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Position-dependent effective mass and Galilean invariance
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Instantaneous Galilean invariance is used to derive from first principles the expression for the Hamil-
tonian of an electron with a position-dependent effective mass, as well as the adequate boundary condi-
tions for the wave function in the case of abrupt heterojunctions. A very elementary model sustaining
these results in the envelope-function approximation is also proposed.

PACS number(s): 03.65.—w

I. INTRODUCTION

The study of semiconductor heterostructures [1] (and,
more generally, of inhomogeneous crystals) has given rise
in the past decade to an extended discussion concerning
the use of simple effective-mass model descriptions (relat-
ed to the envelope-function approximations [2—4]) for the
dynamics of electrons in such systems [5—17]. The main
points in debate have concerned the following:

(a) The boundary conditions at abrupt interfaces,
characterized by discontinuities in the mass function M
[5,7,8,9,11,12]. While one keeps to the continuity of the
wave function, the question concerns the replacement of
the continuity condition on its derivative by a condition
involving the (discontinuous) mass M.

(b) The form of the kinetic Hamiltonian [7—9,13—17).
How is one to generalize the usual expression

1
Hk;„— P2'

if the mass m becomes a spatial function M(X) (P and X
being, respectively, the momentum and positron opera-
tors)'? Indeed, M(X) no longer commutes with P, which
makes Hk;„non-Hermitian if one simply replaces m with
M(X) in (1.1). The point is that there are many different
ways to generalize (1.1) in order to obtain a Hermitian
operator; for instance, the two-parameter family

H„;„=,'(M PM&PM&+M—&PM&PM )

with a+P+y = —1 (1.2)

(about which we will have more to say later).
(c) The very applicability of the concept of a position-

dependent eff'ective mass [6,10]. As the notion of mass in
nonrelativistic quantum theory is closely linked to the
Galilean invariance of the theory for free particles, it has
been argued that the obvious lack of Galilean invariance
in inhomogeneous crystalline structures would invalidate
the use of a nonconstant effective mass [6].

Now, most specific studies comparing exact treatments
of simple models (such as Kronig-Penney lattices), with
their effective-mass approximate calculations, have led to
the agreement that, in many cases, the following con-
clusions are valid —taking up the above questions in re-
verse order:

(c) The idea of a position-dependent effective mass
M (X) is consistent and useful.

(b) The correct kinetic Hamiltonian is

1

2M (X)
(1.3)

II. INSTANTANEOUS GALILEAN INVARIANCE
AND THE HAMILTONIAN

For a single "nonrelativistic" quantum particle, the
functional form of the Hamiltonian in terms of the
canonical operators (X,P) is governed by Galilean invari-
ance [18]. More precisely, a free particle is characterized
by its mass m, a constant specifying the relevant unitary
projective representation of the Galilean group, and its
Hamiltonian reads

(a) The correct boundary conditions for the derivative
of the wave function 4 consist in requiring the continuity
of [1/M (X)](d4/dx).

This work is devoted to sustaining and strengthening
these conclusions from a more fundamental point of
view; that is, by basing them on considerations of Galile-
an invariance [18],as adapted to the present situation. In
other words, not only does the use of position-dependent
effective mass give correct approximations, but it is also a
conceptually consistent approach.

We will first show how the idea of instantaneous
Galilean in variance offers a well-defined and useful
framework for the concept of a position-dependent mass
and leads to a specific family of acceptable Hamiltonians.
Consideration of the ensuing Schrodinger equation then
allows a derivation of the appropriate boundary condi-
tions, and its application to the case of abrupt interfaces
enables one to select the unique form (1.3) for the kinetic
Hamiltonian. Finally, the Appendix offers a very elemen-
tary discrete model of a heterojunction, which enables
one to discuss the approximate validity of the boundary
condition. Let us point out here that the validity of the
effective-mass description for abrupt heterojunctions
gives novel interest to the standard textbook problems of
elementary quantum mechanics with Hat potentials (step,
barrier, and Kronig-Penney models) generalized to the
case of a position-dependent mass [19].
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p2
Ho= + Wo,

2m
(2.1)

From (2.5) and (2.6), we may derive the equivalent
commutation rules:

where Wo is a constant (internal energy). For a particle
subjected to external forces, complete symmetry under
the Galilean group is obviously broken; however, an ar-
gument based on a partial symmetry, namely, invariance
under instantaneous Galilean transformations, dictates
without ambiguity the following form for the Hamiltoni-
an:

[K,X]=0,
[K,P) =imI,

[K, V] =iI,

(2.9a)

(2.9b)

(2.9c)

and from (2.9a) and (2.9b), it now follows, according to
the canonical commutation rule

p2H= + W(X),2' (2.2)
[X,P]=iI,

that the generator K must read

(2.10}

proving that interaction has to be specified only through a
potential function W(X). We are going to show that the
argument may be generalized most naturally to the case
where the mass is no longer supposed to be a constant but
may depend on the position of the particle (and possibly
on time).

Let us first briefly recall the derivation for the standard
case of constant mass. For simplicity, we stick to the
one-dimensional case. In classical mechanics, a Galilean
transformation effected at the instant to, with velocity v,
transforms the position x and momentum p of a particle
with mass m according to

(2.11)

(up to a trivial additive constant). From (2.9b) and (2.9c),
it is seen that

[K,P mV]—=0, (2.12)

P —mV=A(X) . (2.13)

Similarly, one easily computes the following commutator:

implying, because of (2.10), that P —m Vis a function of X
only (and not P):

x'(r) =x (r) v(t —t, )—, (2.3a) [K,H —
—,'mV ]=m[X,H] — [X, V ]=imV —imV=0 .

p'(t)=p(t) —mv . (2.3b} (2.14}

An instantaneous Galilean transformation, effected at the
very instant to = t, thus is defined by

(2.4a)

Hence, H —
—,'m V is a function of X only:

H —
—,'m V = W(X) .

Finally, the Hamiltonian takes the form

(2.15)

p'=p —mv . (2.4b)

U(v)XU '(v) =X (2.5a)

In the same way, we may always define, for a quantum
particle, a unitary transformation U(v), implementing
the instantaneous Galilean transformation with velocity v
and acting on the canonical pair of operators X and P ac-
cording to

H= [P —A (X)] + W(X),1

Zm
(2.16)

that is, is characterized by a "vector" potential A (X) and
a scalar one W(X}. For the one-dimensional case, the
"vector" potential A (X) may be eliminated by a simple
phase transformation, so that we recover the common
form (2.2) of the Hamiltonian.

U(v)PU '(v) =P mvl . — (2.5b) III. CASK OF POSITION-DEPENDENT MASS

V=i [H,X] (2.6)

the velocity of the particle, we want the following trans-
formation law to hold:

U(v)VU '(v)=V vI . — (2.7)

We now require the standard Galilean transformation law
for the velocity operator V to be valid. Namely, if H is
the Hamiltonian and

It is a simple matter to generalize the argument if the
mass is no longer supposed to be a numerical constant m
and becomes instead an operator function M(X). Indeed,
the very fact that ins'tantaneous Galilean transformations
do not modify the position [see (2.5a)] means that they
are quite indifferent to a possible position dependence of
the mass. That is the crucial point that allows a con-
sistent generalization of the preceding argument. %e
thus modify the transformation law for the momentum
(2.5b) in

Because (2.5) defines U(v) without ambiguity, and be-
cause V depends on H through (2.6), the condition (2.7) is
in effect a constraint on the Hamiltonian. To exploit it,
let us introduce the infinitesimal generator E of instan-
taneous Galilean transformations through

U(v)PU '(v) =P —M(X)v,

yielding the commutator

[K,P]=iM (X)

(3.1)

(3.2)

U(v)=exp(ivK) . (2.&) instead of (2.9b). From (2.9a) (unchanged), it follows that
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K is only a function of X:

E =N(X) .

The canonical commutation rule now implies that

[EC,P]= [N(X),P]=iN'(X) .

(3.3)

(3.4)

Q(x)= ——[M (x)]"=—— +-1M' 1M"
4 2 M3 4 M~

(3.14)

The Hamiltonian H i thus is of the general form (3.11),as
expected. In terms of H&, the general Hamiltonian H
may be rewritten as

[N(X},[H,X]]=I . (3.5)

From the Jacobi identity, it follows that since
[X,N (X)]=0, this may be rewritten as

The function N giving the generator K in (3.3) thus has M
as its derivative, generalizing (2.11). Consider now the
constraining condition on H, that is, (2.9c). It reads, ac-
cording to (2.6) and (3.3),

H= P— P+ Wo(X)=1 I
2 M(X)

1 ~ 1 1

4 M(X) M(X)

with the relationship

Wi (X)= Wo(X) +Q (X) .

(3.15)

(3.16)

[ X, [ N( X), H]]=I .

Comparison with (2.10) now shows that

[N(X),H]=i [P —A (X)] .

(3.6)

(3.7)

where A (X) is an arbitrary and, as above, inessential
"vector" potential, which we eliminate. The final condi-
tion on the Hamiltonian H reads

[N(X),H]=iP . (3.8)

It may be checked easily that a simple solution (for a
Hermitian Hamiltonian) is

Indeed,

1 1

2 M(X)
(3.9)

[N(X),HO]= —N(X), P P1 1

1 1 1 1

2
=—[N (X),P] P+ P[N —(X),P]

=iP (3.10)

H= PP+ W—o(X) .1 1

2 M X (3.11)

Instead of Ho (3.9), we could have chosen another par-
ticular solution of (3.8); for instance, the rather natural
one:

when use is made of (3.2) and (3.3). As a consequence,
the difFerence H' Ho (between the m—ost general solution
H and the particular one Ho) commutes with N(X) and
must itself depend on X only. The general Hamiltonian
thus reads,

Hi,;„= PP—+ Wi,;„(X},1 1

2 M X (3.17}

with the condition that the term 8'&;„be a functional of
M, possibly involving its derivatives. Dimensional argu-
ments now require this term to be homogeneous of degree
(
—1) in M and of degree ( —2) in X. Analyticity condi-

tions precluding nonintegral powers of the derivatives of
M and, finally, the condition that for a constant function
M(X)=m one recovers the usual expression, implying
that the derivatives of M must appear with positive (in-
tegral) powers, lead to two possible terms only in Wi,;„.

M' M"
Wi,;„—I,

3 +p
M M

(3.18)

This result may be used to prove that the most general
kinetic Hamiltonian (under the conditions we have stat-
ed) is precisely of the form (1.2). Indeed, using the stan-
dard commutation relations, one may check the following
relationship:

H„;„= (M PM~PM~+—MrPM~PM )
=1

1 1 M' 1 M"=P P+ —(a+y+ay) ——(a+y)
2M 2 4 M'

The preceding remarks sufBce to prove that one should
not identify a priori Ho (3.9) to the purely kinetic term of
the Hamiltonian nor Wo in (3.11) to the potential, since,
indeed, Hi (3.12) and Wi (3.16) may qualify also, as well
as an infinite number of other possibilities.

It is possible, nevertheless, to restrict the form of pure-
ly kinetic Hamiltonian to a rather specific class. We start
from the idea that the kinetic Hamiltonian must depend
only on the mass function M. Accordingly, it will take
the general form (3.11)

1 q 1 1

4 M (X') M (X)
(3.12)

(for a+P+y= —1) . (3.19)

However, it is easily seen that It is sufficient to relate the coefficients (a,P, y) in (3.19)
and ( A, ,p ) in (3.18) through

1 1

4 ' M(X)
=Q(X) .

where the function Q is defined according to

(3.13)
,'(a+y+ay)—=A,, —

—,'(a+y)=p

to identify (3.17) and (3.18) with (1.2).

(3.20)
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IV. SCHRQDINGER EQUATIGN
AND THK CONTINUITY CONDITIONS

kind invitation to the University of Genoa, where I could
test some of these ideas.

We will now show that, among the general class of
kinetic Hamiltonians just discussed, it is indeed Ho (3.9)
that must be chosen as the kinetic Hamiltonian. The
time-dependent Schrodinger equation derived from the
general Hamiltonian (3.11) rules the wave function 4'(x, t)
according to

18 1 B% + W(x)% .
2 ax M(x) ax

(4.1)

(4.2)

If we let c. go to zero, the right-hand side vanishes, prov-
ing the continuity of [1/M(x)](B+/Bx ), from which fol-
lows that of 4 itself. We thus have the following.

Continuity conditions for variable mass: for bounded
but possibly discontinuous mass and potential functions
M (x) and W(x), the wave function %(x, t) and its deriva-
tive divided by the mass [1/M(x)](8%/Bx) are continu-
ous ln X.

It may now be seen that any other choice than (3.9}for
the kinetic Hamiltonian would lead to inconsistencies in
the simple case where the mass is discontinuous and there
is no potential. Let us, for instance, choose the kinetic
Hanultonian H, (3.12) and suppose M(x) to have a
(finite) discontinuity at the point xo. Then, according to
(3.13) and (3.14), the Schrodinger equation for H, is
equivalent to that for Ho with a fake potential term g (x)
exhibiting a derivative of the Dirac function in xo.
Q(x) ~5'(x —xo). The above reasoning breaks down, as
the right-hand side in (4.2) will contain a singular un-
bounded term in xo. The same can be said for any other
choice of the kinetic Hamiltonian except Ho, since, ac-
cording to (3.18), the right-hand side will contain terms
in 5' and, worse, in ( ( 5 ) ) . Finally, it may be said that
the kinetic Hamiltonian Ho is singled out by the require-
ment of a consistent continuity condition for the cases
with discontinuous mass.

We have already stressed in Sec. I the practical interest
of the cases where the mass function M (x) shows discon-
tinuities. It is thus necessary to inquire about the con-
tinuity conditions on the wave function. As a matter of
fact, it is no longer the derivative BV/Bx itself but rather
the combination [1/M(x)](BV/Bx] that must be made
continuous. Indeed, this may be proved through a simple
extension of the usual textbook argument. Let us start
from the Schrodinger equation (4.1) and suppose the mass
M(x) and the potential W(x), as defined by the choice
(3.11), to be bounded on some interval around the point
xo, while 4 is twice differentiable in x (and once in t) In-.
tegrating between xo —c. and xo+ c,, we obtain

xo+c,
xo+6 . 8%=2f W(x)%' i —dx .

xo —~ xo —s Bt

APPENDIX: A SIMPLE EXAMPLE
OF THK ENVELOPE-FUNCTION APPROXIMATION

The most elementary model of quantum propagation in
a lattice is a discrete one in which localized states, form-
ing a basis, are attributed to each site x„=na (n integer).
The Hamiltonian is supposed to have, besides its diagonal
matrix elements Eo, only nearest-neighbor nondiagonal
matrix elements —A. The eigenvalue equation for the lo-
calization amplitudes u„= (x„ i u ) of a stationary state u

then reads

AQ~ i+E()Q~ AQ~ + i
—EQn

The standard solution of this recursion relation is

(Al)

Q„=ce'" +de

yielding a permitted band

E =ED —2A cosa

(A2)

(A3)

for the energy. From the amplitudes (A2), one may
define the envelope-function

tp(x) =ce't'"+ de

with

(A4)

a

being the quasimomentum, so that

u„=y(x„) .

At the bottom of the band, one may write

(A6)

E =ED —22+ (a=p/a ((1),
Q

(A7)

which is the dispersion relation for a free quasiparticle
with effective mass

a
2A

(A8)

Now, this rudimentary model is easily extended to het-
erostructures by giving different values to the matrix ele-
ments of the Hamiltonian in different regions. Consider
an abrupt heterojunction with the matrix elements

Eo, n (0
H„„= —,'(Eo+E'0), n =0

E'0, n &0
(A9)

n& —1
Hnn+& g n &0
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so that the eigenvalue equation reads like (Al) for n (0,
with (Eo, —A) being replaced by (E'0, —A'} for n )0,
and, for n =0,



POSITION-DEPENDENT EFFECTIVE MASS AND GALILEAN. . . 1849

The general solution is of the type

ce'" +de '"' n ~0
n c'8 ~ +j'8 7l)0

with the necessary condition

c +d =c'+d' .

(Al 1)

(A12)

The left and right derivatives now read

=p'(c' —d'),
x =0+

=p(c —d) .
x=O—

(A16)

A (c —d)sina= A'(c' —d')sina' .

Consider now the envelope function

ce'i'"+de '~", x (0
c'e'~ "+d'e '~" x )0

(A13)

(A14)

Using in (A10) the expressions (Al 1) for n =61, and tak-
ing into account (A12), we immediately derive a second
compatibility condition:

Using (A13) and (A15), we see that

, sina' By sina By
a' Bx c+ a Bx

(A17)

Finally, by remembering that one is dealing with the
case a,a'«1 and that effective masses may be defined
according to (A8) (and similarly m'=a /2A'), we reach
the condition

with

CX, CX

(A15)

1 By 1 By
m'Bx o+ m Bx

(A18)

The continuity of y at the junction is ensured by (A12).
that is, a continuity condition for the derivative of the
wave function divided by the mass.
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