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Supersymmetric semiclassical approach to confined quantum problems
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It is suggested that the supersymmetric WKB (SWKB) method may be useful in studying the deviation
of the energy levels of a quantum system due to the presence of a spherically confining bounda. ry. For il-

lustration, we present the explicit results for the Coulomb and three-dimensional harmonic-oscillator po-
tentials. It is observed that the confining geometry removes the angular-momentum degeneracy of the
electronic energy levels of a free atom. . Our predicted energy eigenvalues are in agreement with the ex-
act ones obtained numerically.

PACS number(s): 03.65.Sq, 32.30.—r

The study of confined quantum systems has recently
received renewed attention due to a variety of related
physical problems. The model of an atom or a molecule
confined to a box has proved to be a useful model for
simulating the effect of neighboring atoms in many physi-
cal situations. Such a model was first proposed by
Michels, de Boer, and Bijl [1], who considered a hydro-
gen atom enclosed in a sphere of finite radius and calcu-
lated the change in polarizability and increase in kinetic
energy for this system. Over the course of years this
confined-atom (or -molecule) model has been used to cal-
culate a variety of physical properties. The interested
reader may refer to Froman, Yngve, and Froman [2],
who give a list of 64 references on allied topics. The fa-
brication of quantum dots in semiconductor physics [3]
has given an added impetus to this field [4].

In recent years, a variety of techniques have been used
to study such confined atomic and molecular systems
[5—13]. The main difficulty in these studies arises due to
nonavailability of an accurate method of solving the cor-
responding Schrodinger equation under nonstandard
boundary conditions on the wave functions. Accurate re-
sults are obtainable at the expense of extensive
mathematical and numerical manipulations, thus hinder-
ing the physical analysis of the corresponding system.
The methods employed for dealing with confined quan-
tum systems fall broadly in the following categories. In
the first, a direct numerical solution of the Schrodinger
equation is sought imposing the boundary condition that
the wave function becomes zero at the surface of the en-
closing boundary [10]. The second type of calculations
are based on perturbative approaches [7,11,12]. The
method based on the variational techniques [8,9] is found
to be quite effective. A semiclassical approach to these
problems leads to simple analytic results. Recently
Froman, Yngve, and Froman [2] and Yngve [5] have
shown that the energy shift of a confined single-particle
system can be obtained using the semiclassical quantiza-
tion formula of Dennison and Uhlenbeck (DU) [14] for
the symmetric double-well oscillator.

xlK= —f [2m[V(x) —E„]]'~dx,
0

(2)

where the plus and minus signs in (1) correspond to the
even-parity and odd-parity states, respectively, and x&
and x2 are the classical turning points, x

&
being nearer to

the origin.
For a free atom, the radial wave function satisfying the

Schrodinger equation

The purpose of this note is to demonstrate that the
supersymmetry-inspired WKB (SWKB) method [15—17]
can be an alternative approach for computing the energy
levels of confined quantum systems with reasonable accu-
racy. During the last decade, the new SWKB quantiza-
tion procedure based on super symmetric quantum
mechanics (SUSYQM) [18,19] has been found to be very
useful in analyzing bound-state spectra. It is now well es-
tablished that the leading-order SWKB quantization rule
not only yields exact bound-state spectra for all shape-
invariant potentials [16],but also frequently gives better
results than the usual WKB method for the non-shape-
invariant potentials [20,21]. However, the application of
the SWKB method has so far been confined to studying
the energy spectra of a single-particle system under stan-
dard boundary conditions on the wave functions. To the
best of our knowledge, the feasibility of application of the
same to confined quantum systems has not been tested
earlier, and in this respect such an attempt will be in-
teresting.

For obtaining the SWKB expression for the energy
shift of the bound electron of a compressed atom, we
shall follow the idea of Yngve [5]. Using the fact that
due to the tunneling effect each single-well level is split
into two, the DU quantization condition [14] is given by

f [2m [E„—V(x)]] ' dx+irt tan '( —,'e )
xl

=(n + —,
' )M, (1)

where n =0, 1,2, 3, .. . with
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with

dg 2m+ [E —V, tr(r)]g(r) =0
t&

Hence the DU quantization condition (1) with the lower
sign chosen and V(x) replaced by V, s(r) should give the
energy levels E„(a) for the confined atom. In SUSYQM,
the role of V,s(r) is played by the partner potential

V,z(r)= V(r)+I(I +1)A' /2mr

obeys the boundary conditions

y(0)=0, g(~)=0 .

(4)

(5)

When such an atom is confined in a sphere of radius a
with an impenetrable wall, the second boundary condi-
tion in (5) is changed by requiring

V (r)= W'(r) — W'(r),
2m

in which W(r) is the superpotential. The corresponding
energy eigenvalue is denoted by E„' '. For unbroken su-
persymmetry,

V (r)=V,~(r) EO=—V(r)+
~

—Eo,I (l + 1)fi
2mr

X(a)=0 (6) E„' '=E„—Eo,
To obtain an approximate solution of Eq. (3) with the
modified boundary condition (6), one may consider an
effective double-well potential symmetric around r =a
[5], because the odd-parity solution of this problem in the
interval 0 & r & a fulfills the boundary condition (6).

where Eo is the ground-state (n„=0) energy for the po-
tential V(r) Us.ing (7) in (1) we expand the integrand in
powers of fi. Retaining terms up to order R and integrat-
ing we get

r2(a)
[E„' '(a) W]' —«

rl(a)

{W'(a)+ [ W (a) —E„' ']'
f [E„'-'—W']'"dr+tan ' exp [( —2v'2m )/A'] f [ W E„]' d—rn 2+E'-' n

n

(9)

2

V(r) = — +l(l +1)fi /2mr (10)

in which the limits of the first two integrals correspond to
the roots of the equation obtained from the zeros of the
respective integrands.

Equation (9) is our working formula to study the shift
of the energy levels due to the finite boundary. The in-
tegrals can be evaluated in closed form for potentials for
which the superpotentials are simple. For illustration, we
shall now present the explicit results for the compressed
hydrogen atom and for the harmonic-oscillator potential.

(a) For the effective Coulomb potential

/ dp.
1

me

Q —2mE„
—(l + 1)fi . (12b)

1E (a)= ——
n n+ —tan '( —'e '

)
1

'??
2 (13)

where

The integral in the exponential on the right-hand side
(RHS) of (9) is also evaluated. For simplification, we use
the units 6=m =e =1 and finally obtain

the superpotential is

W — 2W r =&m/2
(l +1)A'

(I + 1)A'

&2m r
with

—2K{a) a n+ ng-
e

a n ng— — (14)

It is clear that even for l =0 the term 8' contains a re-
sidual repulsive piece which is essential for the creation
of the double-well structure in this formulation. Using
(11) in (9) and evaluating the standard integrals [22], we
obtain finally

—2a +(I +1)
71

1/2

r2(a)f {2m [E(—)(a) W2]] I/2d„
rl (a)

me

2mE„(a)——(1 + 1)A', (12a)

(I + 1)

(I +1) 2 1

a Q n2

n =n, +I+1 .

1/2 1/2
1 1

(I +1)~ n2

(15)
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Since I' becomes singular for the n„=O state, it will not
be possible to compute E„' '(a) for this state. One may
check easily that for the uncompressed atom (i.e.,
a ~ ~), (13) leads to the standard result E„=—1/2n .

(b) For the harmonic oscillator in three dimensions, the
effective potential and the energy eigenvalues are

The corresponding superpotential is
1/2

8'(r) =
2

l (l +1)R
&2m r

(17)

Using (17) in (9) and evaluating the integrals one obtains
after simplification

V,fr(r)= ,'mco r—+l (l + l)R
(16a) E„(a)=E„+—A'co tan '[ —,'Ge "j2

E„=—irido(2n„+ l +—', ) . (16b) with

e
mE„a —(l + 1) A —(l + 1)iriQ

mE„a —(l +1) A' +(l +1)iriQ

Q =Qm co a 2mE„—a +(1+1)R

E„=A'co(2n„+ l + 1),

m~ a E„+—coQ

~

mco a E„coQ~

1/2

(1/2)(E„ /%co) —(Q /A)
e

APE

2
(l+1)A', i 2 (l+1) A'

Q)Q + 2m') 'Q +
~2m a 2Ala

QE„—A'co(l + 1) . (19)

Again, the energy eigenvalues of the confined harmonic
oscillator in SWKB theory cannot be evaluated for the
n„=O state as 6 becomes singular.

We compute the energy levels for the ground state as
well as for the first few excited states for di6'erent values
of the size of the boundary, i.e., a for the Coulomb and
harmonic-oscillator potentials. Our predicted results for
these two cases are presented in Tables I and II, respec-
tively. These results have been compared with the exact

ones obtained numerically by solving the Schrodinger
equation (3) using appropriate potentials. As seen from
Tables I and II, all the energy levels are raised relative to
the free-atom values. The extent by which a level is
raised increases as a decreases. In the case of the
Coulomb problem, for a given a and the principal quan-
tum number, the energy levels split in such a way that the
sublevel with the largest l has the lowest energy. It is
known, of course, that the splitting of the degeneracy of

TABLE I. Exact and SWKB eigenenergies for the confined
hydrogen atom for 2s, 3s, and 3p states as a function of the ra-
dius of the spherical box.

TABLE II. Exact and SWKB eigenenergies for the confined
harmonic oscillator for four states as a function of the radius of
the spherical box.

3$

8
9

10
11
12
13
14
15
16
20
20
25
30
35
40
20
25
30
35
40

—0.1695
—0.2057
—0.2256
—0.2367
—0.2428
—0.2462
—0.2480
—0.2490
—0.2495
—0.2500
—0.0998
—0.1092
—0.1109
—0.1111
—0.1111
—0.1032
—0.1098
—0.1109
—0.1111
-0.1111

—0.2154
—0.2216
—0.2299
—0.2371
—0.2424
—0.2458
—0.2478
—0.2489
—0.2494
—0.2500
—0.1030
—0.1091
—0.1108
—0.1111
—0.1111
—0.1044
—0.1097
—0.1109
—0.1111
—0.1111

Percent
error

27.08
7.73
1.91
0.17

—0.16
—0.16
—0.08
—0.04
—0.04

0.00
3.21

—0.09
—0.09

0.00
0.00
1.16

—0.09
0.00
0.00
0.00

n„

2.5
3.0
3.5
4.0
4.S
5.0
3.0
3.5
4.0
4.5
5.0
3.5
4.0
4.5
5.0
3.0
3.5
4.0
4.5
5.0

Exact

4.1842
3.6642
3.5233
3.5017
3.5001
3.SOOO

4.9138
4.5808
4.S083
4.5004
4.5000
5.7586
5.5394
5.5029
5.5001
6.3074
5.7019
5.5287
5.5020
5.5001

SWKB

3.8610
3.6789
3.5276
3.5019
3.5001
3.5000
4.8337
4.5956
4.5098
4.5005
4.5000
5.7483
5.5454
5.5032
5.5001
5.7952
5.7166
5.5345
5.5023
5.5001

Percent
error

—7.72
0.40
0.12
0.01
0.00
0.00

—1.63
0.32
0.03
0.00
0.00

—0.18
0.11
0.01
0.00

—8.12
0.26
0.10
0.01
0.00
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the angular-momentum sublevel is the eonsequenee of a
hard wall at r =a. As regards the accuracy of our pre-
dicted results, a few comments may be made. The agree-
ment of our predicted energy eigenvalues with the exact
ones is reasonab1e only when a is not small. %'hen the
confining wall is very close to the origin, it has been ob-
served that very accurate results are obtainable in varia-
tional approaches [8,9]. However, in that case one does
not get the fIavor of the simplicity of an analytic calcula-
tion as is done here.

From the above examples we conclude that the use of
the lowest-order SWKB method as proposed in this work
is a useful alternative means to study confined quantum
systems with impenetrable walls. A major advantage of
this method over other sophisticated treatments such as
the perturbative and variational techniques is its simplici-
ty and reasonable accuracy once the superpotential is

constructed according to (7). We believe that it will be
worthwhile in future to apply our method to more realis-
tic physical problems. Ballester and Dunlap [23] suggest-
ed recently an analytic functional form for a radial poten-
tial having a positive curve at the origin for describing
the behavior of an atom trapped inside C60. This poten-
tial function has similarity with the Morse potential for
which the superpotential is known [18].The application
of our S%'KB method to study radial vibrations of an
atom confined within C60 is presently under investigation.

Two of us (R.D. and A.M. ) wish to acknowledge the
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ic Energy, Government of India. This work is also sup-
ported in part by a research grant from the Natural Sci-
ence and Engineering Research Council of Canada to one
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