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The pseudomomentum is conserved for a single charge in any constant (over space and time) elec-
tromagnetic field. It is also conserved for a neutral two-body system, not only in a pure (constant) mag-
netic field, but also in a pure (constant) electric field, and explicit wave equations can be written. A neu-
tral two-body system in a constant electric field is treated in a way that parallels our previous approach
to this system in a constant magnetic field. Relative motion is separated, but the relative time now sur-
vives, whereas a spacelike degree of freedom gets eliminated. In other cases, there is, in general, no evi-
dence of a closed form of the wave equations, but conservation of the pseudomomentum can be required
as a reasonable condition for implicitly determining the so-called “three-body terms” in the wave equa-

tion.

PACS number(s): 11.80. —m, 03.65.Pm, 12.60.Rc, 11.30.—j

I. INTRODUCTION

In the framework of Galilean mechanics, it is well
known that the pseudomomentum of a single particle
with charge e is conserved in a constant magnetic field.
This result was implicitly contained in an early paper by
Johnson and Lippmann [1], where the center of the orbit
was treated in terms of operators. In fact, the center of
the Landau orbit has a simple relationship with the pseu-
domomentum three-vector C=p-+e A which is con-
served if the vector-potential A generates a constant
magnetic field (constant in space and time). Under very
general assumptions, a similar result holds for a system of
several charges undergoing mutual interactions in addi-
tion to their coupling with a constant (external) magnetic
field [2,3].

When the total charge is not zero, the components of
the pseudomomentum vector have nonvanishing Poisson
brackets (or commutators) among themselves. But these
commutators are proportional to the total charge and
vanish for globally neutral systems. Thus in the special
case of neutral systems (not necessarily two-body systems
in the Galilean theory), the three components of C can be
simultaneously diagonalized with the energy, which per-
mits the disentanglement of the relative motion from
center-of-mass dynamics. Even in the nonrelativistic
theory, this separation is not a trivial issue when external
fields are present (but this point is often overlooked be-
cause most treatments available in textbooks just neglect
recoil effects). So, the conservation of pseudomomentum
is a fortunate result, especially when the system under
consideration is neutral.

For a single particle, the relativisitic version is straight-
forward. But many-body systems require more caution.
Recently we have investigated a relativistic generalization
of these matters for the case of a system made of two sca-
lar particles [4]. Indeed a covariant Hamiltonian theory
of interacting particles (treated as a system with a finite
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number of degrees of freedom) is quite possible [5-7].
We refer to situations where pair creation and annihila-
tion can be neglected, whereas other relativistic effects
are significant, as they occur for instance, in atomic phys-
ics. Although a general Hamiltonian framework exists
for N-particle systems, almost all tractable or well-
understood relativistic models presented in the literature
concern two-body systems. For two-body systems, the
relationship between relativistic Hamiltonian dynamics
and the standard methods of quantum-field theory [in
particular, quantum electrodynamics (QED) and the
Bethe-Salpeter equation] has been well established [8,9].
Actually, a lot of technical simplifications are possible
only in this case. Therefore we have essentially focused
on the two-body problem. We have considered a system
of two spinless relativistic particles interacting between
themselves, as well as with an external electromagnetic
field. Even if we know the interaction terms in closed
form when no external field is applied, a preliminary
problem is to write down the wave equations explicitly in
the presence of an external field. This complication stems
from the use of a pair of coupled equations [5-7,10] in
order to describe a two-particle system. As these equa-
tions have to be mutually compatible, it turns out that
relativistic interactions cannot be linearly composed.

A problem of this kind was first solved by Bijtebier [11]
for the case of an external potential that is static in a
unique way (the laboratory frame is uniquely defined in
space time). But if a constant electromagnetic field is
purely magnetic in some frame, this frame cannot be
unique. This remark was among the motivations for un-
dertaking a systematic generalization. We undertook ex-
hibiting a general symmetry ensuring the construction of
wave equations in closed form for a two-body system sub-
mitted to an external field [4]. This work resulted in an
ansatz that can be carried out, in particular, when the
external field is constant in space and time and purely
magnetic in some frame.
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According to this construction, and for neutral systems
only, the four-vector C*=T7(p*+eA“) is conserved in a
magnetic field, and we have proved that its components
commute among themselves. These results enable one to
separate relative motion and to eliminate the relative
time from the wave equations, which seems to promise a
covariant relativistic theory of the Zeeman effect, includ-
ing recoil.

In their formal simplicity the covariant formulas ob-
tained in [4] were strongly suggesting that a similar
analysis could also be carried out in the case of a constant
electric field, which is of interest, for instance, in the hope
of a relativistic theory of the Stark effect.

Let us stress that in both the magnetic and electric
cases, we are concerned with a theory that is nonlinear in
the field strength. In the magnetic case, strong fields are
relevant because they exist in the real world: very strong
macroscopic magnetic fields are believed to be present on
the surface of neutron stars. And the search for a relativ-
istic two-body theory in strong magnetic fields has
motivated various investigations [12]. In contrast, it
seems that strong macroscopic and permanent electric
fields are not present in nature [13].

Nevertheless, quadratic terms in the electric field are
significant in perturbative expansions: already in the
nonrelativistic theory of the Stark effect, it is necessary to
retain these terms because the effect is of second order.
And finally in both cases, the conservation of the pseu-
domomentum of neutral systems is an exact result that
takes into account all nonlinear terms.

In the magnetic case, a detailed nonrelativistic theory
is well known [2,3,14] and the physical meaning of the
pseudomomentum three-vector is clearly understood. For
the moment, it seems that the similar theory correspond-
ing to the purely electric case has not received as much
attention (see, however, a digression in Ref. [3]). This is
not surprising: for a single particle the nonrelativistic
analog of C is simply mx—eEt, and its conservation
trivially yields the initial value of velocity; for a two-body
system, the nonrelativistic pseudomomentum reduces to
m X, +m,X,—(e;+e,)Et and gives information on the
initial value of the center-of-mass velocity. In particular
it trivially reduces to the linear momentum m X, +m,x,
in the neutral case (still, the relevance of a charged sys-
tem should have motivated more developments).

A covariant relativistic treatment is desirable, anyway:
First, for the sake of a unified approach. Second, because
the nonrelativistic approximation is hardly reasonable in
the charged case, as it allows for uniform acceleration of
the center of mass and therefore leads to its infinite
asymptotic velocity.

Not only shall we consider the electric and magnetic
cases in parallel ways, but we shall also intend, as much
as possible, to deal with an arbitrary combination of both
fields (Sec. III). Section IV is devoted to the case of arbi-
trary charges in a constant electric field, and Sec. V deals
especially with a (globally) neutral system in such a field.
The signature is + — — —, and Greek labels =0, 1, 2, 3.
They will be omitted whenever possible, and the contrac-
tion of indices is denoted by a dot: for instance, £-F
stands for £ F"*, and similarly, §-F-n=§,F"'n,.

PHILIPPE DROZ-VINCENT 52

II. ONE-PARTICLE DYNAMICS IN THE EXTERNAL
ELECTROMAGNETIC POTENTIAL

In this section we collect useful results about the
motion of a single scalar particle in an external field. In
the quantum theory the wave equation is a Klein-Gordon
equation with a squared-mass operator of the form

2K =p2+2G . 2.1)

The scalar interaction term G will currently be referred
to as the potential (not to be confused with the elec-
tromagnetic vector potential).

For the moment it is not necessary to assume that the
field one applies to the particle is purely electric or mag-
netic. We consider a constant, but otherwise arbitrary
electromagnetic field and review some properties of one-
body motion in this field.

We first notice that the classical equations of motion
can be explicitly integrated [15]. In the quantum equa-
tion of motion we use the operator K=1(p—ed )? and
the Lorentz-covariant gauge

A=1q-F . (2.2)
Hence we compute

[p,A]=—éF. (2.3)
According to (2.1) the interaction term is

2G=—eAd-p—ep-A+e?d?. 2.4)

Now the following result is straightforward: The pseu-
domomentum defined as the four-vector p+eA is con-
served. That is to say,

[pt+ed*,K]=0, (2.5)

as we can see by computing the commutator [p#-+eAH,
pY—eA"], which turns out to be zero, taking the gauge
(2.2) and the standard commutation relations into ac-
count. In the presence of a constant magnetic field this
result is already contained in the paper by Johnson and
Lippman, who have also considered a relativistic equa-
tion of motion [1]. But we wish to emphasize that our
covariant derivation is valid for all kinds of electromag-
netic fields, provided it is constant in space and time.

The four-vector p+eAd is a natural generalization of
linear momentum when a constant electromagnetic field
is applied to the charge we consider. Its physical
relevance is well established in the purely magnetic case.
In other cases its physical interpretation is clarified if we
remark that (2.5) could be alternatively derived from
stress-energy tensor considerations.

However, its components do not commute in general,
and we find

[pt+eAdAt,p¥+eAd¥]=ieFH” . (2.6)
Beside pseudomomentum, what are the other constants
of the motion? The answer to this question depends on
the form of the field tensor F. When G admits some
directions of translation invariance in a strong sense that
we have earlier defined (s-translation invariance [4]), oth-
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er conserved quantities can be found. But a systematic
search of all first integrals will be displayed in a separate
work; here, we simply focus on pseudomomentum.

We have previously pointed out [4] that a strong
translation invariance arises when F is purely magnetic.
One of the main goals of this paper is to show that a con-
stant electric field enjoys a similar symmetry.

Remark: since pseudomomentum is conserved anyway
in the one-body sector (assuming a constant field), it may
seem at first sight unnecessary to pay so much attention
to the special cases of s-translation invariance. The
reason why we insist on this special symmetry is that it
will be of great practical interest when turning, in the
next section, to the two-body sector.

Let us recall exactly what we mean by s-translation in-
variance. G is said to be strongly translation invariant
along a space-time direction w when

[vaG]:O ’ 2.7
[w-p,G]1=0. (2.8)

The directions like w in Egs. (2.7) and (2.8) will be called
longitudinal. They span a linear space of four-vectors
(the longitudinal space), say, (E, ). If this linear manifold
is not tangent to the light cone, there is a unique c-
number tensor T projecting any vector onto (E;). In
view of the second equation above, it is clear that, in the
case of strong translation invariance, the longitudinal
projection of p is a constant of the motion. Indeed w-p
commutes with both pieces of K, and this holds true for
all longitudinal direction w. In few words the s-
translation invariance of G implies an ordinary transla-
tion invariance of K along the direction w.

Constant electric field

In the rest of this section we consider the motion of a
single charge e in a constant electric field. We assume
that the electromagnetic tensor F g is purely electric in
some frame. So there exists some timelike constant unit
vector # “ such that

*F,guf=0, 2.9

where the asterisk refers to the dual tensor. Such a vector
is by no means unique. Indeed, taking a frame adapted to
u we can look for a spacelike constant unit vector v ¢ such
that

*F 0P=0 . (2.10)

Equation (2.10) reduces to *F,.jvf =0, which admits non-
vanishing solutions because the rank of * F;; cannot be 3.
Any linear combination of # and v is a null eigenvector
for *F,z. We can require that «-v=0, but the couple
u,v is fixed only up to a Lorentz rotation in its plane (E).
In contradistinction, the plane (E) spanned by « and v is
intrinsically defined once F,z is given. A frame adapted
to the field is an orthonormal tetrad €,), where €, and
€3) belong to (E). In such a frame the only nonvanishing
components of %F are *«F,=—xF,;,. Now it is not
difficult to check that the only nonvanishing components
of F are
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FO—=_F03

Proof. F=—xx%F, so F!° is
N1023( * F)®, where * F?* is zero, etc.
In a frame adapted to the field we have

proportional to

A°=Lq°Fg+4°F%); .11)
hence,

A'=1g F'' +¢,F*)=0, (2.12)

Ar=L(qoF%+q,F?)=0 . (2.13)

The vector-potential A is now fully contained within the
two-plane (E).

Notice that the application of a constant field does not
completely destroy translation invariance. Indeed, it
stems from (2.3) that for any constant four-vector w,

[p-w, A= —éwaF")‘ .

If now w®=w3=0, we find that

[w-p,4*]=0, (2.14)

which in turn implies
(wp, 4-pl=[wp,p-4]=[wp, 4%]=0 .

Therefore, if G is given by (2.4), Eq. (2.8) is satisfied.
Since w-p obviously commutes with the free-particle
Hamiltonian 1p 2, we finally get [w-p,K]=0. Sow-pisa
constant of the motion provided w is orthogonal to (E).
In other words, the two-dimensional Abelian group gen-
erated by the components p,, p, of p“ keeps being a sym-
metry.

We claim that this symmetry is a strong translation in-
variance in the sense of Ref. [4]. Indeed we have just
proved (2.8), so the only point left to be checked concerns
the vanishing of [w-q,G ], thus finally the vanishing of
[w-g,p-A] and [w-q,A-p]. But direct computation
yields iw- 4, which is precisely zero since we assume that
w is orthogonal to (E).

Finally (E) is the transverse plane in the terminology
of [4] and it must be noted as (Er). In an adapted frame
the directions 1, 2 are longitudinal, whereas 0, 3 are
transverse (it was the reverse in the magnetic case). For
instance, A* has only transverse nonvanishing com-
ponents, and these components depend on transverse
variables only.

III. TWO-BODY SYSTEM IN THE EXTERNAL
ELECTROMAGNETIC FIELD

When pair creation can be neglected, a system of two
interacting relativistic particles is reasonably described
by two coupled wave equations [5] of the form

2H,2H,¥YV=m2¥, a,b=1,2, (3.1)

where 2H |, 2H, are suitable generalizations of the indivi-
dual Klein-Gordon operators, including the free term,
the external coupling, the mutual interaction, and an ex-
tra term (often referred to as the three-body term because
our external field can be felt as created by a third body of
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very large mass located at infinity), which ensures that
the compatibility condition [ H,H, ]=0 remains satisfied
[11,4]. Naturally, the three-body term vanishes when ei-
ther the mutual or the external interaction is turned off,
but otherwise it may have the same order of magnitude as
the other terms.

Notation, conventions

For a system of two spinless particles with particle la-
bels a,b, ...=1,2, the wave function is a distribution in
the eight independent variables ¢%,¢5. For free particles
the Hamiltonian generators H, reduce to %paz, where
p,=—1i0/9dq, in the coordinate representation. With
the particle masses being m ,m, we set

pu=im?+m3), v=Lmi-m3).
We separate the relative variables according to
z=q;—¢q; y=3p1—p3),
P=p,+tp,, =
hence the canonical commutation relations
[z%yp]=[Q% Pgl=i8j .
As in Refs. [4,17] we define
Z=z’P?—(z-P)*.

%(41'*"12) ,

The most natural picture for relativistic quantum
mechanics consists in having the Poincaré group generat-
ed by P and

M=(qAp),+(gAp),=QAP+zAy,

where the wedge symbol denotes the tensor formed by
the exterior product. In the absence of an external field,
H,, H, reduce to H'\”), HS. More generally, the label (0)
refers to the isolated system. Constants of motion are
characterized by a vanishing commutator with both
Hl ,H2 .

Let V9 be the mutual interaction. This term already
arises in the absence of an external field; it can be ob-
tained from QED by reduction of the Bethe-Salpeter
equation [9]. It may also be motivated by phenomenolo-
gy. In order to write down coupled wave equations in the
presence of an external field, a simple procedure, consist-
ing in adding all the interactions plus the “three-body
term,” can be considered as a modification of the mutual
interaction. The only practical difficulty is the explicit
determination of the extra term. The compatibility con-
dition alone does not select a unique solution, but the
presence of special symmetries in the external potential
may result in a reasonable ansatz.

In principle, a more accurate treatment should be war-
ranted: If the mutual interaction present in the absence of
an external field is considered as being obtained from
QED by reduction of the Bethe-Salpeter equation, one
should resume the same treatment in the presence of the
external field. But such a procedure is not straightfor-
ward. [According to Bethe and Salpeter (1951), an exten-
sion to the case where an external field is present is
“straightforward, but computational complications can
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make it prohibitive.” According to Grotch and Hegstrom
[2], “the BS equation may be minimally coupled provided
the external field is time independent.”] It has been car-
ried out for some static external potentials [16]. In that
case the results obtained so far agree (at least at first or-
der) with the ansatz (notice that the ansatz produces no
extra term at this order for two opposite charges in a
constant field). Moreover, in the simple situation of a
constant electric field the external potential is not any
more static; in fact, it is linear in the time coordinate,
therefore it seems that no result that originated from re-
ducing the BS equation is available in this case.

In view of these arguments it remains reasonable to de-
scribe as follows a two-particle system with scalar con-
stituents, coupled to an external electromagnetic field.
The wave function ¥(q,,q,) is submitted to the coupled
wave equations (1) with

H,=K,+V, H,=K,+V, 3.2)

where K |, K, correspond to the independent-particle ap-
proximation; that is,

2K =(p,—e  A1)% 2K,=(p,—e, 4,)*, (3.3)

with 4, = A(q,) and 4,= A(q,) and the Lorentz gauge.
In (3.2) the extra term has been incorporated into the
mutual interaction, in the sense that ¥V is a suitable
modification of ¥©, which must reduce to V' itself in
the absence of the field.
Hereafter, we consider a constant field F*¥ and choose
the covariant gauge (2.2), hence

AY=1q,,FF, AY=1q,,F°". (3.4)
Unless special symmetries are present in the external
field, the exact determination of ¥V is impossible. We
have explained in detail in previous papers [4,17] how s-
translation invariance can be defined in the two-body sec-
tor and how it may arise in special situations, in particu-
lar in the presence of a pure magnetic or a pure electric
constant field. This latter case will be discussed in detail
in the subsequent section. For the moment we consider
an arbitrary constant field. The requirement of compati-
bility provides, for the determination of ¥, an equation
which could be, in principle, solved perturbatively,

[Kl—‘KZ,V]=0 . (3.5)
The arbitrariness of Vis first limited by an obvious condi-
tion of coupling separability: ¥ must reduce to ¥V'? in
the limit where F identically vanishes (no-field limit).
Then the choice of ¥ may be further restricted by impos-
ing reasonable symmetries on the two-body system.

A natural possibility (suggested by the magnetic exam-
ple) consists in trying to impose the conservation of the
total pseudomomentum,

c=C,+¢C,, (3.6)
where
C,=p,+te d,, C,=p,+e,4,. (3.7)

The symmetry associated with this property should not
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be confused with s-translation invariance. As we have
seen in Sec. II, pseudomomentum is always conserved in
the one-body sector (whereas s-translation invariance cor-
responds to exceptional forms of the tensor F). In a con-
tinuation of the terminology used in the noncovariant ap-
proaches [3] (and noticing that [C*,C"] is not always
zero), we refer to the transformations generated by C as
twisted translations. The vector operator (3.6) is known
to be conserved for a neutral system in a magnetic field
[4]. (Notice that it reduces to P in the no-field limit.)

For a charged system the components of C do not com-
mute among themselves, but at least their commutator is

a ¢ number. In fact, (2.6) implies
[C? CBl=—2ieF% . (3.8)

Therefore we propose to complement (3.5) with the addi-
tional conditions

[C%V]=0, (3.9)
and we claim that (3.9) ensures conservation of C%.
Proof. The results of the preceding section entail

[CF.K,]1=0, (3.10)

which can be interpreted as the statement that in the ab-
sence of mutual interaction each particle can be separate-
ly described and has its individual pseudomomentum
conserved. Then a glance at (3.2) indicates that (3.9) im-
plies

[C¢,H,1=0, (3.11)
which is the conservation of C%. The crucial point is that
Egs. (3.9) are compatible among themselves and with
(3.5). Indeed [C,C] is a ¢ number, and the subsidiary
condition (3.9) finally ensures the conservation of C“
without knowing V explicitly.

Condition (3.9) is satisfactory at the level of formal cal-
culations. Indeed the components of C commute among
themselves up to ¢ numbers, and they commute with
K,—K,. Therefore applying the Jacobi identity to the
system [(3.5) and (3.9)] yields no contradiction. A more
rigorous proof that an operator V satisfying (3.5) and
(3.9) exists for all constant F is beyond the scope of this
paper. [Actually, if we consider the (classical) relativistic
limit where commutators are replaced by Poisson brack-
ets, equations like (3.5) and (3.9) become local differential
equations. Their compatibility in terms of Lie brackets
immediately ensures only the local existence of V.]

A first example where such an operator exists concerns
the neutral system in a magnetic field. In this case we
constructed V explicitly. Formal analogy suggests that a
similar result also arises for a neutral system in a purely
electric field. In both pure cases, the external potential G
admits directions of strong translation invariance. This
exceptional situation allows for the determination of ex-
plicit formulas, at the price of a change of picture for
quantum mechanics. Insofar as constant electromagnetic
fields are concerned, only the pure magnetic case and the
pure electric case are known to provide this symmetry
[4]. We have previously worked out the pure magnetic
case. But the ansatz used in Ref. [4] is general and can be
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carried out along the same lines in the pure electric case,
as we shall do in the next section.

IV. TWO-BODY SYSTEM IN A PURE
ELECTRIC (CONSTANT) FIELD

When F is pure electric, the study made in Sec. II indi-
cates that the single-particle potential G is s-translation
invariant along a spacelike two-plane (E;) (spanned by
€1y € in an adapted frame). It is straightforward to
define a two-body version of s-translation invariance and
to check that in the presence of a constant electric field,
the external potentials G, G, defined through

2K,=p2+2G, ,

enjoy this symmetry along the directions in (E ).

In an adapted frame, the longitudinal canonical vari-
ables are gq,1,9,2,P.1,Ps2 (respectively, transversal,
9,0:923Pa0sPa3)- Since (E; ) is not a null plane, we are in
a position to construct the wave equations in closed form
with the help of a suitable ansatz, provided the mutual in-
teraction can be written as

Vv O=gf(Z,P%y-P). 4.1)

Before we focus on details about the constant electric
field, let us recollect general results about this method,
given in [4] as a generalization of a result of [11].

Any four-vector is uniquely decomposed into a longitu-
dinal and a transverse part. An operator is said to be lon-
gitudinal (transverse) when it commutes with all the
transverse (longitudinal) canonical variables. But in gen-
eral this terminology must be used with care because it
may happen that a vector-operator has components only
in the longitudinal plane, whereas these components are
functions of the transverse canonical variables only. For-
tunately, no confusion is possible about A%, 44. In the
electric case (as well as in the magnetic one), they are
transverse vectors and they depend only on transverse
variables and therefore commute with any function of the
longitudinal canonical variables (for instance, with L; see
below).

For an electric field, we have seen in Sec. II that A7 is
zero. When going over to the two-body sector it is clear
that 4 ‘{‘L and 4 gL also vanish. Then a glance at (3.6) and

(3.7) shows that
Cci=P}.

Let us emphasize this difference: As in the magnetic
case, C and P coincide when projected onto the longitudi-
nal plane, but now the longitudinal plane is purely space-
like.

The determination of a closed form of the wave equa-
tions requires that we perform a change of picture [11,4].
In the external-field picture, the wave function is ¥’ and
the wave equations can be written as

HYV=1m2¥' . 4.2)
Now (3.2) is replaced by
H,=K,+V' (4.3)
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and K, is formally defined by K, =exp(iB)K exp(—iB),
where

B=TL 4.4)
is a product of suitably chosen factors, namely,
T=K,—K,—y,. P, 4.5)

and L is required to verify
(L,y,-PL]=i.

Following Bijtebier [11] we have proposed the standard
choice

_ Py zy

L
P}

(4.6)

(notice that T and L respectively depend on transverse
and longitudinal variables) and V' is obtained by making
the ansatz

V'=f(2,PLy, -P), 4.7
where
2=Z+2P}z-P—P%,-P,)L+P2P}L*. (4.8)

Most operators arising in the external-field picture are
more correctly defined through the formula
-2
Q’=Q+i[B,Q]+17[B,[B,Q]]+ e (4.9)
which has only a finite number of terms irrespective of
the self-adjointness of B, provided some n-fold commuta-
tor [B,...[B,Q]] is zero for a finite order n. This is
precisely what happens when Q is K; or K,. In the
framework of a general treatment elaborated in [4],

where the ingredients 7 and L of B are explicitly written
down as in (4.5) and (4.6), we have found in [4]

K|=K,—T(L-y+1)+1T’L-L, (4.10)
Ky=K,—T(L-y—1)+1T’L-L . (4.11)
Notice that K{—Kj;=y;-P;. (Remark: A more

rigorous, but far less intuitive, treatment would a priori
consider the external-field picture and start from (4.2)
and (4.3), then postulate (4.10), (4.11), and (4.7) and check
that [H{,H}%]is zero.)

In order to represent pseudomomentum in the
external-field picture, we must transform C according to
(4.9). But we shall prove that [C?%, B ] vanishes, implying
the following.

Lemma. Pseudomomentum is not altered by transfor-
mation (4.9).

Proof. We first show that [T,C%]=0. Indeed, T is
given by (4.5), where K| and K, commute with C as a
consequence of (3.10). Hence [T,C%]=—[y,-P.,C*].
But (3.6) and (3.7) ensure that [y;-P;,C%] reduces to
[ypPr,e AT +e,A5], where the components of A4y,
A,y are known to commute with all longitudinal vari-
ables, hence [y, -P;,C*]=0; therefore [T,C%]=0. Then
we show that [L,C%]=0. Indeed, L obviously commutes
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with P in Eq. (4.6). It remains to be checked whether
[L,e A(;)+e; A, ] actually vanishes. But this is true
because A4(;), A4(;) only depend on the transverse vari-
ables. Finally, it stems from (4.4) that [B,C*]=0 as we
claimed.

As a result, applying formula (4.9) to C leaves it un-
changed. So pseudomomentum is represented, also in the
external picture, by

C’=C=P+31A(1)+32A(2) . (4-12)

Here we arrive at the main point of this section, i.e., the
statement that, under very general conditions, the com-
mutators [C% H,] vanish. More precisely we have the
following.

Theorem. In a constant electric field, the pseu-
domomentum C?% of a neutral system with mutual in-
teraction of the form (4.1) is conserved provided the wave
equations are determined through the ansatz (4.7) and
(4.8), where [L,z] and [L,P] vanish [e.g., L as in (4.6)].

Proof. For a more rigorous exposition it is better to
work directly in the external picture [17]. Look at (4.3)
and proceed in two steps. We first realize that
[C%K,]1=0. Indeed, this commutator is the transformed
version of [C%K_,] by formula (4.9), and we know that
[CF,K,] all vanish. Now it remains to be proved that
[C% V'] also vanishes. According to (4.7), all we need to
prove is that C* commutes with y; -P;, P?, and Z. Com-
mutation with y;-P; has already been checked when
proving that C is invariant in the change of picture. In
order to discuss more easily commutation with P2, it is
convenient to separate external from relative coordinates
in the pseudomomentum. In the neutral case e, +e,=0
we simply have

€€

C*=pP*+ (z-F)*. (4.13)

(Remark: only in the neutral case does P? commute with
C%) Only P and z contribute in C, and both commute
with Z. Inspection of (4.8) shows that they also commute
with the other terms in 2, provided [P,L] and [z,L]
vanish, which is the case for the standard choice (4.6).
Finally all the prerequisites ensuring that [C%, V' ]=0 are
satisfied, which achieves our proof.

Let us stress that under the present assumption of neu-
trality, the components of pseudomomentum commute
among themselves. Direct computation is carried out us-
ing (4.13), where only the two first terms survive, and one
finds

[CceCchl=0, (4.14)

which allows for simultaneous diagonalization of H,, H,,
C®. But, similar to the covariant approach in a magnetic
field, and in contrast to the nonrelativistic (or at least
noncovariant) theory, there is no evidence that pseu-
domomentum be exactly conserved for globally charged
systems (e; +e,70) when V is constructed through the
ansatz (4.7) and (4.8).
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V. PSEUDOSTATIONARY STATES
OF THE NEUTRAL SYSTEM

Since the Hamiltonians and all the components of C
commute among themselves, we can define pseudostation-
ary states as those permitting these operators to diagonal-
ize simultaneously. Such states satisfy (4.2) and

CV'=k*Y', (5.1)
where the components of k“ are constant ¢ numbers.

In order to explicitly separate the relative motion, we
shall proceed exactly as we did in the magnetic case. Let
e, = —e, =e be the constituent charges. We combine the
external-field picture and a canonical transformation in-
spired from Grotch and Hegstrom [2], which maps the
twisted translations onto the ordinary ones. This ulti-
mate change of picture is

"=exp(il"¥’,
(5.2)
a""=exp(il’)a’exp(—iT")

for all operators a’ representing a physical quantity in the
external-field picture, and I' is given by

e
r 2 (z-F-Q) .
Notice that the transformation (5.2) can always be car-
ried out in closed form. But the main virtue of T is that
*=exp(i")C%xp(—iI'); that is, C""=P. This relation
permits us to eliminate Q from our formulas; Eq. (5.1)
gets transformed into

Pa\l,n:ka‘yu .

(5.3)

(5.4)

(Remark: it would be erroneous to conclude that we have
restored translation invariance. In the present picture,
space-time translations are now represented by a new
operator P'’, which does not commute with H''. In con-
trast, P*=C'"'" now represents the pseudomomentum,
generator of the so-called “twisted translations” associat-
ed with the presence of a constant electric field. Never-
theless, invariance under “twisted translations” simplifies
the calculations just as well as invariance under the true
ones would do.)

Let us emphasize that H{ and H5 can be written in
closed form because we already know H in closed form
by addition of K, and V’; see Egs. (4.10), (4.11), (4.7), and
(4.8). All we need is to apply (5.2) to H,. But (5.2) can
always be explicitly carried out; see formulas (5.9) and
(5.10) of Ref. [4].

Looking for pseudostationary states we have
transformed Eq. (5.1) and obtained (5.4). Hereafter, we
strictly assume k“® to be timelike. Taking the sum and
difference, the wave equations can be written as

(HY +Hy W"'=uv" , (5.5)
(HY —Hy ¥"'=v¥" . (5.6)
Here, remember that according to (4.3), HY

—HY =K{ —K35. This expression is calculated by the
application of transformation (5.2) to (K] —K35). But,
according to (4.10) and (4.11), (K] —K})=y,-P;.
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Fortunately, it is straightforward to check that (like in
the magnetic case) I' is purely transverse; thus [T,y; P, ]
vanishes and (y;-P;) is not affected by transformation
(5.2). Finally, Eq. (5.6) can be written as

yp P W' =y, (5.7)
Now solve the pseudostationarity condition (5.4) by
"=exp(ik-Q)x(z%) . (5.8)

Let k; be the longitudinal part of k. So (5.7) becomes

yokpx=vx . (5.9)

A further reduction is possible, but we hit a qualitative
difference with respect to the magnetic case. Here the
longitudinal plane is purely spacelike. Therefore we can-
not solve (5.7) in terms of a time derivative of y. Instead,
we determine the dependence upon a spacelike variable,
as follows. It is convenient to take, in the longitudinal
plane (E; ), a frame adapted to k;; we mean a choice of
the dyad €, €, such that €,=|k; | 'k, . [Beware that, in
general, a frame adapted to (E) cannot be additionally
adapted to k% since there is no reason why k; should
vanish.] In such a frame we can write y; -k, =y 'k,
where k= — |k, |. Equation (5.9) can be written as

—ylk lx=vx, (5.10)

and (5.4) and (5.10) are solved easily by

V" =exp(ik -Q )expi k—| #(2%22%,2%) , (5.11)

VZ1
L

and we end up with a reduced wave function depending
on three degrees of freedom. But, in contradistinction to
the magnetic case, the variables in the ultimate reduced
wave function belong to a hyperbolic (2+ 1)-dimensional
space. It is clear that Q does not appear in H{ +H3 be-
cause of twisted translation invariance. Moreover, after
writing (5.10) we may, in H{ +H?, replace P by its ei-
genvalue k. We also can replace y! by v/k,. So (5.5)
reduces to a Klein-Gordon equation in a fictitious
(2+ 1)-dimensional space-time.

VI. CONCLUSION

The requirement that pseudomomentum be conserved
seems to be a good prescription for reducing the ambigui-
ties in the determination of the three-body terms in the
wave equation. There are at least two interesting cases
where this requirement has solutions in closed form: the
magnetic case studied in [4] and the electric case
displayed herein, provided we consider neutral systems.
The ansatz (4.7), together with (4.3) and (4.2), where K|,
K, are given by (4.10) and (4.11), is a reasonable solution
of the compatibility problem for a relativistic two-body
system in a constant electric field, in the sense that it
yields a pair of compatible equations that reduce to the
correct limits if either the mutual interaction or the
external field vanish. The no-field limit arises in disguise
by the effect of a canonical transformation generated by
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exp(ib), b=(B)g-o- The ansatz respects invariance un-
der rotations in the longitudinal plane.

When the system we consider is charged, there is no
evidence, to our present knowledge, that the ansatz (4.7)
fulfills conservation of C (we have already met this situa-
tion in the magnetic case). Still, we cannot completely
exclude the possibility that conservation is satisfied after
all in charged systems, but hidden under complicated cal-
culations. If this hope were to be frustrated one might
prefer a perturbative, or implicit, solution to the compati-
bility problem insofar as it yields exact conservation of C,
rather than a solution in closed form, which would
violate this property. Then it might be interesting to ask
whether a suitable modification of (4.7) may provide al-
ternative explicit formulas together with conservation of
C. A way of investigating these matters consists in look-
ing for a convenient canonical transformation mapping C
onto P; that is, a covariant version of the Grotch and
Hegstrom transformation (which would work also in the
charged case). Naturally, even if we were to succeed,
pseudomomentum of a charged system would never have
commuting components.

The results concerning neutral systems in a constant
electric field are much more satisfactory, since they allow
one to define generalized stationary states where the rela-
tive motion gets separated. However, it is worthwhile to
mention that, in contrast to the nonrelativistic theory of
neutral systems in an electric field, pseudomomentum
generally does not reduce to the customary linear
momentum (though they may coincide for particular ini-
tial data).

After a further reduction one is left with a problem
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where the unknown wave function depends only on three
variables. The peculiarity of this situation is that, in con-
trast to the magnetic case, the “relative time” now sur-
vives at the expense of a spacelike degree of freedom
(there is some analogy here to a recent result of Bijtebier
and Broekaert [18]).

One should not be too puzzled about it. After all, the
concept of relative time as the timelike piece of the vari-
able in the wave function has no absolute meaning, ex-
cept perhaps if it is implicitly assumed that one considers
the wave function of the primitive (Schrodinger) picture
in the position representation. In this “primitive picture”
the Poincaré generators have the conventional form, but
this is already not the case in the external-field picture,
and using W" instead of ¥’ makes it more problematic.
Finally, identifying “relative time” in W'’ is a rather
superficial interpretation (the remark is valid also for the
magnetic case where the “relative time” is actually elim-
inated). In our opinion, the important thing here is that
the final problem has exactly the same number of degrees
of freedom as its Galilean analog.

Needless to say, having only two space variables in the
reduced relative wave function ¢ is by no means an indi-
cation of a planar motion. Rather, it is an artifact of the
peculiar picture we are using for computational simplici-
ty, exactly in the same way that, after the first reduction,
the wave equations look like translation invariants
without being so. Remember that the constant of the
motion that allows for the last reduction is always the
same in all pictures, namely, the difference of squared
masses. In view of possible applications, we plan to in-
corporate spin in the present formalism.
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