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Corrections of order a® to S levels of two-body systems
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Corrections to the energy of S levels of positronium of order ma® that are as large as several hundred
kilohertz are obtained. A recoil correction of order a(Za)’(m /M)m to the Lamb shift in hydrogen is
calculated. This correction turns out to be too small from a phenomenological point of view.
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Recent progress in the spectroscopy of positronium
[1-5] triggered theoretical work on the corrections of or-
der a®m to the positronium energy levels. All logarith-
mic corrections of this order to S levels were calculated
recently in [6,7]. Complete results for the corrections of
order a’m to P levels were obtained in [8]. As em-
phasized in this last work, the large magnitude of the
nonlogarithmic corrections to P levels suggests that the
calculation of corresponding nonlogarithmic corrections
to S levels is also important. Some of these corrections
are already known, e.g., contributions induced by the
two- and three-photon annihilation kernels [9-11]. We
present below results of the calculation of nonlogarithmic
contributions of order a®m to the S levels of positronium
induced by radiative corrections to the Breit potential
and by the polarization insertions in the graphs with
two-photon exchange.

A radiative-recoil correction of order a(Za)*(m /M)m

to the Lamb shift in hydrogen induced by a polarization
J

operator insertion in the two-photon exchange graph is
also calculated in this Brief Report. Recent experimental
achievements in measuring 1S-2S splitting in hydrogen
[12] and the well-known results on the 25 Lamb shift
[13—-15] clearly demonstrate that theoretical calculation
of all corrections to the Lamb shift of the order of several
Kilohertz for the 1S state and about 1 kHz for the 2§
state is necessary. Several such contributions were ob-
tained quite recently [16—18] and the result presented
below is one more such contribution (for more detailed
description of the current theoretical status of the Lamb
shift calculations see, e.g., [19]).

Let us consider first corrections of order a’m to the S
levels of positronium connected with radiative insertions
in the graph with one-photon exchange in Fig. 1. As is
well known, the one-photon exchange produces the
Coulomb and Breit potentials. One may easily obtain ra-
diative corrections to the one-photon exchange expres-
sion in the form!

1 1+8f1+2f, 4mp r-(r-p)p p* sl
Ulp,r)=—ai——am—————=8%r)+ 83(r)+ + —(3+4f))—5~
P [7‘ T e m?c? 2micir?  2m2c?r /2 2m%c?r?
(1+£,)? ;i rir; (1+£,)
4‘? g | =L gt __L is2—2 8r) !, (1)
m2c2 TH |3 r’ m?2c? 3

where m is the electron mass, p is the relative momentum
of the electron and positron, r is their relative position,
f1 is the slope of the Dirac form factor, f, is the Pauli
form factor at zero momentum transfer, and p is the po-
larization operator contribution. With two-loop accura-
cy we have
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Equation (1) above agrees with a result obtained earlier
[20] if the radiative corrections are assumed to arise only
from Pauli interactions.

It is an easy task now to obtain corrections of order
a’m to the positronium energy levels
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The annihilation diagram contribution is missing in this ex-
pression since we do not consider annihilation contributions in
this paper.
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FIG. 1. One-photon exchange skeleton graph.

where we used the value of two-loop contribution e, to
the slope of the Dirac form factor obtained numerically
in [21] and analytically in [22], the explicit results for the
two-loop electron magnetic moment g, [23,24], and the
two-loop irreducible vacuum polarization operator [25]
obtained a long time ago. With the help of the effective
potential in Eq. (1) we may also easily calculate radiative
corrections to the levels of positronium that have non-
vanishing angular momentum. Our results in this case
reproduce and confirm the respective results in [8,18].
Consider now corrections of relative order a® to the en-
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FIG. 2. Two-photon exchange skeleton graphs.

ergy levels of two-body systems that are generated by the
diagrams with intermediate momenta, which are high on
the scale of the typical atomic momenta. It is well known
that all such corrections are generated by the diagrams
with two exchanged photons containing also either a po-
larization operator insertion in one of the exchanged pho-
tons or radiative photon insertions in the electron line
(see, e.g., [26]). To sufficient accuracy external electron
lines in the diagrams under consideration may be safely
taken to be on-mass shell. It is not difficult to obtain an
explicit expression for the infrared divergent skeleton in-
tegral corresponding to the sum of ladder and crossed di-
agrams in Fig. 2. Direct integration over loop momen-
tum advocated in [27] leads to the expression for the
skeleton integral
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where m and M are the masses of the negatively and posi-
tively charged particles, respectively, Z is the charge of
the positive particle in terms of the proton charge, and
¥(0) is the value of the reduced mass Schrddinger-
Coulomb wave function at the origin. All contributions
to hydrogen Lamb shift of order a(Za)’m, both recoil
and nonrecoil, calculated over years by different methods
[28-30], may be obtained from the expression for the
skeleton integral in Eq. (4) by insertion of radiative
corrections.

Consider first recoil contributions of order a(Za)’m to
the Lamb shift in hydrogen. The contribution induced by
the radiative photon insertions in the electron line was
obtained in [30]. With the help of the explicit expression

in Eq. (4) above, it is easy to confirm the result of [31]
that the correction induced by the radiative photon inser-
tions in the heavy line is suppressed by the factor
(m /M )? relative to the contribution induced by the radi-
ative photon insertion in the electron line. It is also easy
to see that the recoil correction corresponding to the po-
larization operator insertion in the exchanged photon is
suppressed by the factor m /M relative to the respective
nonrecoil correction. Let us calculate this last correc-
tion. The general expression in Eq. (4) contains the
skeleton integral both for recoil and nonrecoil correc-
tions. The skeleton integral for the recoil corrections
may be obtained by subtracting the heavy pole residue in
Eq. (4) and has the form



352 BRIEF REPORTS 1759

2 2
AE _ 16(Za)*|9(0)]

skel-rec m 2( 1 —‘,LLZ)
1/2 172
o kdk 2 1, K pk? 1, ptk’
X — + = —+—|— |1+ —+
fo (k2+2A2)? B 4 k 8 ! 4 k 8
2 2 352 27,2
Y%, VY. Sl DU T, Sl P Tl B S )
8 2 8 2 k
[
— . . 201 _..2
where u=m /M and we transformed to a dimensionless 1,0k)= f Ly—2 (1—v°/3) 7
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However, the skeleton integrand in Eq. (5) behaves as
w/k* at small momenta and naive substitution in Eq. (6)
. . . 2 .
the Lamb shift induced by the polarization operator in- leads to divergence. This divergence dk /k* actually di-

sertions one has to make a substitution in the integrand minishes the power of the Za factor and t4he respective
in Eq. (5) contribution turns out to be of order a(Za)*. In order to

get the recoil correction of order a(Za)’m we have to
subtract the leading low-frequency asymptote of the
1 R PR ©) product of the skeleton integrand and the polarization
k2 m ! ’ operator. Then we obtain the integral for the radiative-
recoil correction (one has to insert an additional factor of
2, which takes into account possible insertions of the po-

integration momentum measured in units of the electron
mass. In this expression A provides an infrared cutoff,
which is allowed to approach zero later.

For calculation of the radiative-recoil contribution to
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This integral contains also some contributions of higher order in the electron-proton mass ratio and may be easily cal-
culated numerically. However, these higher-order contributions are clearly negligible and we omit them. Then we ob-
tain the analytic result
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Consider now the contribution of order a® induced by insertion of the one-loop polarization operator for the positroni-
um case. The calculation is similar to the one for hydrogen. The analog of the skeleton integral in Eq. (4), for the case
of equal masses, has the form

TABLE I. Summary of 25 and 1S energy corrections.

28 1S
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The consideration of the hydrogen case above teaches us
that the integrand for the radiative correction is given by
the subtracted product of the vacuum polarization opera-
tor and the skeleton integrand. Hence the contribution
to the energy levels of positronium of order ma® is given
by the expression (remember combinatorial factor 2)
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Numerical values of the corrections obtained above are
presented in Table I. In the case of positronium these
corrections turn out to be of the same order of magnitude
as other corrections to the energy levels calculated re-
cently [6-11] and are significant for comparison of the
theory with the current experimental results. In the case
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of hydrogen the corrections for the S levels obtained
above are about an order of magnitude smaller than the
corrections of order a®(m /M )m for the P levels obtained
recently [18] and are too small to be interesting from the
phenomenological point of view. Detailed derivation of
the results of this paper will be presented elsewhere. In
the case of positronium there remain some other yet un-
known contributions of order a®m to the energy shift of S
levels. Work on their calculation is in progress now.
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