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Bound states of Ca™
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We study the bound states of Ca™ based on the Brueckner approximation. We use the B-spline
method to solve the Brueckner equation self-consistently. At the first iteration we obtain the energy lev-
els of 4p states of Ca~ which are close to those obtained by previous similar theoretical calculations.
However, the bound states disappear after the first iteration in our calculation. This suggests that the ex-

istence of the bound states of Ca™

PACS number(s): 31.15.Ar

The discovery of bound states of negative ions Ca™
offers a critical test for atomic theory. A theoretical
work that predicted the existence of stable states [1] gave
the electron affinity 45 meV, which is very close to the ex-
perimental value 43 meV obtained by Pegg and co-
workers [2] in 1987. Since then, many theoretical works
using different methods obtained electron affinity of Ca™
mostly ranging from 45 to 82 meV. See Ref. [3] for a de-
tailed list. There are also relativistic calculations [4,5]
based on the Dyson equation that produced 56 meV for
4p,,, and 49 meV for 4p;,,. Recent experiments [3,6,7],
however, obtain values about 20 meV for the electron
affinity of Ca™. It is thus of importance to reexamine the
bound states of Ca~ from the theoretical side. A model-
potential calculation has been carried out by van der
Hart, Laughlin, and Hansen [8] to produce 17.7 meV.
Recently, Jauregui and Bunge [9] used the configuration-
interaction (CI) method with very large numbers of
configurations to calculate the electron affinity. Their re-
sults is 12.8 meV. In this article we solve the Brueckner
equation, which is obtained from Green’s-function for-
malism in the second ‘“order” approximation [10,11], to
J
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where V is the electron-electron interaction and

{mn|V|st ) is defined as
(mn|VIst)= [y}, (el )
XV (r'—r" W, ('), (" )dr'dr” . (5)

The bracket [ ] in Egs. (3) and (4) denotes antisymmetri-
zation, i.e.,

[{mn|VistY1={mn|V]|st)— (mn|V|ts) . (6)
In Egs. (3) and (4), the indices a and b stand for hole
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is more subtle than previously thought.

search for the bound states of Ca™. Since relativistic
effects are not negligible for Ca™, we solve the Dirac-type
equation instead of the Schrodinger-type equation.

In Green’s-function formalism, one starts from the
ground state of neutral calcium which has N=20 elec-
trons and tries to solve for orbitals of states with N+1 or
N —1 electrons. We call states with N+ 1 electrons one-
particle states, or simply particle states, and states with
N —1 electrons hole states. Both particle states and hole
states satisfy the same equation in each order of approxi-
mation. The equation is nothing but the Dirac-Fock
(DF) equation in the first-order approximation [12], and
the Brueckner equation in the second order. These two
equations are given, respectively, by

(e2F—Hy)n)=3Vn) , (1
(e —Ho)ln)=(ZV+2)[n) | 2)
where H|, is relativistic hydrogenlike Hamiltonian. The

expectation values of the first- and second-order self-
energy are given by

(3)
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I
states; their corresponding sums range over the core.
The indices i and j stand for particle states; their corre-
sponding sums range over all positive states outside the
core. The eigenvalues of these equations are the energy
differences between (NN £1)-electron states and the ground
state,

=+(EN*'—EY) . )

For hole states, the energies are negative. The energy ¢,
of a particle state is negative only when it is a bound
state.

This has to be compared with some other methods
such as the multiconfiguration Hartree-Fock method
(MCHF) [1,13] in calculating the electron affinity of Ca™
In MCHEF, one tries to solve for EN "' and EJ separately.
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The electron affinity is determined by taking the
difference of these two values. The ground energy is
about 680 eV while the experimental value for the elec-
tron affinity is a few tens of meV. This means one has to
solve both for EY and EN*! with an accuracy of 0.001%
level. In addition, the relativistic effect, which is at least
of the order of meV [13], has to be included by some es-
timation method. ‘

Since we solve for ¢, directly, a negative eigenvalue for
a particle state means the state is a bound state. Because
all the hole and particle states (bounded or not) satisfy
the same equation, we can solve it using the B-spline
method [14]. The solution of the B-spline method is a
pseudocomplete set of wave functions which are known
to have the following two properties: (i) there are a few
wave functions in this set of solutions matching the exact
low-lying bound states of the system very well; (ii) the
whole set of solutions can be considered as a good ap-
proximation to the exact complete set of states. From the
experience that we solved either the DF equation or
Brueckner equation for alkaline atoms [10], we know that
in addition to energies of hole states, the lowest few ener-
gies of particle states also match the exact values very
well if the number of B-spline bases is 30 or larger. We
therefore solve the Brueckner equation for Ca™ using the
B-spline method with the number of bases equal to 30
and the size of the box equal to 40 a.u. We expect to see
negative-energy solutions for hole states: 1s, 2s, 3s, 4s,
2pi,> 3P1,2 2P3,, and 3p,,,, and for particle states
4p, ,, and 4p; , if they exist under the Brueckner approx-
imation. We therefore look for a negative-energy solu-
tion in the spectrum with angular momentum /=1. We
first solve the DF equation and list the first ten eigenval-
ues of the solutions for both p,,, and p;,, in the second
column of Table I. There is no negative-energy solution
other than the hole states 2p, /,, 3p, /2, 2P3 /2, and 3p; .
It is well known that there is no bound state of Ca™ un-
der the DF approximation.

We then continue to solve the Brueckner equation.
The second-order self-energy =‘* that appears in the
Brueckner equation has an essential difference from the
first-order self-energy ='V). First, =" depends on hole
states only while =’ depends on both hole and particle
states. For the DF equation, which does not include =)
one can solve the coupled equation for hole states self-
consistently to a high accuracy, and then use these hole
state solutions to generate the whole spectrum. For the
Brueckner equation we have to solve all orbitals simul-
taneously. Second, 2‘!’ is energy independent while =?’
depends on the eigenvalue ¢, itself. Thus we can gen-
erate the whole spectrum once and for all in the DF case,
but we have to use some kind of method to eliminate the
energy dependence in =) in order to be able to solve the
whole spectrum by iteration. For the present we use an
approximation that we used in the cases of alkaline atoms
[10] and boron [11]. Namely, we fix €, in the denomina-
tor of =2, The criterion of using this approximation is
described in Ref. [11] and numerical examples are
presented in Refs. [10] and [11].

Under this approximation we are able to iterate the
process of solving the Brueckner equation. We start from
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TABLE 1. First ten eigenvalues of p,,, and p;,, of the first
three iterations in solving the Brueckner equation using the B-
spline method.

First Second
Label DF iteration iteration
1=1, j=1/2
2p1 —13.7311 —13.6826 —13.6486
3p1 . —1.3493 —1.4050 —1.3905
(4py,2) 0.0023 —0.0020 0.0004
0.0063 0.0026 0.0029
0.0114 0.0078 0.0081
0.0193 0.0156 0.0160
0.0384 0.0330 0.0337
0.0548 0.0539 0.0540
0.0624 0.0602 0.0605
0.1403 0.1229 0.1256
1=1, j=3/2

2ps, —13.5921 —13.5441 —13.5101
3p3 —1.3337 —1.3893 —1.3748
(4ps3 ) 0.0023 —0.0018 0.0006
0.0064 0.0027 0.0030
0.0117 0.0080 0.0084
0.0201 0.0162 0.0166
0.0399 0.0346 0.0354
0.0545 0.0534 0.0536
0.0650 0.0626 0.0629
0.1492 0.1320 0.1347

the DF wave functions. Namely, for the first iteration we
use the pseudocomplete set of DF wave functions ob-
tained from the B-spline method to calculate the right-
hand side of Eq. (2). The solutions of the first iteration
are listed in the third column of Table I. Again, only the
first ten eigenvalues for both p, ,, and p;,, are listed. No-
tice that there is one more negative eigenvalue than the
DF energies (column 2) for each of p,,, and p;,, spectra.
We accordingly assign them as 4p,,, and 4p;,,, respec-
tively. These two eigenvalues, —0.0020 a.u. (54 meV)
and —0.0018 a.u. (49 meV), are very close to the results
of Johnson, Sapirstein, and Blundell [4] and Dzuba et al.
[5]. This is what we expected since both Johnson, Sapir-
stein, and Blundel and Dzuba et al. actually solve the
same equation as Eq. (2) using the DF wave functions.
However, the Brueckner equation has to be solved self-
consistently. Thus we take this set of solutions to calcu-
late the right side of Eq. (2) once again and then obtain
solutions of the second iteration. The resultant spectrum,
listed in column 4 of Table I, nevertheless, shows no
bound particle states. With more iterations, the eigenval-
ues of potential bound states 4p, ,, and 4p, /, stay as posi-
tive values. We have also increased the number of bases
to 40 and the size of the box to 60 a.u. Still, no bound
particle states are found. We therefore conclude that
there are no bound states for Ca™ under the Brueckner
approximation.

The conclusion may not be too surprising. In Green’s-
function formalism, we consider Ca~ as a core
(1s22522p%3523p©4s?) plus one electron. Because this
core is “‘soft,” namely, it is a closed subshell rather than a
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closed shell, the correlation between hole states and parti-
cle states is expected to be large. The order by order cal-
culation based on the many-body perturbation theory
(MBPT) is certainly no good. Here in Green’s-function
formalism we do have summed a subset of all order con-
tributions in each “order” of approximation [15]. The ei-
genvalue of interest may or may not converge fast
enough. In the case of boron which also has a soft core
(15%25?), the results of the Brueckner approximation are
pretty good [11]. However, there is no guarantee that the
Brueckner approximation works well for other systems
with a “soft” core. Our calculation for Ca™ shows that
the Brueckner approximation is not adequate. That the
bound states appear in the first iteration during the pro-
cess of solving the Brueckner equation is fortuitous.

A better way to study Ca™ is to regard Ca~ as a sys-
tem with a “hard” core (1s22522p%3s23p®) plus three
valence electrons. One can first freeze the “hard” core
and solve the three-electron system and then relax the
core to include core-polarization effects. This picture
should work better because the dominant correlations
(the valence-valence interactions) are accounted for com-
pletely in the first step. The core polarization is much
smaller and can be calculated by some approximation
method. The Green’s-function formalism can indeed be
generalized to deal with systems with a core plus two or
three electrons. The generalization for two-electron sys-

tems had been explicitly constructed by Liaw, Feldman,
and Fulton [16]. For three-electron systems, one has to
start from the three-particle Green’s function. Detailed
work still waits to be done. On the other hand, one can
use configuration-interaction or MCHF methods to solve
three-electron systems to a very high accuracy [1,8]. The
core polarization then is not to be included in a perturba-
tive way as in the Green’s-function formalism, van der
Hart, Laughlin, and Hansen [8] use a model potential to
account for the core-polarization effects and obtain a very
accurate ground-state energy of Ca.

In conclusion, we found that the bound states of Ca™
are still elusive on the theoretical side. So far there is no
satisfactory relativistic ab initio calculation that can pro-
duce the electron affinity close to recent experiments.
And perturbation theory of any kind seems unable to ob-
tain converging bound states. On the other hand, the
MCHEF or CI calculations are nonrelativistic and their re-
sults do not agree with each other. The best theoretical
value that agrees with recent experiments is the model-
potential calculation done by van der Hart, Laughlin, and
Hansen [8].
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