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In a time-symmetric form, classical relativistic formulations involve not only a reference time but also
relatively advanced and retarded times. This work examines a simple model problem having this struc-
ture with the equations of motion having closed-form solutions. The complexity of more realistic models
is avoided while the general features are retained. The determinism and casuality of the theory are clear-
ly demonstrated. Some problems associated with the quantization of power series representations using

conventional procedures are illustrated and discussed.
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I. INTRODUCTION

In recent years, physical modeling involving relativistic
delayed interactions and the related problem of higher
than first-order Lagrangians have received considerable
attention. One or the other or both of these aspects now
appear in physical theories ranging from relativistic clas-
sical dynamics [1-10] through its canonical form and the
structure of relativistic quantum mechanics [2,3,11-16],
including the relationship to a field-theoretic description
(see, e.g., [17-24], and references therein) to nonlocal
field theories [25-28], to gravity [29-37], and on to
string theory [38-41].

In this work, considerations are limited to the proper-
ties of a classical relativistic action-at-a-distance dynam-
ics theory for point particles based on a Lagrangian for-
mulation, without self-interactions and on a par with the
nonrelativistic case, namely, the Fokker-Wheeler-
Feynman (FWF) theory of electrodynamics, its generali-
zations [1,4,6-9], and its quantization. Although the ex-
act classical theory satisfies Lorentz covariance, time-
reversal symmetry, and particle interchange symmetry,
there are possible ambiguities in the input assumptions
and interpretations [1,9,10,41-43] of the theory. In addi-
tion, since conventional quantization of classical systems
requires a single time formalism, all multitimes theories,
such as the one under consideration, must be converted
to a manageable form. This is done by making a power
series expansion about some suitably chosen time. In this
way, the multitimed problem is converted to an infinite-
order Lagrangian problem. Next, the Lagrangian is trun-
cated at some order. Thus the quantization of such sys-
tems is necessarily approximate. At the present time,
two approaches are possible. In one, an order reduction
technique is applied to limit the canonical variables to
their nonrelativistic numbers [2,3,14,19-21,44,45]. In
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the other, the higher-order Lagrangian is treated exactly
[13,15,16,46—-49] with the number of canonical variables
increasing with the order of the Lagrangian. We remark
that this latter approach has been recently considered for
gravity [36] and other problems [50,51]. However, as yet,
the effects of any of these approximations are unknown.
Unfortunately, the complexities of the complete expres-
sions tend to obscure the results. In order to avoid these
problems, herein, we examine a simple model problem,
introduced by Feynman and Hibbs [52], consisting of a
particle whose acceleration depends upon both past and
future “forces.” Thus this model problem has features in
common with the relativistic theory. However, it has an
exact closed-form solution, making the characteristics of
these features transparent.

The model problem is defined in Sec. II. Also, the ex-
act classical solutions are given in that section along with
illustrations of both their deterministic character and the
causal nature of the equations of motion. There we use
the traditional definition [53] of causality, namely, an
event at a given time is influenced, directly or indirectly,
only by past events. In this context, it is seen that the
equations of motion can be integrated stepwise forward in
time using only information from the past to generate the
exact future time evolution of the system. The inclusion
of arbitrary initial conditions is discussed briefly. Thus
the causal nature [8—10] of this type of theory is clearly
displayed.

Quantization of the model problem is considered in
Sec. ITII. The present model problem permits an examina-
tion of the two approaches to quantization mentioned
above. It is seen that a straightforward application of ex-
act techniques [13,15,16,46—49] can yield either spurious
effects or incomplete descriptions. Thus, in general, addi-
tional information, through exact solutions or observa-
tion of physical systems, is required for a physically
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meaningful quantization of multitimed systems. Section
IV contains further discussion.

II. THE MODEL PROBLEM
AND ITS CLASSICAL SOLUTION

The model problem considered in this work is one pro-
posed by Feynman and Hibbs [52], namely, a system
obeying the principle of least action with the action being

J= [ {im () P+ Lkx (D[x (z +7)+x(t —7)]}dr .
2.1)

We have chosen to write J in time symmetric form and
the notation is standard with m, k, and r being constants.
The above action is connected to that discussed by Feyn-
man and Hibbs [52] by adding the divergence dF /dt to
the integrand, where

Fe,r)=-+3k [ x (e —niar’ . 22)
The equation of motion is obtained in the usual way, with
the additional requirement that variations in x (¢) be zero
in the range 27 centered on the end points of the time in-
tegral for J, this being the generalization of the fixed
end-point condition for no time delays, and is

mx(£)=1k[x (¢t +7)+x(t —7)] . 2.3)

Now Feynman and Hibbs [52] remarked that one has
“created the curious situation in which a particle is
driven by a force depending on the average value of coor-
dinates that were and that will be.” The natural con-
clusion is that this system is noncausal. However, one
can now look to see if this conclusion is correct.

When one fixes k = —mw} to be a negative definite, as
for a simple harmonic oscillator, (2.3) has exact solutions
of the form

x ()= d,cos(w;t +5,) , (2.4)

with 4; and §; being constants and ; being the roots of

2— .2

o“=wicos(oT) . (2.5)

We remark that, for the above choice of k, there are no
pure exponentially divergent solutions. It is convenient
to rewrite (2.5) by setting £ =w /wy and A=, to have

2=cos(A£) . (2.6)

There is always at least one real root and an odd number
of real roots, additional roots being added pairwise as A is
increased. A plot of the allowed values of £ as functions
of A is given in Fig. 1.

Now in this case, the situation is exactly analogous to
the case of a second-order differential equation without
time delays. Knowing the equation of motion allows one
to write the general solution in terms of a set of parame-
ters. These parameters can be determined from a
knowledge of a fixed amount of past information about
the motion. The future motion of the system is thus com-
pletely determined for as long as the equation of motion
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FIG. 1. Roots of Eq. (2.6), with £=w/w,, as functions of
A=wyr.

(2.3) applies. We label this character of (2.3) as deter-
ministic. We also remark that, in both cases, the initial
conditions can be over or inconsistently specified. This is
related to the incorrect use of the equations and has no
bearing on their exact nature. More is said about this
point later. Further, since no knowledge of the future is
required, causality is implied.

In casual systems, however, one must be able to gen-
erate the true time development of the motion by a for-
ward in time integration of the equations of motion, using
only past information [10,53,54]. If one assumes that the
conventional Newtonian interpretation must apply to this
type of double time-delay equation, with the acceleration
being the effect and the right-hand side being the cause,
and, further, dogmatically insists that any time integra-
tion be applied solely to the acceleration, the time in-
tegration cannot proceed without knowledge of the com-
plete future motion of the system. This results in a
Zeno-like paradox [43,55-57]. Such an insistence is an
arbitrary and self-imposed constraint. If, on the other
hand, one recognizes that the variational principle only
guarantees a prescription for the determination of the
motion or if one assumes an alterative physical interpre-
tation of this type of equation [8—10], it can be rewritten
as

m .,

x(t)=—~x(t—2'r)+27x(t—'r) . 2.7)
Now, knowing x (¢) for the finite period —27<¢ <0 al-
lows the time integration to proceed. We remark that an
observer always has complete freedom to proceed in this
way, independently of any other considerations. There
are two points that should be emphasized. First, these
equations of motion are the generators of the motion of
the system and are not merely constraints on this motion,
as has been previously claimed [56,57]. Second, since the
time evolution of the motion can be generated with no
knowledge of or influence of future events, the equations
satisfy all of the requirements of causality [53,54]. This is
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exactly consistent with previous results found for FWF-
like equations of motion [10].

To illustrate the above points, we consider the choice
of two sets of initial conditions. As a first example, we
take x (¢) to be given by (2.4) over the required time inter-
val of 27 with the A;’s and &,’s being set and with the
;’s satisfying (2.5). Now one can carry out the forward
integration. On stepping through time, the correct x (¢)
will be exactly generated. The only problem is that of
maintaining numerical accuracy. Note that the input
consists of an exact solution to (2.3) in this example. As a
second example, consider x being held at a constant
value, say, x,, for a time interval of 27 and then being
released instantaneously. In the first time step, (2.7) re-
quires x (¢) to change instantly from x, to —x,. Thus
X(t) is undefined and x (¢) does not belong to C2. As time
progresses, x (t) changes by 2x, at each interval of 27,
and X(¢) and hence x (¢) become undefined at each inter-
val of 7. Any attempt at a numerical forward integration
fails. An immediate interpretation might be that the sys-
tem lacks causality. Not only does this interpretation
lead to a contradiction, but it can be seen to be incorrect
as follows. The Newtonian motion of a thrown object
consists of the held stage, the impulsive throwing stage,
and the free flight stage. In order to get the motion
correct in the last state, it is necessary to include the
second stage correctly. This is also true of the present
problem, that is, a transition period must be included
correctly in going from an arbitrary set of initial condi-
tions, which do not satisfy (2.3), to the application of (2.3)
alone. In the present model problem, the requirement is
that, by the time any external force has been removed,
the system must be left in an exact solution to (2.3) ex-
tending over a time interval of at least 27. There is an
infinite number of ways to achieve this result. This situa-
tion arises for any input not satisfying (2.3) exactly. Gen-
eralizing, one should expect analogous requirements for
any time-delay systems. Any difficulties would arise en-
tirely from an incorrect use of these equations. This
point is not addressed further here and we go on to con-
sider quantization of the system.

III. APPROXIMATIONS AND QUANTIZATION

Considering the integrand in (2.1) as the Lagrangian,
one has a multitimed Lagrangian. At the present time, it
is not known how to quantize such Lagrangians exactly
and hence one proceeds by approximation. Standard
procedures require a single-time formalism and therefore
one makes those approximations that reduce the problem
to an appropriate form. In such cases [2-4,11-21,
44-49] an expansion is made about a single time, natural-
ly being ¢ in this case. Thus one writes, with k = —m w3,

L'=Im[x()]*— —mwOE _x (0x@ (1)

(2 Y (3.1)

where x 2" is the 2nth time derivative of x. Thus one

converts from a multitimed problem to an infinite-order
problem. The quantization of L’ is now discussed step-
wise as one truncates at various values of n.

The zeroth-order Lagrangian is

1833
Lo=1im[x()P—Limad[x(1)]* . 3.2)
This is the standard first-order simple harmonic-

oscillator Lagrangian with the single root [see (2.6)]
&,=1. Quantization proceeds in the usual way. Howev-
er, this approximation is valid only for A=wyr<<1 (see
Fig. 1) being a poor approximation over the entire range
of A.

The first-order Lagrangian is

Li=3m [x()P = imof[x ()= fmafr’x ()% (1)

=1mx? 1. ©3Txx

—imodx*+ imolr?i? —_t

(3.3)

Notice that, in such problems, it is convenient [15,16] to
put the Lagrangian in a minimal form, that is, reduce the
time derivatives to lowest order by adding divergences,
before proceeding with the quantization. Although
methods have been developed recently [36,50,51] to deal
with the original form of (3.3), the final results are the
same. Note also that the divergence satisfies the equation
of motion [2 3,15,50] exactly. For

dF

1 2
a4 wo'rz(xx +x°) (3.4)
and
0 |dF d | d |dF
m—__9 |at | @& | 0 |af
o | dr ar | % , (3.5)
one has
dpV _ 3 [aF
dt ox | dt (3.6

Thus the equation of motion is given by the first three
terms in the second form of (3.3) and they may be taken
as the Lagrangian of the problem. Again this is a simple
harmonic-oscillator problem with the single root
& =1/(1+22/2)!/2, which is a reasonable approximation
to &, over the entire range of A. Quantization proceeds in
the standard way with the quantum of energy being
fiwy/(1+A2/2)12,
The second-order Lagrangian is

L =-’—mx2—lm a)(z,xz— Imodrxi — Lmaofrtxx®
=1mx*—imolxi+imol?i*— Lmolr's?
1 3
—— |—mo xxX +—(xx"'—xx) 3.7)
dt |4 ° 24

Again the total time derivative in (3.7) satisfies the corre-
sponding equation of motion exactly. The remaining
second-order Lagrangian appearing in (3.7) is similar to a
model problem considered earlier [16]. The equation of
motion is

x =

m(1+1A%)% + mA!
240)0

—maoix . (3.8)
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The solutions are of the form A cos(wt +386), i.e.,
with
LA —(1+1A2)E2+1=0

where £=w /w, as before. The solutions are

1 A.4 172
[1+3A2]— ——] ] (3.10)

12
§2=£ prdar |4 (1ea2e 2 - 3.11)
2o 2 12 ' ’
|

(2.4),

(3.9

12

g 1+A%+

£r=

and
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For this approximation, &, is very close to the first root
found for (2.6) while &, is a poor approximation to the
second and third roots. This should not be surprising as
this was also the case for the lowest-order approximation
to the first root, that is, from (3.2). Note also that one
gets a spurious root for A small. Now, exact quantization
using the technique of the problem of Lagrange [48], the
Jacobi-Ostragadski procedure [49] or Dirac’s method of
constraint dynamics [16,36,46,50,51] retains precisely the
features of the approximation and therefore, in this case,
will not always represent correctly the original problem.
The third-order Lagrangian is

Ly=1mx’—1imaolx?— imawirxi — tmaodrtxx ¥ — Lomwrdxx ®
=%mx2 —ma)ox2+‘ma)o1'2x — Amaodr x2+—-ma) 2r8x (37?2
4
_ij %mw% xx+;2—4(xx‘ —xx)+—7%(xx )—xx @ +5x3)) ] (3.12)

The total time derivative again exactly satisfies the gen-
eralized equation of motion and the physical equation of
motion is

6 4 2
A_jop A QX)) a0, Ga3)
720600 24(00 2(00
Looking for solutions of the form (2.4) gives
A ACES — LAYEA+(1+A2/2)E2—1=0 . (3.14)

This is a cubic equation in £? and the roots are known. It
is straightforward to show that (3.14) has one real root,
very close to the first root of (2.6), and two complex roots
over the entire range of A. Thus, at this point, we do not
have a valid expression for meaningful quantization.

The situation improves only marginally as one in-
creases the order of approximation. For example, the
fourth-order approximation gives two real roots and two
complex roots. The one real root is again very close to
the first root of (2.6). The other real root is spurious for A
small but approximates the second and third roots of
(2.6). In fifth order, only one real root appears. Thus, for
this model problem, since the standard quantization pro-
cedures maintain the features of the approximation pre-
cisely, the quantum versions will, in general, be invalid.

IV. DISCUSSION

A simple model problem, having “forces” that depend
upon both “past” and “future” times, has been examined.
This model problem has a number of characteristics simi-
lar to FWF-like models but is simple enough to have a
closed-form solution and to be relatively transparent.
Two aspects have been considered: the causal nature of
the model and the quantization of this multitimed prob-
lem.

It is natural to assume that a Newtonian interpretation

f

applies to (2.3), namely, the acceleration, the effect, is
caused by forces generated at both past and future times.
In this case, one concludes that the future affects the
present and hence the system is noncausal. However, it is
seen from the exact solution that this model problem is
precisely as deterministic as the usual Newtonian case.
Thus one must conclude that the above assumption is in-
valid and that an alternative interpretation applies [10].
Further, it was shown that the equations of motion can
be integrated forward in time using only the past history
to generate the time evolution of the motion. Thus the
system satisfies the usual definition of causality [53,54].
However, it was also noted that considerably more care is
required with the initial conditions than for Newtonian-
like problems. If one starts with initial conditions that do
not satisfy (2.3), they can be considered to satisfy (2.3)
with additional “forces.” It is inconsistent with the con-
cept of time delays to remove these additional forces in-
stantaneously. The corresponding transition period must
be incorporated appropriately in order to obtain mean-
ingful results.

The above features are identical to those found in
FWF-like models [1,6—10] and this work gives a further
confirmation of the causal nature and the revised inter-
pretation of their equations of motion. The present work
examines a single-particle problem. Previous work exam-
ined a two-particle problem. Although the extension to
many-particle systems was alluded to, no detailed discus-
sion was given. It is straightforward to see that the argu-
ments applicable to the FWF-like two-body problem can
be extended to the FWF-like three-body problem. The
only noteworthy comment is that care must be taken to
ensure that the initial conditions are consistent with the
time-delay constraints. This means that although an ob-
server can specify a latest time and the past history of one
of the particles up to that time, those of the other two
particles may be specified only up to some later times,
which must be consistent with the time-delay constraints.



At this point, the procedure follows that of the two-
particle case, in principle. Once it is recognized how to
deal with the three-particle problem, the extension to
four and to N particles is, again, in principle, established.
One sees that the requirements are that one has a finite,
although possibly large, number of particles in a finite re-
gion of space, so that an observer can specify a meaning-
ful latest time, with no external interactions. This estab-
lishes the criteria for Havas’s [54] closed system. Such a
modeling can be expected to apply on a terrestrial scale
and even possibly on a galactic scale. Remembering that
the intent of the previous work was to establish a relativ-
istic action-at-a-distance dynamics theory on a par with
the nonrelativistic case, which is all that is required. One
should be under no illusion that such a theory will be
suitable for a complete cosmological model. Thus we
conclude that the original goal has been accomplished.
One might point out that, since the system can be arbi-
trarily large, statistical methods can be applied, contrary
to a recent statement [41].

Although the original model problem has exact classi-
cal solutions, rarely do any of the single-time approxima-
tions accurately reproduce these solutions. For example,
if A is such that only a single mode exists in the original
model problem, except in zeroth and first order, spurious
modes are generated in the approximate problems. Fur-
ther, if three modes exist, none of the low-order approxi-
mations considered gives back three real modes. Now,in
order to obtain a canonical form and proceed to quanti-
zation, the technique of the problem of Lagrange [48], or
the Jacobi-Ostragadski procedure [49] or Dirac’s method

|

52 CAUSALITY AND QUANTIZATION OF TIME-DELAY ...

1835

of constraint dynamics [46], must be applied to one of the
approximations. However, exact application of each of
these methods retains the features of that approximation
precisely [16,36,50,51]. Thus the subsequent quantum
version contains, identically, the inaccuracies and errors
of the starting approximation. Now, in general, unlike
this model problem, one does not have a complete set of
solutions for the more complex models of physical sys-
tems. Quantization always proceeds from a low-order
single-time approximation without the benefit of exact
solutions. It follows that, at this point, the true physical
content of the quantum version will be uncertain. Some
criteria must be established in order to determine its va-
lidity. This can only come from some additional infor-
mation [50], such as exact solutions or observation on a
relevant physical system. For example, no low-order ap-
proximation correctly reproduces the exact three-mode
case. If these three modes were observed in a physical
system, the above approach would not be useful and they
would normally be represented by three independent os-
cillators. The single-particle source nature would be lost
and the physics partially obscured. Clearly, further con-
sideration must be given to and care taken with the
quantization procedure for systems with time delays.
The applicability of these methods can be expected to be
system dependent.

There may be some concern that the model considered
herein is too simple and strictly applies to a one-particle
problem. Thus any extrapolation to a two- (or more) par-
ticle case might be unjustified. A second model problem
for two particles can be taken as

J= f {Am [% (D P+ dmy %, (O P+ Lk [x,(8)—x,(t +7) P+ Lk [x (1) —x,(t —7)]?

+ Lk [x,()—x,(t +7) P+ Lk [x,()—x,(t —7)P}ar ,

with an obvious interpretation.
cedure gives

The variational pro-

m1x1<t)=§[le(t>—x2<t+T)—x2(z—r>] 4.2)
for m and a similar equation for m,. For equal masses
m;=m,=m, and in the center of momentum frame
x,(8)=—x,(t)=x (1), (4.2) reduces to

(4.1)

mx<t)=§[2x(t)+x<t ) x(t—7)]. 4.3)

This equation has characteristics similar to (2.3).
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