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In this paper, we study the multiphoton Jaynes-Cummings model (JCM) governed by the Milburn
equation [G. J. Milburn, Phys. Rev. A 44, 5401 (1991);47, 2415 (1993)],which models the decoherence
of a quantum system as the quantum system evolves through intrinsic mechanisms beyond conventional
quantum mechanics. We give an exact solution of this equation for the multiphoton Jaynes-Cummings
Hamiltonian and apply it to investigate the inhuence of the intrinsic decoherence on nonclassical effects
(atomic inversion, oscillations of the photon-number distribution, squeezing of the cavity field, and pho-
ton antibunching) in the JCM. It is shown that during the time evolution, the intrinsic decoherence in
the atom-field interaction suppresses these nonclassical behaviors in the JCM.

PACS number(s): 03.65.Bz, 42.50.Dv

I. INTRODUCTION

In the past few years there has been considerable in-
terest in studying the decoherence problem of a quantum
system by means of modifying the Schrodinger equation
[1—7], called the intrinsic-decoherence approach. In par-
ticular, Milburn [8,9] proposed a simple intrinsic-
decoherence model. This model yields a modification of
the von Neumann equation for the density operator of a
quantum system through a simple modification of the
usual Schrodinger evolution. In Milburn s model, the
off-diagonal elements of the density operator are intrinsi-
cally suppressed in the energy eigenstate basis because
the quantum system evolves under a stochastic sequence
of identical unitary transformation, thereby the intrinsic
decoherence is realized.

It is well known that the Jaynes-Cummings model
(JCM) [10] in quantum optics can describe many pure
quantum phenomena, called nonclassical effects, such as
collapses and revivals of the atomic inversion, oscillations
of photon number distribution, photon antibunching, and
squeezing of the cavity field. It has been generally ac-
cepted that these nonclassical effects originate from quan-
tum coherences. Therefore, it is an interesting topic to
investigate the inhuence of the intrinsic decoherence on
the nonclassical effects in the JCM. The purpose of the
present paper is to study the inhuence of the intrinsic
decoherence on nonclassical effects in the multiphoton
JCM [11,12] governed by the Milburn model. We will
show that the intrinsic decoherence in the atom-field in-
teraction modifies the time evolution of the atomic inver-
sion and investigate oscillations of photon-number distri-

bution, quadrature squeezing behaviors of the cavity
field, and photon antibunching.

This paper is organized as follows. In Sec. II, we
present the exact solution of the Milburn equation for the
multiphoton Jaynes-Cummings Hamiltonian and give the
explicit expression of this solution in the two-dimensional
atomic basis. In Sec. III, we examine the effect of the in-
trinsic decoherence on the atomic inversion. Section IV
is devoted to investigating the inhuence of the intrinsic
decoherence on nonclassical effects of the field in the
JCM. Concluding remarks are provided in the last sec-
tion.

II. EXACT SOI.UTIGN
OF THE MII.BURN EQUATION

Consider a quantum system described by the density
operator p(t) Dynamics o.f the system is governed by the
evolution operator 0'(t) =exp( ihtlfi), where —8 is the
Hamiltonian of the system. In standard quantum
mechanics, the change in a state of the system in a time
interval ( t, t +w) is given by

l l
p(t +r) =exp — p(t)exp

which is independent of the size of ~. Milburn [8] re-
placed the above paradigm with some postulates. He as-
sumed that on a sufficiently small time scale the change
in the state of the system is stochastic, the probability
that the state of the system is changed is p (r), which
rejects quantum jumps in the state of the system. Given
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p(t +w) =exp — 8(—r)8 p(t)exp 8—(r)8 (2)

that the state of the system is undergoing some changes,
the density is changed according to the following equa-
tion:

', 8"pg t}8",exp(P~)P(t) = g
k=0 y

exp(S'w)p(t) =exp( iP—v)p(t)exp(iA'r), (7)

which is equivalent to the assumption that on a
sufficiently short time the probability the system evolves
is p (~)=y~. Obviously, the generalized Eq. (3) alters the
Schrodinger dynamics. It reduces to the ordinary von
Neuman equation for the density operator in the limit
'I/' ~ oo ~

Expanding Eq. (3) to first order in y ', Milburn ob-
tained the following dynamical equation:

p(t}=——[u,p] — [u, [u,p]], (4)

which is the Milburn equation which we will study below.
Milburn discussed the solution of Eq. (4) for a harinonic
oscillator and a precessing spin system. Authors in Refs.
[14,15] gave the exact solution of the Milburn equation
for a simple JCM. In what follows we shall consider the
exact solution of the Milburn Eq. (4) for the multiphoton
JCM in the resonant case.

The multiphoton Jaynes-Cummings Harniltonian
[11,12] describing an interaction of a two-level atom with
a single-mode cavity field via an m-photon process in the
rotating-wave approximation is given by

8=A'co 8+&+ &3 + o3+RA, (8' tt™+o+&),

where 8(v) is some function of ~. In standard quantum
mechanics we have p(r) = 1 and 8(~)=v. In the Milburn
theory we only require that p(r) —+I and 8(r)~v for
values of ~ which are suKciently large. Milburn also as-
sumed that lim, 08(~)=80, which eff'ectively introduces
a minimum time step in the Universe [13]. The inverse of
this time step is the mean frequency of the unitary step,
y = I /80.

In Milburn's theory, dynamics of the system are
governed by the following evolution equation:

p(t) =y exp 8 p(t)exp 8 p(—t), (3)
dt iriy Ry

' 8' pgt)exp (8)
2y

where the Hamiltonian 8 is given by Eq. (5). From Eq.
(6) to Eq. (8) it follows that

2y

Pp= 'A'pP—, sp= t [8—,p], f'p= —[8',p] .
r ' ' '

2y
(9)

Substituting Eq. (9) into Eq. (4), we can obtain the for-
m'al solution of the Milburn equation [16,17] as follows:

p(t) =exp(Pt)exp(St)exp( f't)p(0), (10)

where p(0) is the density operator of the initial atom-field
system. We assume that initially the field is prepared in
the coherent state lz & defined by

00 n 00

lz&= &exp( —
—,'lzl'} ', ln &=—g g„ln& (11)

n=0 n! n=0

and the atom was prepared in its excited state le &, so
that the initial density operator is given in the form

lz&(zl o
o o .

L

(12)

8=8,+P„[P„P,]=o,
where

(13)

tt+m/2
0 n —m/2

0 &

g +1' 0
(14)

Similarly, the square of the Hamiltonian (5) can also be
expressed as a sum of diagonal and o6'-diagonal terms in
the form

8'=~+8, [J,k]=0, (15}

Following the approach in Refs. [14,18], we divide the
Hamiltonian (5) into a sum of two terms which commute
with each other, that is,

b, =coo mco, —(5) where

where co is the frequency of the cavity field, coo is the
atomic transition frequency, X is the atom-field coupling
constant, 8 and 8+ are the field annihilation and creation
operators, respectively, &3 is the atomic-inversion opera-
tor, and o + are the atomic "spin Qip" operators which
satisfy the relations [0+,o ]=&3 and [&3 8+] 22'c7+.
For simplicity, in this paper we take A'=1 and the exact
resonance between the fieM and atomic transition fre-
quencies, i.e., coo= m co.

We now start to find the exact solution for the density
operator p(t) of the Milburn Eq. (4) applied to the Hamil-
tonian (5). For convenience, we introduce three auxiliary
superoperators P, S, and f' defined by

f(fi', +)
0

0
S(8,—)

0
(it m /2)d ™—(8' —m /2)

0

with
2

S(R', —) =co
2

+gg+mgm

g(R', +)=co 8'+ +A, tt a™,

(16)

(17)
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For convenience, we introduce the auxiliary operator
pz(t) defined by

p2(t) =exp(St)exp( f't)p(0) . (18)

1

k!
A'kp (t)Nk (19)

Although the above form of the solution of the Mil-

Then, the exact solution of the Milburn equation for
the multiphoton Jaynes-Cummings Hamiltonian in the
resonant case is given in the following form (see the Ap-
pendix):

k

burn equation is pleasant, it is inconvenient in use. In
most cases of practical interest, one needs to know the ex-
plicit matrix elements of the density operator p(t).
Therefore, in what follows we evaluate these elements of
the density operator in the two-dimensional atomic basis.

Since Po commutes with Pt, from Eq. (13) we have

k

l (20)
l=o

It can be proved that when l is an even number, the
off-diagonal term of the operator Po '8z vanishes, then
we find that

IP„"(—)+P"„(—)

while when 1 is an odd number, the diagonal term of the operator Po 'A'z vanishes, and we find that

k —I I
I 2 + [ "(+)—P (+)]

Qgmg+m

[gk( ) yk( )]
Qg+mgm

where the operators ((o„"(k ) and (t „"(+) are defined by, respectively,

tp„(+)=co 8'+ +A,+d a ™,p„(—)=co 8' — +A,V&™t (23)

(()„(+ )=co tt + —
A,+8 8™,(t„(—)=co gag+

mmmm

(24)

Substituting Eqs. (21) and (22) into Eq. (20), we obtain the expression of the kth power of the Hamiltonian in the
two-dimensional atomic basis as follows:

f(k)(+ )

g+m ~(k)(+ )
Qgmg+m

atm 1 r (k)( )
+g+mgm

f(k)( )

(25)

where these operators f„"'(6 ) and g„'"'(k) are defined by, respectively,

fA )( +k) j [g (+k) +Q (+k) ] g~( )( +k) [g)(+k) P (+k) ]

Making use of Eq. (A18) in the Appendix and Eq. (25), we find that
r

JK (t)=8 P2(t)8 — ~(l ) t JR22 t

(26)

(27)

where the matrix elements are given by

~', ", '(t) =f„"'(+))p„(t)f„"'(+)+& g„'"'(—))p2)(t)f„'"'(+)

+fAk)( + )@ (t)~(k)'( g+m+gm~(k)'( )@ (t)~(k)'( )y +m

Jg( )(t) g(kY( )Q+m)p (t)gmg(k) ( )+fA )( )fj (t)pfflg(k) ( )

(k)
(
—)g+~)II (t)f~k)( —)+f (k)( )IP (t)f (k)( —)

(28)

(29)
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Jt'"'(m, t) =(Jt, '"'(t) }+
=~tk) ( )g+~@ (t)f~k)(+. )+j~k)( —)IP (t)j~k)(+ )

+g~~k) ( )g+~@ ( t)g ~k)
( )g™+f~k)( )q/ (t)g ~k)

( )y+~

with

(30)

~(k)'( y ) ~(k)( y )
Qg+mgm

(31)

From Eqs. (19}and (27) we finally arrive at the explicit expression of the of the exact solution of the Milburn equation
for the resonant multiphoton JCM Hamiltonian (5) in the following form:

k=0&'
p(t) =

k=o k.

'k

'k

1

k=ok'

k=o k!

'k

k (32)

Starting with the above solution, through taking the trace over the part of the field in the JCM we can obtain the re-
duced density operator of the atom in this form,

(t)=Trs.idpq t)

k, n =0

k,.=o I '

k k

(nI~', ",'(t) In &

k, n =0
k

&nIJt, ',",'(t)In &

k, n =0

(33)

For late use, we write down the expectation values of the operators Jkt',,
"' (i,j= 1,2) with respect to the number-state

basis,

(nIJN'i", '(t)In & =(f„'"'(+))Ig, (n, t)I +f„'"'(+)g„'"+( —)gi(n, t)$2(n+m, t)

+g„'+' ( —)f„''(+)gz(n+m, t)gi(n, t)+(g„'+ ( —)) Iitt2(n+m, t)I

(nIAfzz'(t}In & =(g„'"'(—)) I/i(n —m, t)I +f„'"'(—)g„'"'(—)$2(n, t)fatti(n —m, t)

+g„'"'(—)f„'"'(—)y, (n —m, t)y;(n, t)+(f„'"(—) )'I y, (n, t) I',
(nIJRzi'(t)In &

=
& nI Jt',",'(t)In &

=f„'"'(+)g„'"'(—)gi(n —m, t)gi (n, t)+f„'"'(+)f„'"'(—)$2(n, t)gi (n, t)

+g„'"'(—}g„'"+ (+ )gi(n —m, t)gz (n +m, t)+f„"'(—)g„'"+ (m, —)gz(n, t)gz (n +m, t),

(34)

(3S)

(36)

where these functions f„'"'(+)and g„'"'(6)can be obtained through replacing the number operator ti in their corre-
sponding operator forms f„"'(6)and g„'"'(2)by the number n The fun.ctions it)(n, t) and $2(n, t) are defined by, re-
spectively,

IP, (n, t) = (nIe, (t) &

=Q„R„'+'(t)exp — S(n, + ) e ™'~,
2y

g (n, t)=—(nI+ (t) &

(37)

=Q„V„''(t)exp — S(n —m, + ) e
y

(38)

where R„'+)(t),V„' '(t), and S (n, + ) are also obtained through replacing the number operator tt in their corresponding
operator expressions (see the Appendix) by the number n
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III. INFLUENCE OF THE INTRINSIC DECOHERENCE ON ATOMIC INVERSION

It is well known that in the JCM the quantum coherences which are built up during the interaction between the field
and the atom significantly acct the dynamics of the atoin [19—21]. The existence of the quantum coherences is the
reason why one can observe collapses and revivals of the atomic inversion. Therefore the intrinsic decoherence should
suppress the time evolution of the atomic inversion. To see this, in what follows we evaluate the atomic inversion in the
resonant multiphoton JCM.

The atomic inversion is defined as the probability of the atom being in the excited state minus the probability of being
in the ground state, i.e.,

( &,(r) ) =Tr[P(t)o, ]

with the help of the identity 8&3=83(Pz Pz ), w—e can express Eq. (39) as the following form:

(39)

(o,(t) ) =Tr exp —(Po ~r ) pz(r)&3 '
~

y
(40)

It is straightforward to write the operators exp[(tly)80] and exp[ —(tly)Pz ] in the two-dimensional atomic basis.
The results are,

eXp —rz O

. y '.

co~t m
exp 8'+

y

2

cot m
exp 8'—

y 2

'2 (41)

exp
I.

A, t~ ~ (~m~+m)

+m mexp — (u+ u )
y

(42)

Taking account into 8'0 and Pz being commutable with each other, from Eqs. (41) and (42) we find that

exp —(80 —8z )

exp —8„(+)y"
exp —8„(—)y"

(43)

where

8„(+)=co 6+
2

—A, a™d™8 ( —)=co 8'—
7l 2

'2
g2g+ mg m (44)

Substituting Eq. (A18) in the Appendix and Eq. (43) into Eq. (40), we have
1

oo

(&3(t) ) = g ~ (nIexp —8„(+) 4'»(t)In )+ (nIexp —8„(—) 4'~~(t) In )
n=0

(45)

Making use of Eqs. (A19) and (A20) in the Appendix and Eqs. (37), (38), and (44), through a lengthy but straightfor-
ward calculation we can obtain the expectation values in Eq. (45). The results are,

p —8„(+)+ (&)I &=IQ„I' p
t 2 2A, t (n+m)!

1/2
z &

(n +m)!
X cos At n!

Ant + m

y

' 1/2
(n +rn)!

n!

2 &
(n+m)!+S1n

nf

1/2
A,cot

sinh
y

n+ m
r

$ /2
(n +m)!

n!
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(n~exp —8„(—) 4zz(t)~n &=)Q„~exp
2A, t (n+m)!

y n!
' 1/2

(n +rn)!
X cos Xt

nf
ANt + m

y

' 1/2
(n +m)!

nf
' 1/2

+ . z &
(n+m)!+sin At

n~

kent
cosh

r
n+-m

1/2
(n +m)!

nf
(47)

Substituting these expectation values into Eq. (45}, we arrive at the final result of the atomic inversion in the simple
form

&83(t) &
= g /Q„/ exp

n=0

1/2
2Azt (n +m)!

2
(n +m)!

cos 2 t
y n'f n! (48)

As expected, from the above expression we see that the revivals of the atomic inversion decay in the time evolution
due to the appearance of the decay factor exp[ 2A, t/—y(n +m)!/n!] in Eq. (48). The decay becomes fast with the de-
crease of the decoherencing parameter y. In particular, in the limit y —&+ ~, the atomic inversion (48} reduces to

' 1/z

(&3(t)&= g ~Q„~zcos 2At (49)
n=0 nf

which is the known expression for the atomic inversion in the multiphoton JCM governed by the von Neumann equa-
tion.

IV. INFLUENCE OF INTRINSIC DKCOHERKNCK ON NONCLASSICAL EFFECTS OF THE FIELD

It is generally accepted that all nonclassical effects in quantum optics emerge as the consequence of quantum interfer-
ence between components of superposition states of light, that is, nonclassical effects have their origin in quantum
coherences. Therefore, the decay of quantum coherences should result in the deterioration of nonclassical effects. In
those situations when it is dificult to observe directly nonclassical behavior of the light field, it is convenient to study
the dynamics of other quantum systems coupled to the light field under consideration. In this section, we investigate
the inhuence of the intrinsic decoherence on nonclassical effects of the field in the multiphoton JCM.

A. Oscillations of the photon-number distribution

As is well known, oscillation of the photon-number distribution in the JCM is a kind of nonclassical effect of the cavi-
ty field. The intrinsic decoherence in the field-atom interaction should result in the deterioration of the oscillating
behavior. To see this, in what follows we discuss photon statistics in the radiation field in the JCM.

The reduced density operator of the cavity field can be obtained by taking the trace of the total density operator p(t)
over the atomic states. That is, pF =Tr„p(t). Then, the probability p (n, t) of finding n photons in the radiation is
found to be

p(n, t)=&n~p~(t)~n &

k

[& n[Jt, ',",'«) ~n &+(n)mz'z'(t) ~n &] .
k

Substituting the explicit expressions of function f„'"'(+)and g„'"'(6)into Eqs. (34) and (35), we find that

(n~JR'ii (t)(n & =4qP„"(+)[(pi(n,t)( + ~gz(n —m, t)~ +2Re[@i(n, t)gz(n+m, t)]j
+ ~~/„"(+) [ [@,(n, t)( + (@z(n +m, t) )

—2 Re[@,(n, t)@z(n +rn, t)] j

+—,'qr„"(+)P„"(+)[[@i(n,t)i —i@z(n +m, t)) ]

(n/JRzz (t)[n &
=

—,'y„"(—)[)zpi(n —m, t)[ + /@z(n, t)[ +2Re[@i(n —m, t)@z(n, t)]j
+—,'cg"(+ ) [ /+i(n —m, t)/ + /@z(n, t)/ —

2Re[@i (n —m, t)@z(n, t)] j
—

—,'cp"„(—)P„"(—)[/@i(n —m, t)/ —(gz(n, t)[ ],
where g, (n, t) and i}'jz(n, t) are given by Eqs. (37) and (38). For later use we give their explicit expressions as follows:

(50)

(5l)

(52)
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1/2
(n +m)!

g, (n t)=Q cos At,
n!

Acket
cosh n+ m (n +m)l

n'!

'1/2 '

+. .
&

(n+m)!+i sin A.t n!

1/2
Mt m

y

' 1/2
(n +m)!

n!

Xexp ~—
I 2

t z m 2 (n+m)!
exp( in c—ot), (53)

n!
$2(n, t)=Q„cosAt,

n —m!

1/2
Acot m

sinh n-"y 2 (n —m)!

' 1/2

n!+i sin A, t
n —m!

'2

' 1/2 IP

Acot m
cosh n-

y 2
n!

(n —m)!

' 1/2

Xexp c0 n +A +A
2y . . 2. (n —m)!'J.exp[ i (n——m)tot] . (54)

With the help of Eqs. (23) and (24) and making use of Eqs. (53) and (54) we can reduce Eqs. (51) and (52) to the simple
form

(nIJK'&& (t)In ) =
4 IQ„I ~ qP„"(+)exp ——y„(+) +(!t„(+)exp ——P„(+)

+2p"„(+)P„(—)cos 2A, t n! exp ——p„(+)P„(+)

2A,~t (n+m)!Xexp
y n! (55)

(nIu2kg'(t)ln &=-,'IQ. I' q'."(—)exp ——v'. ( —) +(!)"."(—)exp ——&'(
' 1/2

n!—2y"„(+)P„"(—)cos 2A, t
(n —m)!

exp ——y„(—)P„(—)
t

2A, ~t n!
Xexp

y (n —m)!
(56)

Substituting Eqs. (55) and (56) into Eq. (50), after summing over k, we arrive at the expression of the probability of
Snding n photons as follows:

p(n, t)= —,'IQ„I 1+exp

' 1/2
2A, t (n+m)!

&
(n+m)!cos 2A, t

y n! n!

+-'IQ. ~l' 1 —exp—
' 1/2

2k2t n! n!
cos 2i.t

y (n —m)! (n m)!—
As expected, from the above expression we can see that the oscillatory behavior of the photon-number distribution is
weakened with the decrease of the parameter y. In particular, in the limit y~+ ~, Eq. (57) reduces to the known re-
sult for the photon number distribution in the resonant multiphoton JCM governed by the von Neumann equation, that
1sp

p(n, t)=IQ„Icos At
(n +m)!

4

1/2 ' 1/2

+IQ„ I" ' At
'"+ "

nt
(5&)

where Q„is given by Eq. (11).
The mean number of photons in the optical field can be calculated from Eq. (57) or from the expression

(8( t) )=Trs, M(pz& 8 ), and is found to be
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&e(t) & =n+
2

m „-"n"
e "g, exp.=O &-'

2A, t (n+m)!
2&

(n+m)!cos 2A, t
y nt n! (59)

where n =
~z~ is the initial mean photon number in the

field. Equation (59) means that the oscillatory behavior
of the mean number of photons in the optical field is
weakened with the decrease of the decoherence parame-
ter y. In the limit y~+ Do, the usual result given by the
von Neumann equation is recovered, i.e.,

& e(t) & =n+
2

1/2
m „-" n" . (n+m)!e ",cos 2i, t

(6O)

From the above calculation, we see that in the time
evolution the additional term in the Milburn equation,
which destroys quantum coherences, leads to the appear-
ance of decay factors in Eqs. (57) and (59) which are re-
sponsible for the destruction of the oscillations of the
photon-number distribution. With the decrease of the
parameter y, i.e., with a more rapid decoherencing, we
can observe rapid deterioration of the oscillatory
behavior of the photon-number distribution.

B. Quadrature squeezing of the field

We now study the quadrature squeezing of the field in
the multiphoton JCM governed by the Milburn equation
and discuss e8'ects of the decoherence on the squeezing.
We introduce the two slowly varying Herxnitian quadra-
ture components of the field X', and X'z defined by, re-

I

spectively,

X' =—'(&e'"'+8+e '"')
1

(61)
X' =—(ne'"' —a+e '"')1

2 2

where d and & are the annihilation and creation opera-
tors, respectively, and co is the frequenc of the cavity
field. The commutation of X', and 2 is [X',g2 ]
=i/2. The variances &(~;) &

=—&2; &
—(&2; &)

(i =1,2) satisfy the Heisenberg uncertainty relation
& (Wi ) & & W, ) &

~
—,', . A state of the field is said to be

squeezed when one of the quadrature components 5', and
X'z satisfies the uncertainty relation &(W, ) & (—,'. The
degree of squeezing can be measured by the squeezing pa-
rameters [22] Sx (i =1,2) defined by

&(~, )'& —
—,'I& pi'„2,] & 1

—,'[& [X'„X',]}[
(62)

S, =2&a+8&+2Re&8 e ' "'
&
—4(Re&Re' '&)

S,=2& tt+a &
—2 Re& a'e"""

&
—4(1m& hei™&)'

(63)

Expectation values for any function F(8+,&) are cal-
culated by the usual manner,

Then, the condition for squeezing in the quadrature com-
ponent can simply be written as S; & 0.

In terms of the annihilation and creation operators of
the field, we readily find that

&F(0+,&) & =Trs„d[pz(t)F(d+,8)]
k

00 00 t,=X X
n=O k=O ,

[&n~iN')i'(tlF(&+, Q)(n &+ &n~JK'iz'(t)F(t+, &)~n &] . (65)

Cxenerally, it is not easy to calculate the expectation value of an arbitrary function F(d, & ) for the field in the JCM.
For the expectation value & de'"'&, through a tedious calculation we find that

00

& le' '& =
—,
' g Q„g„*,exp — [S( n, + )+S(n —1, + ) ]
n=0 2y

X (&n +i n+m )Tiexp —ip„(+)ip„i(+) +(V'n 9'n+m )Tz—exp —y„(+)p„,(+)y" y"
+(&n &n +m )T,exp ——(p„,(+ )p„(+) +(V n +V'n +m )T4

Xexp —P„(+)P„ i(+ )
y

(66)

where

T —[g(+) S( ][/ +) + .S( ) ][/ (+) y(+)][/ (+) .y(+) )

=[g + iS(+)][g(+) .S(+) ][X(+) y(+)][~(+) + .y(+) ]

(67)

(68)
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T = [C'+'+iS'+'][C'+' +iS'+' ][X'+'+iF'+'][X'+' —iF'+' ]

T —[C(+)+iS(+)][C( ) is(+) ][X( )+ iF(+ )][X(+) + F(+) ]

(69)

(70)

where these functions C„'+',S„'+',X„'+',and Y„'+'are obtained by replacing the number operator & in their correspond-
ing operators which are defined in Eqs. (A10), (Al 1), (A13), and (A14) in the Appendix by the number n.

Substituting the explicit expressions of the functions C„'+',S„'+',X„'+',and F„'+'into Eqs. (67)—(70), through a
lengthy simplification from Eq. (66) we obtain the final result,

r

(ae'"') =
—,
' g Q„Q„') '(Vn +V n+m )exp[isa (n)t]exp
n=0

b (n)

2y

b+(n)
+(V n Vn +—m )exp[ i A—a (n)t]exp — t

2y

+(V n V'n—+m )exp[isa+(n)t]exp
c (n)

2y

where

c+ (n)+ ( V n +V'n +m }exp[—ik,a+ ( n )t]exp
2y

(71)

a~(n)=
1/2

(n +m —1)!
(n —1)!

1/2
(n +m)!

n! (72)

bg(n) = co+A,

1/2
(n +m —1}!

(n —1)!

'1/2 '2
(n +m)!

yg
'f

(73)

c~(n) = co+A,
(n +m —1)!

(n —1)!

1/2

+ (n +m)!
n!

1/2

(74)

Similarly, the expectation value (a e' "') can be written as
r

(X)

}=
—,
' g Q„Q„*qexp — [S(n, + )+S(n —2, + )] .
n=0 y

X ~ [V n (n —1)+V'(n +m)(n +m —1)]T)exp —y„(+)y„(+)

+ [V'n (n —1) V'(n +—m)(n +m —1)]T&exp —y„(+)p„&(+)

+[V n (n —1)—V(n +m)(n +m —1)]T3exp —p„z(+)(()„(+)

+ [&n (n —1)+V (n +m)(n +m —1)]T4exp —p„(+)p„&(+)

where

T', =[C„'+'—iS(+'][C„'+',+ S'+', ][X + —.F + ][X + —;F+
]

T' = [C„'+'—'S„'+'][C„'+'—'S„'+'][X„'+' F'+'][X—''+' + F'+' ]
T' =[C(+ +iS +)][C(+) +is(+) ][X(+)+~ F(+)][X(+) .F(+) ]
T' = [C + +is(+)][C(+) S(+) ][X(+)+ F(+)][X(+)+ .F(+)

Making use of Eqs. (A10), (All), (A13), and (A14) in the APpendix, from Eqs. (75) to (79) we find that

(76)

(77)

(79)
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(8 e' ') =
—,
' g Q„Q„'z'[+n(n —1)+V'(n+m)(n+m —1)]exp[i',a' (n)t]exp
n=0

b' (n)

b+(n)
+[&n (n —1)+&(n +m)(n +m —1)]exp[ i—ka' (n)t]exp — t

2y

+ [&n (n —1)—&(n +m)(n +m —1)]exp[isa'+ (n)t]exp
c' (n)

where

(n +m —2)!
p( )

c'+ (n)+ [&n (n —1)—&(n +m)(n +m —1)]exp[ —isa'+ (n)t]exp — t
2y

1/2 1/2

+ (n +m}!
n. 9

(80)

(81)

b~(n) = 2co+A,
(n +m —2)!

(n —2}!

1/2
(n +m)!

n!

1/2 ' 2

(82)

c~(n) = 2co+A,
(n +m —2)!

(n —2}!

1/2 1/2 ' 2
(n +m)!

n! (83)

So far we have completed calculations of all expecta-
tion values needed in the squeezing parameters Eqs. (63)
and (64). It is straightforward to obtain the two squeez-
ing parameters S1 and S2 through the simple substitution
of the expectation values (59), (71), and (80) into Eqs. (63)
and (64). We would not like to write their explicit expres-
sions since they are too long.

We now analyze effects of the intrinsic decoherence on
the quadrature squeezing of the field. It is a well-known
fact that the field exhibits quadrature squeezing in the
conventional JCM governed by the von Neumann equa-
tion [23,24]. Hence, in the JCM governed by the Milburn
equation there exists the quadrature squeezing of the field
when y —++ ~ since the Milburn equation reduces to the
von Neumann equation in this limit. Then, taking into
account Eqs. (59), (71), and (80), from Eqs. (63) and (64)
we can see that the additional term in the Milburn equa-
tion leads to the appearance of decay factors in each term
in the expressions of the squeezing parameters. Thus,
each term of S1 and S2 decays with the decrease of the
decoherencing parameter of y. In particular, for a given
small quantity y, at time 2' t/y » 1, we find that

S, =S,=2~z~'+m &0,
which means that the quadrature squeezing of the field
vanishes with the time evolution. Therefore, we can con-
clude that the intrinsic decoherence suppresses the quad-
rature squeezing of the field in the JCM.

C. Photon amtibunching effect

Photon antibunching [25—27] is one of the best known
nonclassical effects of the light field. To understand the
effect of the intrinsic decoherence on the photon anti-
bunching in the JCM, we examine the behavior of the
second-order zero-time coherence function

((~))' (85)

where 8'=&+8. The photon antibunching exists whenev-
er g' '(0) is less than 1. To establish if the system is pho-
ton antibunching or bunching, we must calculate the two
expectation values (8') and (8' ). Here (n ) has been
evaluated in Eq. (59). And the expectation value (8' )
can be calculated by the manner,

(n ) = g n2p(n, t),
n=0

(86)

where p (n, t) is the photon distribution function given by
Eq. (57).

From Eqs. (57) and (86), we find that

(6' ) =n +(m+1)n+m
m „- (2n +m)

e n"
2 „o n!

2y t (n +m)!Xexp
y n!

1/2
(n +m)!Xcos 2A, t n! (87}

where n = ~z~'.

It is easy to get the exact expression of g' '(0) through
substituting Eqs. (59) and (87) into Eq. (85), but the result
is given as infinite terms that cannot be calculated analyt-
ically.

From Eqs. (59) and (86) we can see that both (n ) and
(8' ) decay with the decrease of the decoherence param-
eter y. In particular, for a given small quantity y, at time
2A, t/y »1, we have (fi') =n+m/2 and '(fi' ) =n'
+ (m + 1)n +m, and we find that
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2m (2m —2)
(2n+m)

(88)

which means that the suppression of quantum coherences
leads to deterioration of the photon antibunching effect.

V. SUMMARY

We have studied the inhuence of the intrinsic decoher-
ence in the atom-field interaction on nonclassical effects
in the multiphoton JCM. We have found the exact solu-
tion of the Milburn equation for the resonant multipho-
ton Jaynes-Cummings Hamiltonian and given the explicit
form of the solution in the two-dimensional atomic basis.
We have investigated in detail collapses and revivals of

atomic inversion, oscillatory behaviors of the field, and
photon antibunching effect in the JCM under the
inhuence of intrinsic decoherence. We have shown that
in the process of time evolution of the quantum system
the intrinsic decoherence in the atom-field interaction
suppresses these nonclassical effects in the multiphoton
JCM.
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APPENDIX

In this appendix, we present the derivation of the exact solution (19) of the Milburn equation for the multiphoton
Jaynes-Cummings Hamiltonian (5).

Taking into account the definitions of the superoperators S and F and the initial condition (12), we find that

pz(t)=exp(St)exp — 8 t p(0)exp — 8 t
1 1

2y 2y

=exp( —iPtt)exp — 8 p, (t)exp — k exp(immit),
2y ' 2y

(Al)

where we have used the property that these operators A'0, 8t, A, and k are commutable with each other.
Making use of the expressions,

exp
2y

exp S(R', +)
2y

exp — S(R', —)
2y

(A2)

exp( i80t)=—
m

exp i cot R'+—
2

m
exp i cot R'——

2

(A3)

we can write (Al) in the simple form

pz(t)=exp( iA't)exp —— 8 p&(t)exp — 8 exp(ill), (A4}

where the auxiliary operator p, (t}is defined by

le(t)&(e(t)l 0
p](t) =

() ()
(A5)

where

l%'(t)}=exp — S(R', +) lze ' '} .
2y

If we notice that the powers of the off'-diagonal operator 8 can be written as

(A6)
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2k

T 2k

Qgmg+m
2

0

0

2k

Qg+mgm
2

(A7)

2k+1 0

2k+1
Qgmg+m g+m

2

gg+mgm

g. m

Qg+mgm
2

Pg+mgm

2k+1

(AS)

then we can write the operator exp[( t l2y )8—] in the form

exp
2y

where

&„")(t)
Qgmg+m

gm f( —
)( )

gg+mgm
(A9)

and

X'„'+'(t)=cosh 8'+ V d 8™
y 2

'( t) =cosh ti — +d+ &
y

(A 10)

$ '+'(t) =sinh R'+ +& &+
y

f (+)(t) h
~t g. m Qg+mgm
y 2

(Al 1)

Similarly, we can write the operator exp( i' t) in t—he two-dimensional atomic basis as

exp( i8zt)=—
where

Q(+)(t)

id+ S„—'+'(t)
Qgmg+m

i3 S„' '(—t)
+g+m~m

Q( —
)(t)

(A12)

and

C'„' '(t) =cos(At+d &™),C'„' '(t) =cos(At+a+ & )

S„'+'(t)=sin(At+& &™),S„' '(t)=sin(At+@+ & ) .

(A13)

(A14)

Then, from Eqs. (A9) and (A12) it follows that

exp( i8zt)exp—
2y

where

p( )(t)

Qg my+ m

p( —
)(t)

gm
Qg+mgm

R„' '(t)
(A15)

k„'"(t)=C'„"'(t)X'„"'(t)+iS„"'(t)$'„"'(t),
0„'*'(t)=C„'"(t)$'„(*'(t)+iS„'*'(tg„'*'(t).

Substituting Eqs. (A5) and (A15) into Eq. (A4), we obtain an explicit expression for the operator pz(t) as follows:

(A16)

(A17)
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4))(t) % )2(t)
(A18)

where we have used the following symbol:

4',,(t)= ~%1, (t) &(%,(t)~ (i,j=1,2),
with

(A19)

(A20)

p= g —,8"p (t)8",
r

where the Hamiltonian 8 and the operator pz are given by Eqs. (5) and (A18), respectively. This is the operator form of
the exact solution of the Milburn Eq. (4) for the multiphoton JCM in the resonant case.

(A21)

where ~%(t) & is given by Eq. (23).
Taking into account the definition of the superoperator R, it is straightforward to obtain the action of the operator

exp(R, ) on the "density" operator p2(t) as follows:
r 'k
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