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Eigenvalues of anharmonic oscillators and the perturbed Coulomb problem in N-dimensional space
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The eigenvalues of the potentials V&(r) = —a /r +br +cr and V2(r) =pr +A,r +qr are obtained in
N-dimensional space by the infinite Hill determinant method for a wide range of values of the parame-
ters. We discuss the explicit dependence of these two potentials in higher-dimensional space. By using
the formalism of supersymmetric quantum mechanics, it is shown that exact solutions of these potentials
exist when the parameters satisfy certain constraints.

PACS number(s): 03.65.Ca, 03.65.Ge, 02.90.+p

I. INTRODUCTION

The problem of quantum anharmonic oscillators has
been the subject of much discussion for decades, both
from an analytical and a numerical point of view, because
of its important applications in quantum-field theory
[1,2], molecular physics [3], and solid-state and statistical
physics [4,5]. Various methods [6—20] have been used
successfully for the one-dimensional anharmonic oscilla-
tors with various types of anharmonicities. Relatively
less attention has been given to the anharmonic oscilla-
tors in higher-dimensional space because of the presence
of angular-momentum states that make the problem more
complicated.

Recently it has been shown that there are many in-
teresting features of the anharmonic oscillators and the
perturbed Coulomb problems in higher-dimensional
space [21—28]. As a result of studies in the far infrared
and microwave regions, there has been considerable in-
terest in the analysis of two- and three-dimensional
anharmonic oscillators [21]. The classical limits of the
two-dimensional and the three-dimensional hydrogen
atom have been studied [24] by using the coherent states.
The connection between the three-dimensional hydrogen
atom and the four-dimensional or two-dimensional har-
monic oscillators has been established by various authors
[25,26]. Vasan, Seetharaman, and Sushama [27,28] have
considered the problem of quantum anharmonic oscilla-
tors on the basis of a radial generalization of the JWKB
quantization rule and derived analytical expressions for
the energy levels. Their results are poor for the ground
state and for the higher anharmonicities. In view of this
it is necessary to study the quantum anharmonic oscilla-
tors and the perturbed Coulomb problem in general N-
dimensional space.

It is we11 known that the Hill determinant method pro-
duces excellent results for both polynomial and nonpoly-
nomial potentials [10,18,29]. To compute the eigenvalues
of a one-dimensional polynomial anharmonic oscillator
by the Hill determinant method we [18] previously used
variational minimization in conjunction with the opera-
tor method of Feranchuk and Komarov [30] to arrive at
the optimal convergence parameter. However, the deter-
minants did not have the convenient banded structure

necessary for a straightforward recursive evaluation.
Agrawal and Varma [31] subsequently improved our
method by using vector recursion relations for calculat-
ing the successive approximants of the Hill determinant.
In this paper we apply the Hill determinant method to
the sextic anharmonic and perturbed Coulomb problems
in N-dimensional space for any angular-momentum state.
Due to the simple structure of both the potentials, the
Hill determinants now have a convenient banded struc-
ture and satisfy the recurrence relations that are used to
evaluate determinants of any order. We obtain highly ac-
curate numerical values for eigenvalues of N-dimensional
anharmonic oscillators and the perturbed Coulomb prob-
lem and compare our results with those given by Vasan,
Seetharaman, and Sushama [27]. We have computed the
eigenvalues for very large values of the parameters. Most
of the approximation methods are valid when the param-
eters are small. Thus, our results with large values of the
parameters may be used to test the e%cacy of any ap-
proximation method.

The perturbed Coulomb

V&(r)= —air +br +cr

and the sextic anharmonic oscillator problems

V2(r) =pr +Ar+rir,

are related in higher-dimensional space and these connec-
tions are checked by employing the Hill determinant
method. The analyticity of the Schrodinger energy levels
for a class of confining potentials (1) have been studied by
Dutta and Mukherjee [32] by using Kato-Rellich pertur-
bation theory for linear operations. The confinement po-
tential (1) is also used for calculation of qq bound-state
masses [33]. Killingbeck [34] has calculated the energy
eigenvalues of the potential (1) by using hypervirial rela-
tions. Exact solutions [35] of the potentials V& and Vz
are obtained by a number of authors in three-dimensional
space when the parameters satisfy certain relations.

Next we study the N-dimensional anharmonic oscilla-
tors and the perturbed Coulomb problem within the
framework of super symmetric quantum mechanics
[36—38]. The ideas of supersyminetric quantum mechan-
ics have been used for the study of atomic systems [38],
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the evaluation of the eigenvalues of a bistable potential
[39], the improvement of the large-N expansion [40], the
analysis of all known shape invariant potentials [37], and
the development of a more accurate WKB approximation
[41]. Dutt, Khare, and Sukhatme [37] have obtained the
analytical solutions for shape invariant potentials. We
have shown that the supersymmetric quantum mechanics
yields exact solutions for a single state only for the quasi-
exactly-solvable potentials of type (1) and (2) in
dimensional space with some constraints on the coupling
constants. We use these analytic results to compare our
numerical results obtained by the Hill determinant
method and find excellent agreement. We have also
shown that for a certain choice of parameters, the first
column of the Hill determinant vanishes and produces
the supersymmetric quasi-exactly-solvable potentials for
the N-dimensional anharmonic oscillators and the per-
turbed Coulomb problem.

II. SCHRODINGER EQUATION
IN N-DIMENSIONAL SPACE

The radial wave Schrodinger equation for a spherically
symmetric potential V(r) in N-dimensional space

1 d R+N —1 dR l(l+N —2)
2 dr r dr 2r

= [E—V(r) ]R (3)

with eigenvalue

and the Coulomb problem in N-dimensional space is re-
duced to a harmonic oscillator problem in (2N —4)-
dimensional space.

It should be noted that the eigenvalue EcLH(a, b, c) of
the Coulomb plus linear plus harmonic (CLH) potential
has the following scaling properties in N-dimensional
space for any angular-momentum state:

EcLH(a, b, c)=a EcLH(l, b/a, c/a ),
EczH(O, b, c)=b ~ ECLH(0, 1,c/b ~ ),
Ect H(0~0&c) =c EcLH(0&0~ 1 )

(loa)

(10b)

(10c)

The energy eigenvalue EAHo(p, l, , q) of the anharmonic
oscillator (AHO) potential (2) has the scaling properties

this transformation, in general, the N-dimensional radial
wave Schrodinger equation with angular momentum l
can be transformed to a (2N —4)-dimensional problem
with angular momentum 21+ l. If we choose a = I/~Et
the perturbed Coulomb problem (1) with eigenvalue E
can be transformed to a sextic anharmonic oscillator
problem

2+ b 4 C 6

is transformed to

d y (M —1)(M —3) + V( ) =2E (4)
dr 4r

EAHo(P&~& 9) P EAHO( 1 ~/P' 9/p

AHo( ~~~~)=~' EAHo(Oi 1~21/~

EAHD(0~0~'9)=8' EAHo(0 0 1) .

(1 la)

(1 lb)

(1 lc)

where g, the reduced radial wave function, is defined by

g(r)=r R (r)

and

(6)

It should be noted that N and l enter into expression (4)
in the form of the combination N +2l. Consequently, the
solutions for a particular central potential V(r) are the
same as long as N+2l remains unaltered. Thus the s-
wave eigensolutions (y) and eigenvalues (E) in four-
dimensional space are identical to the p-wave two-
dimensional solutions.

We substitute r =up /2 and R =F(p)/p and trans-
form Eq. (3) to another Schrodinger-type equation in
(N'=2N —4)-dimensional space with angular momen-
tum L, =2l +1,

1 d F N' —1 dF L(L +N' —2)
dp p dp 2p

where

~ —1 (p)=Ea p ap V(ap /2)—

and a is a parameter to be adjusted suitably. Thus, by

III. SUPKRSYMMETRIC POTENTIALS

Since the equation (4) for the reduced radial wave y(r)
in the N-dimensional space has the structure of the one-
dimensional Schrodinger equation for a spherically sym-
metric potential V(r), we may compute the superpoten-
tial [36,37]

V~(r)=W (r)+W'(r), (12)

which has a zero-energy solution, and the corresponding
eigenfunction is given by

y(r)-exp +I"W(r)dr (13)

In constructing these potentials one should be careful
about the behavior of the wave function y(r) near r=O
and r ~ ao. It may be mentioned that g(r) behaves like
r' ' near r=o and it should be normalizable. For
the CLH potential (1) we set

W(r) =a &/r +ao+a, r (14)

and identify the + sector (i.e., W + W') with the
effective potential so that

V+(r) = —2a/r +2br +2cr +(M —1)(M —3)/4r 2E—
=8' +8" .
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The potential (1) admits the exact solutions (unnormal-
ized)

and substitute (28) into (24). We obtain the following re-
lations for proper normalization of the wave function:

b (M —1)r 2a
R (r) =r'exp — — r

4a
(16)

A. =O,

PkPk +QkPk —1+R kPk —2+ kPk —3+ TkPk —4

with the eigenvalues

1 b(M —1) b(M —1)+
2 2a 2a

under the constraints

4a
(M —1)

(17) p —) p —2 p —3 0

with

(29)

b (M —1 ) =2a V 2c

For the AHO potential (2) we set

W(r) =a &/r +a, r +a3r

(18)

(19)

and identify the — sector (i.e., W2 —W') with the
e6'ective potential so that

Pk =k (M+k —2),
Qk =2a —p(2k +M —3),
Rk =2E +P —a(2k +M —4),
Sk =2(aP —b),
Tk =ct 2c

(30)

4r
The eigenvalue condition of the Hill determinant for
large n is

In this case the potential (2) admits the exact solutions

DetD„=O (31)

R(r)=r exp — r — r&2g 4

4 2&2'

with the eigenvalues

A,M
EAHO

2&2g

(21)

(22)

S3
D„=

4

0 0 0 0 0

Q ~ ~ ~

Q ~ ~ ~

P4
~ ~ ~

Pi 0

Q2 P2

R3 Q3 P3

S4 R4 Q4

T5 S5 R5

(32)

where the parameters satisfy the supersymmetric con-
straints

2@= —&2g(M+2) .
2'

IV. HILL DETERMINANT APPROACH

(23)
The zeros of D„as a function of the parameter E give

the energy eigenvalues of the problem. We can use the
following recurrence relation for D„ for evaluation of
determinants of any order:

D„=Q„D„) P„,R„D„2—+P„)P„2S„D„3
A. CLH potential —P„1,P„2P„3T„D„4 (33)

g "(r)+f (r)g'(r)+P(r)g (r) =0

by substituting

(24)

R (r) =r'exp — r —Pr g (r), —Q'

2

where

The radial wave Schrodinger equation for the CLH po-
tential is reduced to

with D0=1.
It may be noted that when T4=S3=R2=Q, =0, the

Hill determinant vanishes and we get the supersymmetric
solutions (17) with the constraint (18). When b =c=O,
we set a=O so that Sk=Tk=0 for all k. By setting
Rk =0 or E = —p /2 we get the solutions of the
Coulomb problem in N-dtmensional space with Qk =0 or
p=2a/(2k +M —3), k =1,2, 3, . . . , so that the eigenen-
ergies are given by

f (r) =(M —1)/r —2P —2ar,
P(r) =(2a MP+P)/—r +2E+P —Ma

+2(aP b)r +(a —2c—)r

(26)

(27)

k k =1,2, 3, . . . . (34)
(2k +%+21—3)

B. AHO potential

Next we try a series solution for g (r)

k+A.

k=0
(28)

For the AHO potential (2) we substitute

R(r)=r expr 'ar ,'Pr ] g pkr"+—— ——
k=0

(35)
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o.=0,
UkPk + Vkr k —2+ ~k+k —4+XkPk —6+ ~kr k —8 &

(36)

P —2=7 —4=7 —6=0

with

k=2, 4, 6, . . .

into the radial wave Schrodinger equation (3) and obtain
the relations

0

0

X, re V, U6 0

F8 Xs 8'8 V8 U8

&io Xio ~jo Vio

DetDn =0,
with

V2 U2 0

8'4 V4 U4 0

(38)

Uk =k (M+k —2),
Vk =2E —p(M +2k —4),
Wk =P~ —2p —a(2k +M —6),
Xk =2(ap —&),

1k =(x —2g .

(37)

The eigenvalue condition of the Hill determinant for
large n is now

U2n —2 U2n —4 U2n —6 ~2n n —4 (39)

with Do =1.
It may be noted now that the Hill determinant van-

ishes when V2= 8'4=X6= 78=0 and we obtain the su-
persymmetric solutions (22) under the constraint (23).
When X=g=0 we set ~=O so that Xk = Yk =0 for all k

The energy eigenvalues of the problem are obtained
from the zeros of DetDn as a function of the parameter
E. The determinants now satisfy the recurrence relations

Dn V2n Dn —1 U2n —2 ~2n Dn —2+ U2n —2 2n —4 2n

TABLE I. The first four eigenvalues of the potential V(r) = —a/r +br +cr having supersymmetric
character for l=0, 1,2 in three- and four-dimensional space.

Hill determinant method

with determinant

of size 200X200

Results of supersymmetric

quantum mechanics

[Eq. (41)]

12

10

14

1

32

1

32

1

32

1

32

1

32

1

32

—7.625 000
—0.606 517

1.773 300
3.418 695

—7.375 000
—2.048 308

0.567 860
2.402 064

—7.125 000
—2.795 083
—0.215 883

1.682 357
—7.500 000
—1.449 294

1.105 228

2.865 414
—7.250 000
—2.480 227

0.134448
2.011 818

—7.000 000
—3.025 529
—0.499 358

1.404025

—7.625

—7.375

—7.125

—7.5

—7.25

—7.0
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Hill determinant method
with determinant of size 150X 150¹3 N=4

TABLE II. The first four eigenvalues of the potential
V(r) =r for l=0, 1,2 in three- and four-dimensional space.

interactions in three- and four-dimensional space:

V" '(r) = ——+ r + r4 1

r 32

N=3, I =0,
(41a)

1.855 757
3.244 608
4.381 671
5.386 614
2.667 830
3.876 793
4.926 994
5.877 881
3.371 785
4.468 303
5.451 836
6.357 305

2.279 586
3.566 111
4.656 734
5.633 500
3.029 958
4.177 230
5.192033
6.119223
3.697 190
4.750 893
5.706 563
6.592 069

2

R io(r) =exp — 4r—

8 1
VI '(r) = ——+r + r

r 32

N=3,

r
Rz, (r) =r exp — 4r—

59
21

(41b)

and the Hill determinant reduces to a tridiagonal form.
Now we make Wk =0 by setting P =2@ and we obtain
the solutions of the harmonic oscillator problem in N-
dimensional space with VI, =0 or

Ek =
—,'+2@(N+21+2k —4), k =2,4, 6, . . . . (40)

12 1

~
+'+ 32'

N=3, I =2,
rR3z(r)=r exp — 4r— (41c)

U. RESULTS AND DISCUSSIQN

We consider the following supersymmetric potentials
having exact eigenvalues and eigenfunctions for the CLH

E

V& (r)= ——+r+ r(4) 6 1

32

TABLE III. The first four eigenvalues of the linear plus Coulomb potential V(r)= —1/r+br for I=0,1,2 in three- and four-
dimensional space.

Space
dimension

(N) b =10
—0.499 850
—0.124 401
—0.054 212
—0.028 885
—0.124 501
—0.054 312
—0.028 985
—0.016472
—0.054 511
—0.029 183
—0.016670
—0.009 110
—0.221 922
—0.079 102
—0.039 033
—0.021 760
—0.079 252
—0.039 182
—0.021 909
—0.012 383
—0.039 429
—0.022 154
—0.012 627
—0.006 413

b =10
—0.498 501
—0.119063
—0.042 629
—0.009 692
—0.120057
—0.043 617
—0.010673

0.009 877
—0.045 525
—0.012 532

0.008 061
0.023 553

—0.219 235
—0.071 214
—0.024 085

0.001 107
—0.072 685
—0.025 533
—0.000 320

0.017230
—0.027 817
—0.002 523

0.015 095
0.029 107

b =10
—0.485 144
—0.069 671

0.051 428
0.127 259

—0.079 193
0.042 232
0.118323
0.1781 47
0.026 915
0.104051
0.164 626
0.216 557

—0.193 304
—0.002 928

0.088 658
0.154 878

—0.015 987
0.076 339
0.143 104
0.198405
0.059 793
0.127 732
0.183 881
0.233 187

b =0.1

—0.360 900
0.299 259
0.641 155
0.907 033
0.222 076
0.570 525
0.840 710
1.073 065
0.478 196
0.756 605
0.994 601
1.207 858
0.021 697
0.452 842
0.749 997
0.996 221
0.363 768
0.669 269
0.921 012
1.142 792
0.557 036
0.836 302
1.063 443
1.269 568

b=1

0.577 930
2.450 169
3.756 911
4.855 676
1.974 219
3.335 505
4.468 125
5.472 600
2.863 086
4.039 438
5.074 146
6.015 910
1.400452
2.930040
4.133481
5.178 865
2.446 730
3.700 636
4.779 150
5.749 901
3.242 828
4.359057
5.356 976
6.273 484

6.143 45
13.418 40
19.024 80
23.878 09
10.946 47
16.855 80
21.897 04
26.420 83
14.578 48
19.83042
24.501 20
28.779 78

8.797 03
15.22404
20.510 35
25.183 73
12.842 79
18.381 54
23.222 23
27.61608
16.19924
21.218 59
25.742 18
29.917 18

b= 100

34.90445
66.436 91
91.606 54

113.650 38
54.435 97
81.096 53

104.071 09
124.789 53
70.356 51
94.321 00

115.733 72
135.402 04
45.369 45
74.008 68
97.970 33

119.306 98
62.681 65
87.84409

109.981 73
130.148 28
77.598 61

100.570 87
121.346 09
140.561 56

b = 1000

174.867 14
317.064 44
432.184 54
533.511 73
260.284 58
382.478 03
488.239 30
583.823 12
332.275 22
442.652 32
541.482 07
632.367 99
219.991 29
350.574 32
460.620 82
558.920 52
297.434 18
413.106 14
515.171 17
608.297 88
365.308 27
471.256 50
567.220 97
656.066 63
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10'

10'

10'

10'

10

18 557.57
32 446.08
43 816.71
53 866. 14
26 678.30
38 767.93
49 269.94
58 778.81
33 717.85
44 683.03
54 518.36
63 573.05
18 739.41
32 998.40
44 818.59
55 373.17
18 633.09
32 923.73
44 757.63
55 320.33

22 795.86
35 661.11
46 567.34
56 335.00
30 299.58
41 772.30
51 920.33
61 192.23
36 971.90
47 508.93
57 065.63
65 920.69
23 058.09
36 318.50
47 690. 14
57 975.03
22 978.30
36 257.36
47 638.57
57 929.54

%=4, l =0,
(41d)

TR,c(r) =exp — —4r

Eio= 7.5

Vi &(r)= — +r+ r10 1

32

%=4,
p2

R2&(r) =r exp — 4r— (41e)

E~) = —7.25;

Vi '(r)= — +r+ r14 1

T 32

%=4, 1=2,
TR 3z(r) =r exp — 4r— (41f)

E32= —7.0 .

TABLE IV. The first four eigenvalues of the potential
V(r) = —a/r +br +cr for large values of the parameters b and
C.

We apply the Hill determinant method to these poten-
tials. Our calculations (see Table I) agree very well with
the exact eigenvalues of the supersymmetric potentials.
The first four eigenvalues of the linear potential V(r) =r
are presented in Table II for 1=0,1,2 in three- and four-
dimensional space. Next we consider the elementary
quarkonium potential V(r) = —1/r +br problem and ta-
bulate the first four eigenvalues in Table III for a wide
range of values of b. The eigenvalues for difFerent values
of o and b for the potential V(r) = —a/r +br may be ob-
tained by using the scaling properties (10). The eigenval-
ues of the potential V(r) = —1/r +br for large values of
b are approximately given by

E(l,b)=b E(0, 1),
where the eigenvalues E(0, 1) are presented in Table II.
The error involved in applying this formula is about 6%
for b= 1000 and the error decreases with increasing b. In
Table IV we present the first four eigenvalues of the
—a/r+br+cr CLH potential as obtained by the Hill
determinant method for high values of the parameters in
three- and four-dimensional space. We consider deter-
minants of size 200X200, which yields very accurate re-
sults.

We know from (8) and (9) that the perturbed Coulomb
problem with supersymmetric potentials VI~& { " &(r) in
four-dimensional space having exact solutions can be
transformed in the sextic anharmonic oscillators (8) in
four-dimensional space with eigenvalues (9). We com-
pute the eigenvalues of these conjugate anharmonic oscil-
lators f 'i "" '(r) in four-dimensional space by the Hill
determinant method using Eqs. (38) and compare our re-
sults in Table V with the exact values given by (9). A
number of supersymmetric anharmonic oscillators may
be constructed from (23) that admit exact solutions.
These eigenvalues are checked by the Hill determinant
method. In Table VI we present the first two eigenvalues
of the anharmonic oscillators V2(r)= —,'(r +r ) in two,
three, and four-dimensional space for l=0, 1, and com-
pare our results with those available in the literature.
The agreement is in general very good.

The supersymmetric quantum mechanics yields exact
solutions for a single state only for a potential of type (1)
or (2) with some constraints on the coupling constants.
These correspond to the vanishing of all the elements of
the first column of the Hill determinants (32) or (38). Our
method is applicable to any general perturbed Goulomb
potential or anharmonic oscillator and produces excellent
results for the low-lying states. It gives the exact solu-

(4)TABLE V. The eigenvalues of the conjugate sextic anharmonic oscillators f i (r) = r'
+[1/2(7 5) i ]i + '

p P'I &(p)=@2+[1/2(7 $5)3i2]&4+ ' i and /~6&{&)=72+[1/2(7)'i ]&.

+ ' r6 are compared with the exact values [Eq. (9)].

Conjugate sextic
anharmonic oscillator

1 i(r)

f",4&(r)
1)' ( 5 &( & )
t)'6&(r)

Hill determinant method
with determinant
of size 150X 1SO

4.381 780 461
7.427 813 527

10.583 005 244

Exact value
[Eq. (9)]

4.381 780 459
7.427 813 526

10.583 OOS 240
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N l

2 0

3 0

4 0

Hill determinant method
with determinant
of size 150X150

1.560 968
6.4S7 470
3.574 964
9.593 364
2.516698
7.994 722
4.727 768

11.251 982
3.574 964
9.593 364
5.968 601

12.969 261

JWKB
results

1.55

3.572
9.593 37
2.507

4.729
11.252 1

Exact
value

1.560 968

3.574 964
9.593 359
2.516 698

4.727 768
11.251 968

TABLE VI. The first two eigenvalues of the potential
V(r)= —'(r +r ) as obtained by the Hill determinant method
are compared with the JWKB results [27] and the exact values
[27].

Hill determinant method. A class of conjugate anhar-
monic oscillators having exact eigenvalues may be con-
structed from the supersymmetric perturbed Coulomb
potential. The scaling properties (10) and (11) of the ei-
genvalues may be used to find the eigenvalues for
different values of the parameters. In Table VI we notice
that the eigenvalues of central potential V(r) are identi-
cal for %=2, I=1 and N=4, l=O states. This is because
M =X+2l remains unaltered for these states. The re-
currence relations (33) and (39) may be used to find the
zeros of the higher-order determinants.

Finally, it should be mentioned that the expectation
values (r") can also be calculated approximately by this
method for potentials (1) and (2) by using first-order per-
turbation result [18]. The eigenvalues of the potential (1)
for large values of the parameters are given in Table IV.
These results may be used to test the efficacy of any
method proposed to tackle quantum-mechanical prob-
lems.

tions of the Coulomb and the harmonic oscillators in N-
dimensional space. The perturbed Coulomb problem and
the anharmonic oscillator in N-dimensional space are re-
lated through Eq. (8) and are verified in Table V by the
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