the usual ap-
proach in many-particle physics [11]; since photons are
bosons the c,(k;0) become operators a, (k), which satisfy
the commutation relations

[a, (k),a,.(k')] =0,
[a, (k),a, (k')]=5„5kk,

(3.8) roa t(k)a, (k) = f [ET(r)+B (r)]dr —g Aro„—.
1 2 2 1

k, s k, s

where [ ] indicates the usual commutator and the Hamil-
tonian generating the dynamics is then

H=g A'ro„a,~(k)a, (k) .
k, s

In terms of the field operator

(3.16)

Since the right-hand side of Eq. (3.16) is, apart from a
constant, the classical energy of the transverse elec-
tromagnetic field and the left-hand side of Eq. (3.16) is
our Hamiltonian, we adopt this identification. This leads
to the correspondence

f(r) =g ia, (k)Qiriro„u, (k;r)
k, s

this can be written as

H= f g (r) g(r)dr .

(3.10)

(3.1 1)

ET(r)=&2m[/+(r)+g~+(r)+g (r)+tpt (r)]
=&2m [f(r)+ft(r )],

B(r)= i&2m[/+(r—} P~+(r) g—(r)+@t—(r)]
(3.17)

Note that there is no "zero-point" energy appearing in
the state expansion Eq. (3.9) of the Harniltonian, just as
there is none that appears when one second quantizes, for
example, the motion of a collection of He atoms; we are
beginning here from the viewpoint of a collection of sin-
gle photons. What is unusual from the viewpoint of
many-particle physics, of course, is the form (3.10) of the
fundamental field operator i|'r(r) [and thus of the commu-
tator of f(r) and f (r')] and of the Hamiltonian (3.11) in
terms of it. The latter, in particular, indicates that the
"existence of the photons" is the energy, a perspective in
accord with the discussion leading to Eq. (2.13).

Equations (3.10) and (3.11),with the fundamental com-
mutation relations (3.8), define the field theory of the
many-photon system. To establish the connection with
the classical radiation theory we note that the dynamical
equations for %(r, t ) in the Heisenberg picture are found,
using the Hamiltonian (3.9) and (3.11) to be

and the resulting expressions
' (&/2)

Er(r)=i g e (k)
27TfKOI

Vk,j

B(r)=i g
k,j

X [a.(k)eik r at(k)e ik r]—
( &/2)

27TACOI

V
[kXe (k)]

(3.18)

X [a (k)eik r at(k)e ik r]—.
J J

Here the ej(k) (j =1,2) label the linear polarizations [cf.
Eqs. (2.2)] and the aj(k)

a, (k) = —( —,
' )' '[a+ (k) —a (k)],

(3.19)
a~(k) = —i( —,

' )'~'[a+ (k)+a (k) ]

are the lowering operators for the linearly polarized
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In the usual canonical quantization procedure the left-
hand side of Eq. (3.20) is, through analogy with classical
electrodynamics, identified as the Hamiltonian of the sys-
tem. This results in a zero-point energy associated with
the vacuum state, which is divergent. Here, where we be-
gin with single particles and build up the many-photon
system, the Hamiltonian is taken to be the left-hand side
of Eq. (3.16); its expectation value in the state with no
photons is zero and energy exists in the system only in-
sofar as there are photons present. The relation (3.16) is
used only to relate the electromagnetic fields to the pho-
ton fields, establishing the connection to classical elec-
tromagnetic theory; although the integral over the
volume of ET(r)+B (r) is divergent, it is not associated
here with the energy of the photon field.

In fact, the expectation value of the operator
g (r).f(r) gives the expected photon energy about dr of
r; that operator can be written as

@ (r) 1t(r)= [E'T'(r) E'T'(r)],= 1

2' (3.21)

where E~T'(r) and E'T')(r) are, respectively, the parts of
ET(r) containing creation and annihilation operators.
The quantity (3.21) is often introduced as an appropriate
measure of the "intensity" to which an idealized detector
is sensitive [13]. Whether or not a given detector is sensi-
tive to (3.21) is of course not of immediate relevance here;
what is of more significance is that it is a reasonable
quantity to come out of a second-quantized theory for the
"field intensity, " given the perspective [see the discussion
of Eq. (2.13)] adopted for the corresponding one-photon
theory.

Having constructed the second-quantized many-
photon theory from the description of a single photon, we
may now extract that single-photon theory out of the
second-quantized description in the special instance when
only one photon is present. If indeed only one photon is
present the ket describing the state is of the form

I:-(t) & =gf„,(t) I 1„,&,
k, s

where

I 1„,&=a,~(k) I &

(3.22)

(3.23)

is the state with one photon in mode k and helicity s and
no other photons present; II & is the ground state with no
photons. The state (3.22) evolves according to

modes. Equations (3.18) are identical to the expressions
obtained in the usual canonical quantization [12] of the
free radiation field. So we have recovered the usual result
and in the process obtained the relations (3.17) between
the electromagnetic field and the fundamental photon
operators f+(r) we have defined here. The result (3.16) is
also found in the usual canonical quantization procedure,
but in. a different form with a different physical interpre-
tation:

1 f [ET(r)+B (r)]dr=gAcok[a, (k)a, (k)+ —,'] .
k, s

(3.20)

I:-(t) &
= U(t) I=-(0) &

—= U(t)
I

=- &,

where the evolution operator U(t) satisfies

(3.24)

=HU(t),
Bt

(3.25)

with H given by Eqs. (3.9) and (3.11). In such a state
(3.22) we obviously have

&:-(t)ly+(r) I:-(t) &
= &:-I@+(r,t) I:- & =0; (3.26)

the one-photon amplitudes %'+(r, t) can be extracted as

%' (r, t)—= &rip (r) =-(t) &

= «lp+(r, t)I=-&

=y if„~(t)QA'~„u~(k;r) .
k

(3.27)

This obviously leads to a form (3.7) for %(r, t) at t =0 and
bracketing Eqs. (3.12) between & I

I
and I:- & leads to Eqs.

(2.16). Further,

% *(r,t) +(r, t) =
& =-(t) If'(r).p(r) I=-(t) &

= &:-
I @ (r, t ).p(r, t ) I:- & (3.28)

so, as expected, the single photon theory of Sec. II is
completely recovered.

IV. ATOM-FIELD INTERACTION

f [ET(r)+B (r)]dr ——g A'cok2 1

8m ks
2

+ p ——A(q) + V, (q),
2m c

(4.1)

where henceforth q and p refer to the position and canon-
ical momentum of the electron, with charge e and mass
m; V, (q) describes the Coulomb potential binding it to
the origin. If as usual we take

' (1/2)

A(r) =g v-
Xe.(k)[a.(k)e' '+a (k)e ' '] (4.2)

for the vector potential A(r), we find that the Hamiltoni-
an (4.1) leads to the correct Heisenberg equations for
both the electron and the electromagnetic field. The
Hamiltonian (4.1) is (except for the lack of the usual
divergent zero-point energy) the conventional one; thus
we can expect the conventional results in the description
of a spontaneous emission process.

%'e are now in a position to address the problem of cal-
culating the wave function of a photon emitted during a
spontaneous emission process. For simplicity we consid-
er an atom consisting of a single, spinless electron bound
to a fixed nucleus; generalizations are straightforward.
As the total Hamiltonian we then take

2

K= f ft(r) @(r)dr+ p ——A(q) + V, (q)
1 e

2m c
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E=EL, +ET, (4.3)

Before beginning to describe the photon wave function
associated with such a process, however, there is a tech-
nical matter with which we deal. Implicit in Eq. (4.1) is
the use of the Coulomb gauge, in which the electric field
is decomposed into a longitudinal and transverse part

but this choice will sufBce for our purposes. We find

P"'"(r)—:SP(r)S ' =P(r),
B"'"(r)—:SB(r)S '=B(r),
qne =—SqS '=q,

while

(4.&)

where EL, describing the Coulorn. b field, depends on the
variables of the electron and ET, the transverse field, is
described by the photons. Since it is only the total E that
is causal [14] and not the separate components, this is not
a convenient representation of the electric field; we would
like a contribution from the photons that itself is causal.
One way around this difhculty is to use the Lorentz gauge
in the description of the electromagnetic field. Another
route, popular in quantum optics where the emitting
species are more often than not neutral atoms, is to use a
decomposition of the total electric field different from Eq.
(4.3). Writing the microscopic charge density in terms of
a polarization potential

ET"'"(r)=SET(r)S '=ET(r)+4mPT(r),
new —S S—1

(4.9)

El (r) = —4m.PI (r), (4.10)

we have

=p ——A(q)= —f f A5(r —Aq)qXB(r)dl, dr,
C C 0

where PT(r) indicates the transverse part of P(r). Since
the longitudinal parts of P(r) and E(r) are easily shown
to satisfy

p(r) =e [5(r—q) —5(r)]= —V.P(r), (4.4) ET'"(r)=E(r)+4mp(r):—D(r) . (4.11)

where P(r) is implicitly an operator in the Hilbert space
of the electron, the approach is to write the total electric
field as

E= —4mp+D (4.5)

o = fP(r). A(r)dr1

Ac
(4.6)

and where the (microscopic) polarization potential P(r) is
given by

P(r)=eqf '5(r —Aq)dA, .
0

(4 7)

Healy [2] has investigated in detail the use of more gen-
eral unitary transformations and polarization potentials,

rather than Eq. (4.3), where D is purely transverse and
describes the photon field. The fields in Eq. (4.5) are of
course purely microscopic; nonetheless, the analogy with
macroscopic electrodynamics would suggest that D itself
should be causal and this is indeed found to be the case.
A concomitant benefit is that the Hamiltonian (4.1) is re-
duced to one in which the interaction of the atom with
the electromagnetic field is expressed in terms of the mul-
tipole moment operators of the atom.

This approach, pioneered by Power and
Thirunamachandran [15] with important contributions
by Healy [16], is well known. It in itself does not relate
to the issue to wave functions for photons, but it will be
convenient to adopt it to then move on to that issue. For
that reason we briefIy summarize the approach here.
Since the Hamiltonian (4.1) is essentially the same Hamil-
tonian that one would write down from the more usual
introduction of a quantized electromagnetic field, what
we do in this section is standard and conventional except
for the identification of that photon fields in Eqs. (4.19)
and (4.20) below.

We move from the original description (4.1) to the new
one by means of a unitary transformation S=exp(io),
where

H= f [D (r)+B (r)]dr ,' gfico„——1

k, s

+H"' fP(r) D(r)d—r

—fM"(r) B(r)dr —
—,
' fM"(r) B(r)dr . (4.12)

Here
2H"' = P +V, ( q) +~2f PT(r)dr (4.13)

is the usual Hamiltonian one would write down for the
bare atom, except for the inclusion of the last term in-
volving part of the (divergent) self-energy of the atom
with the electromagnetic field. Note, however, that the
particle canonical momenta, the atomic Hamiltonian,
and the like are now different operators from the corre-
sponding operators that would result from the field-free
version of Eq. (4.1).

Nonetheless, since the Hamiltonian (4.13) involves only
variables of the electron, we can take the eigenstates to be
the (partly renormalized) eigenstates of the atom. The
last three terms in Eq. (4.12) describe the interaction be-
tween the atom and the radiation field. The quantities
M~(r) and M"(r) are, respectively, the (microscopic)
paramagnetization and the diamagnetization of the atom;
we do not write down the expressions for them here be-
cause we will not need them. In the long-wavelength lim-
it, where the wavelength of the radiation in resonance
with the Bohr frequencies of the atom is much larger
than the size of the atom, the terms in Eq. (4.12) involv-
ing the magnetizations can be neglected; in the same lim-
it, the term involving the polarization simplifies so that
we may write

We can now write the Hamiltonian (4.1) in terms of the
"new" variables. Dropping the superscripts "new" [but
continuing to denote ET' (r) by D(r)] we find after some
algebra the result
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H= J[D (r)+8 (r)]dr —
—,'giitcok+H"' —p D(0),1

(4.14)

where

p—= fP(r)dr=eq (4.15)

D(r)=i g
k,j

( 1/&)
2'Taco k

V

is just the dipole moment operator of the atom. Equation
(4.14) is the form of the Hamiltonian we shall use. From
the unitary transformation involved above it is clear that
the Schrodinger operators for D(r) and B(r) are given by

V. SPONTANEOUS EMISSION

lI(t) ) =b(t)le ) I ) +gfi., (t)lg & I 1„,& . (5.1)

We now turn to the calculation of the photon wave
function generated as an atom spontaneously emits. We
consider two eigenstates of the Hamiltonian H"' of Eq.
(4.13), for simplicity taking one to be the ground state
lg ) and the other one the excited state le ). Our interest
is not in the dressing of these states by the electromagnet-
ic field, so we assume that to a good approximation
lg ) lI = l 6 ) is the ground state of the interacting atom
and the electromagnetic field. We imagine the atom ini-
tially placed in the excited state with no photons present
le ) l

I ) = lI(0)):—lI ). Again ignoring any dressing, this
state will evolve by emitting a photon, leading at a later
time to a ket

27Tf2Q) kB(r)=i g V
[k Xe (k)]

Xej(k)[a (k)e'"' —at(k)e '"'],
(&I2) (4.16)

k, s

We work within the approximation that 6(t) }—= l 6)
and lI(t) }describe evolving states of the system, satisfy-
ing

X[a (k)e' '—at(k)e '"'], lr(t) & =U(t)l», lG(t) &
= U(t)lG &, (5.2)

[cf. Eqs. (3.18)], where again the "new" superscripts on,
e.g., the a (k) have been omitted; in the Heisenberg pic-
ture, it is straightforward to verify that the dynamics for
the electromagnetic field that follow from the Hamiltoni-
an (4.14) are

0=V D(r, t),
O=V B(r, t),

(4.17)
b ( )

ice, t —(I/21gt—
(5.3)

where U(t) satisfies Eq. (3.25), but now with the full
Hamiltonian (4.14); for simplicity we have taken the ener-

gy of the atomic ground state lg ) to be zero. States of
the form (5.1) are calculated, for example, within the sim-
ple Wigner-Weisskopf approximation [17] for photon
emission. There the amplitude b (t) is found to evolve ac-
cording to

D(r, t)=cVXB(r, t),
at

B(r, t)= —cVXD(r, t)+4mcVXP(r, t),a
at

where we have set

P(r, t )—:p(t)5(r), (4.18)

for t )0, where Ace, is the energy difference between the
atomic excited and ground states, g is the excited state
decay rate, and the interaction of the atom with the pho-
ton field is assumed to be "turned on" at t =0. In what
follows we will require only Eq. (5.3), or some other ap-
proximate form for b (t).

Now as the state lI(t) ) evolves we obviously have

and p(t) is the Heisenberg operator for p [Eq. (4.15)].
Finally, we note that the "new" photon fields follow from
Eq. (3.17) and the unitary transformation. Again drop-
ping the "new" superscripts, we have the new relations
for the Schrodinger operators

&r(t)II lr(t) &
= &rip(t)lr & =o,

&r(t)lD(r)lr(t)) = &rlD(r, t)lr ) =o, (5.4)

(4.19)

D(r) =+2m [f+(r)+g+(r)+1i (r)+ g (r) ]

=&2a[f(r)+g (r)],
B(r)= iv'2m[/+(r) —g+(r). g(r—)+f (r—)],

etc., where for simplicity we have assumed that the atom
has no "permanent" dipole moment in its ground or ex-
cited state. Analogous to the treatment at the end of Sec.
III, we now introduce quantities

with of course DGI(r, t ) = & 6(t) ID(r) lr(t) &
=

& 6 ID(r, t ) lr & (5.5)

f+(r) =g ia+ (k)Qfiaiku+(k; r) (4.20) These quantities do not vanish as lI(t) ) evolves. In fact,
we find, for example,

[cf. Eqs. (3.13)]. Equations (4.17)—(4.20), along with the
corresponding equations for p(t), determine the dynam-
ics of spontaneous emission and the concomitant
behavior of the photon field. It is to this we turn in the
next section.

poi(t) = & G(t)
l p lr(t) & = b(t)p„, (5.6)

where the matrix element p, , = & g l p l
e ) . Bracketing

Eqs. (4.17) between & G
l

and lr& we find the equations
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0=V DGt(r, t ),
O=V BGt(r, t),
8

DGt(r, t }=cVXBGI(r, t },at GI

(5.7)

this point we are led to the relation

e(r, t)= fw(r —r')ill(r', t)dr',

where

(5.13)

a BGt ( r, t ) = cV—XDGt ( r, t ) +4mc V X PGt ( r, t ),at

dk e' '
w(r)=

(2m ) 3/A'ck
(5.14)

where

PGI(r, t ) =p, b(t)5(r) . (5.8)

is essentially the nonlocal kernel employed by, e.g. , Cook
[10]. For rAO the expression (5.14) can be directly in-
tegrated; we find

Since the fi„(t) in Eq. (5.1) vanish at t =0, the "GI''
fields are found from the solution of Eqs. (4.7) subject to
the initial conditions

DGI(r, O) =0, BGI(r, O) =0 . (5.9)

Equations (5.7), subject to the initial conditions (5.9), are
just the classical equations for the displacement DGI(r, t)
and magnetic field BGt(r, t) driven by a (admittedly com-
plex) polarization PGI (r, t ). The resulting quantities
DGt(r, t) and BGI(r, t) will obviously be causal fields, i.e. ,
for any t they will not extend a distance beyond the origin
greater than r =et.

Turning now to the photon field, as in Sec. III we ex-
tract the photon wave function 4'(r, t) as

1w(r)=
2(2 )(3/2)Qg (5/2)

(5.15)

VI. SUMMARY

We have argued that it is physically reasonable to in-
troduce a position-representation wave function %'(r, t)
for a photon such that

a result with in fact a sufficiently weak divergence as
r~O that it can be integrated over. But in any case,
since w is nonvanishing for rAO and %(r, t) is causal
function in the sense described above, @(r,t ) will not be:
At arbitrarily early times it will extend out to values of
r%0.

+(r, t }=(G(t)lg(r)lI(t) ) =(G lif/(r, t)lI ) (5.10) %*(r,t) 4'(r, t)d. r (6.1)

and note that the expectation value of the energy density
in the evolving state lI(t) ) is indeed given by

+'(r, t ).+(r, t) = (I(t) lf'(r). f(r) II(t) )

=(Ily'(r, t) f(r, t)lI) .

Finally, from Eqs. (4.19) and (5.10) we see that
' 1/2

(5.11)

1
%'(r, t)=

27'
DGI(r, t) . (5.12)

Thus we find that the photon wave function 4(r, t) is
indeed a causal field, propagating out from the emitting
atom at the speed of light. It is obtained by essentially
solving for the displacement field in a classical radiation
problem, but with a complex polarization source (5.8).
At any time t we identify the integral over all space of
%'*(r,t} 4'(r, t) as the energy "in the photon field"; as t
approaches infinity this integral approaches the expecta-
tion value of the energy emitted by the atom. For finite
times there is a divergent contribution to this energy, but
that is associated in a well-known way with part of the re-
normalization of the transition [18]. All these results are
of course implicit in the solution (5.1) to the spontaneous
emission problem; developing the connection with the GI
fields here merely allowed us to see the nature of the solu-
tion in a simple way and in practice would give a simple
way to calculate it if, for example, the form of b (t) were
assumed or postulated.

We can conclude this section by confirming that indeed
@(r,t) is not a reasonable candidate for the photon wave
function, as discussed in Sec. II. Comparing Eq. (2.10)
with Eq. (2.14) and following through our analysis up to

is the expected value of the photon energy in a region dr
about r. On the basis of this we have constructed a
wave-function theory for a single photon, second quan-
tized it to yield a quantum theory for the free radiation
field, and shown that in a spontaneous emission process
the wave function %(r, t) generated is a causal field, prop-
agating out from the emitting atom at the speed of light.
Perhaps not surprisingly, the wave function 4'(r, t) calcu-
lated for this process is essentially the displacement Geld
that would be found in a kind of semiclassical calculation
of spontaneous emission. That it is the displacement field
rather than the electric field itself follows at a technical
level from the Power-Healy transformation [2] that is
used to help solve the problem. But physically this could
also have been expected: The total "field" associated
with the photon must be both causal and transverse.
Clearly the classical electric field emitted by a dipole does
not satisfy these properties, but the associated displace-
ment field does.

The route we have taken to construct the wave func-
tion %(r, t) is apparently not unique. The adoption of
Eq. (2.15) can be seen as a kind of "minimum
modification" of the function Eq. (2.6) that might more
naively have been expected to be the appropriate wave
function; other equations could have been written down.
And connections with the electromagnetic Gelds other
than Eq. (3.17) could have been chosen [19]. Yet in the
end our route does lead to causal photon wave-function
generation during spontaneous emission.

It could be argued that this result is contrived. One
can certainly expect the electromagnetic field energy gen-
erated in spontaneous emission to propagate in a causal
way and the construction of %(r, t) such that Eq. (6.1)
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gives that energy almost guarantees that %(r, t) will also
propagate in causal way. Indeed, in a sense the result is
contrived. In fact, our object is precisely to contrive a
way of associating wave functions with photons such that
those wave functions behave in a physically meaningful
way and thus can be of some use in understanding the
quantum processes involved. We believe we have suc-
ceeded with respect to the spontaneous emission of a sin-
gle photon. The crucial question is whether something
like this approach can be contrived to yield few-photon

wave functions that are physically meaningful in describ-
ing the quantum processes that generate or modify them.
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