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Light-polarization dynamics in surface-emitting semiconductor lasers
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A four-level model which takes account of the polarization of the laser field by including the spin
sublevels of the conduction and valence bands of a semiconductor allows us to introduce vector rate
equations which account for the polarization degree of freedom of the laser emission. Analysis of
these rate equations and their extension to include transverse degrees of freedom provides important
physical insight into the nature of polarization instabilities in surface-emitting semiconductor lasers.
In the absence of transverse effects the model predicts a marginally stable linearly polarized state.
The type of dynamical response of the polarization degrees of freedom is linked to the relative
time scale of spontaneous-emission and spin-relaxation processes. With transverse effects included,
we predict the existence of stable transverse spatially homogeneous intensity outputs with arbitrary
direction of linear polarization in the transverse plane. The stability of the off-axis emission solutions
to long-wavelength perturbations is investigated and, in addition to an Hckhaus instability associated
with a global phase, we predict a polarization instability associated with a relative phase of the
complex field vector. The role of phase anisotropy in the laser cavity is explored close to threshold
and we predict that it stabilizes two preferred orthogonal directions of polarization, which, however,
are discriminated in their stability properties by transverse effects.

PACS number(s): 42.55.Px

I. INTRODUCTION

The basic modeling of semiconductor laser dynamics
is provided by rate equations and their generalization to
include the dynamics of the phase of the electric field
[1]. In spite of the limitations of this model, in particular
to describe phenomena involving very short time scales
[2], it has been very useful in both basic and applied re-
search in semiconductor laser devices, providing a refer-
ence framework for elaborating on more detailed aspects
where necessary. However, no such laser modeling seems
to be available to describe the polarization properties of
the electric field. The rate equations take for granted
a fixed direction of polarization. Semiconductor lasers
are known to preferentially emit linearly polarized light.
This is commonly attributed to cavity anisotropies, but
the origin of linearly polarized light has not been con-
sidered in detail. On the other hand, it is known for
gas lasers that the state of polarization of laser light is
linked, in addition of cavity anisotropies, to details of
the atomic transitions involved, so that a gas laser can
emit linearly or circularly polarized light [3—7]. Phenom-
ena such as polarization switching were studied exten-
sively in the early days of laser physics [3,4,8]. A purpose
of this paper is to introduce and analyze a basic model
of semiconductor dynamics in which the key aspects of
polarization dynamics of a semiconductor laser can be
studied. An immediate motivation for our work is that a
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number of polarization-sensitive applications of semicon-
ductor laser devices require detailed polarization control
[9,10]. The engineering of this polarization control would
benefit from a basic modeling of the key physical issues
involved. In particular, surface emitting lasers are known
to emit linearly polarized light with a polarization sta-
bility that is smaller than that for edge emitting lasers.
The linear polarization either is randomly oriented in the
plane of the active region or prefers two orthogonal di-
rections associated with crystalline orientation [11,12].
Both polarization coexistence between orthogonal modes
(polarization mode partition) and polarization switching
have been observed [11,12].

A possible justification of the standard rate equations
is a two-level model approximation to the semiconduc-
tor laser transition. The semiconductor laser is inho-
mogeneously broadened with difFerent transitions from
the conduction to the valence bands for diferent carrier
wave numbers. The two-level approximation can be un-
derstood as replacing this transition by a homogeneously
broadened transition at the center of the band gap from
the conduction to the valence band. The well-known o.
factor of semiconductor lasers [13] is a common way of
summarizing in a parameter many microscopic processes
and in particular the inhomogeneously broadened charac-
ter of the lasing transition. A main eKect of the o. factor
is to produce phase-sensitive dynamics. This sensitivity
is analogous to the efFect of cavity detuning in two-level
models. A useful way to mimic a constant o. factor in a
two-level approximation to the semiconductor dynamics
is to introduce it as a large positive detuning between
the cavity frequency and band-gap frequency [14]. Along
these lines we will introduce here a four-level model that
takes into account the spin sublevels of the conduction
and the valence band and therefore allows us to consider
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difFerent polarizations of light associated with transitions
between different spin sublevels. Generalized rate equa-
tions that include polarization degrees of &eedom are ob-
tained &om the four-level model.

The polarization dynamics is closely interrelated with
transverse effects in lasers with large Fresnel number.
In particular, vertical cavity surface-emitting lasers (VC-
SEL's) have a well selected single longitudinal mode but
can support a large number of transverse modes. It has
been observed that different polarization directions are
often associated with different transverse modes and/or
difFerent emission frequencies [12]. With this motivation,
and in order to study general issues of the coupling of
polarization and transverse degrees of &eedom, we have
included in our four-level rate equations a general model-
ing of transverse effects for broad area lasers. Our study
is based on a one-dimensional transverse structure with
&ee boundaries. It follows the same spirit as other anal-
yses [15—17] aiming an understanding of intrinsic bulk
dynamical efFects in broad area lasers. A direct compar-
ison of our results with polarization dynamics coupled
with transverse effects in VCSEL's requires further inves-
tigation taking into account a Gnite-size two-dimensional
geometry and possible index-guiding efFects. Previous
studies of the dynamics of transverse effects in broad
area semiconductor lasers [16,18], feature either mean-
Geld equations obtained by averaging of the longitudi-
nal spatial degrees of &eedom or full counterpropagat-
ing wave simulations. Mean-Geld equations can be seen
as rate equations supplemented with difFraction terms
for the field and diffusion terms for the carriers. They
predict that the transverse spatially homogeneous las-
ing solution is unstable. However, they also include an
unphysical instability at high transverse wave numbers,
which in the context of two-level models can be traced
back to adiabatic elimination of the dipole polarization
variables [17]. We depart here from this approach and,
instead of an adiabatic elimination of the dipole polariza-
tion variables, we introduce, close to threshold, an am-
plitude equation description of the broad area semicon-
ductor laser dynamics. The main id.ea of this alterna-
tive approach is the same as that used for the study of
transverse effects of two-level models of wide gain gas
lasers [15]. In our case this description, on the one hand,
identifies the preferred transverse mode of laser emission
and, on the other hand, includes the light polarization de-
grees of freedom. A similar amplitude equation approach
to polarization dynamics together with transverse efFects
has been recently given for some gas lasers [19].

The basic four-level model introduced in Sec. II ac-
counts for the vector nature of the laser emission Geld by
allowing for both states of circular polarization through
dipole-allowed transitions between independent pairs of
levels. Coupling between both transitions is assumed to
occur via spin-Hip relaxation processes [20—24]. Section
III details a rate equation analysis of the coupled system
where the polarization dynamics has been adiabatically
eliminated. The relative time scales of spontaneous emis-
sion and spin-Hip relaxation processes is sho~n to be of
critical importance in determining the nature of the po-
larization dynamics and the stability of the linearly po-

larized laser light field.
The inclusion of transverse degrees of &eedom in Sec.

IV significantly increases the set of allowed lasing emis-
sion states. Off-axis far-Geld homogeneous intensity lin-
early polarized solutions corresponding to near-Geld trav-
eliug waves with an arbitrary direction of linear polariza-
tion are shown to be linearly stable. A difFerent class of
linearly stable states consisting of a superposition of trav-
eling waves with opposite senses of circular polarization
manifest themselves as a periodic alternation in the direc-
tion of linear polarization in the transverse plane. Many
of the allowed transverse lasing solutions are shown to be
either intrinsically unstable over physically realistic pa-
rameter ranges or susceptible to long-wavelength insta-
bilities of the global or relative phase. The latter defines
the polarization state of the laser Geld while the former
reBects translational invariance in the transverse plane.
The role of carrier diffusion as well as light diffraction
on the stability of the various laser-emission solutions is
explicitly taken into account. Anisotropies in the laser
cavity and their interplay with transverse effects are dis-
cussed in Sec. V within the reduced description valid
close to threshold. Linear phase anisotropies associated
with bire&ingence stabilize two preferred orthogonal di-
rections for off-axis linearly polarized emission. An im-
portant conclusion of this section is, however, that trans-
verse effects discriminate between these two preferred di-
rections so that, for a given sign of the anisotropy, they
extend the range of stability to transverse perturbations
of the x-polarized solution while the y-polarized stability
range shrinks.

II. A FOUR-LEVEL MODEL FOR
POLARIZATION DYNAMICS OF

QUANTUM-W'ELL LASERS

The polarization of laser light is of quantum nature and
it originates in the spin sublevels of the lasing transition
between the conduction and valence bands of the semi-
conductor. The band structure near the band gap can
be calculated using the Luttinger Hamiltonian and k p
theory [25]. The electron state of zero momentum of the
conduction band has a total angular momentum J = 1/2.
The valence bands are commonly known as heavy hole
(hh), light hole (lh), and split-ofF (so). When taking into
account spin-orbit coupling, the so band, which with an-
gular momentum J = 1/2, has a lower energy than the
hh and lh bands and. it can be disregarded for our pur-
poses. For bulk material the hh and. the lh bands are
degenerate at the center of the band gap with a total
angular momentum J = 3/2. For quantum wells, the
quantum confinement in the z direction removes this de-
generacy. In the case of unstrained quantum wells, the
heavy-hole band, which is associated with J, = +3/2,
has a higher energy (Fig. 1). We will consider a surface-
emitting quantum-well laser so that the active material
slab is perpendicular to the direction of laser emission z,
which coincides with the quantization axis (Fig. 2). In
this geometry and for a gain-guided broad area laser the
electric field is in the x-y plane, so that two independent
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components

F~ = (F +iFy).
2

(2.2)

The Maxwell-Bloch equations are

heavy hole

light hole

J,=+
/2 agF/ ———KF/ —igoPg + i —v't F/,

2v
BgP~ = —[p~ + i(cu —v)]P~ + igpF~ (D + d),

Bt,D = —
p~

~

(D —0.) + [xgp (F+P+ + F*P ) + c.c.]
+Df V'~D,

Ot, d = —pgd + [ig,*(F+P+ —F*P ) + c.c.]
+Dye'id.

(2.3)

(2.4)

(2.5)

(2.6)

F~ are associated with the transitions pl/2 ~ ~3/2,
respectively. P~ are the slowly varying amplitudes of
the dipole polarizations associated with these transitions.
The population diBerences D and d are defined as

FIG. l. Band structure of a quantum weB. 1
D = —[(ng + n g) —(ns + n s)]2

1
d = —[(n g

—n s) —(ng —ns)],
2

(2.7)

(2.S)

TE polarization modes are available for the laser field.
For such a transverse electric field the allowed dipole
transitions are those in which 4J = +1. Right cir-
cularly polarized light corresponds to 4J, = —1 and left
circularly polarized light to AJ = +1. Given the lower
energy of the light-hole band we will neglect transitions
&om the conduction to the light-hole band. We are then
left with two allowed transitions between the conduction
and the heavy-hole band: the transition from J, = —1/2
to J, = —3/2 associated with right circularly polarized
light and the transition from J, = 1/2 to J, = 3/2 as-
sociated with left circularly polarized light. In a first
approximation to semiconductor polarization dynamics,
we can model these transitions by the four-level model
depicted in Fig. l. We write the vector electric field for
a single longitudinal mode laser as

E = [F (x, y, t)k+ Fy(x, y, t)y] e' ' '"'+ c.c., (2.1)

The slowly varying amplitudes F~, F„satis fy the
Maxwell-Bloch equations [26], which are conveniently
written in terms of the right and left circularly polarized

where n; is the population of the spin sublevel i/2. D is
associated with the total population difFerence between
the conduction and the valence bands and d is associ-
ated with the difference in population inversions associ-
ated with right and left circularly polarized emissions.
The coupling between the two lasing transitions occurs
through nonzero values of d. Density-matrix coherences
other than the two dipole polarizations P~ are decoupled
from Eqs. (2.3)—(2.6) and will not be considered any fur-
ther. The model also includes a transverse diffraction
term and carrier diffusion [V'~ = (0,8„))] The param-
eters in (2.3)—(2.6) are the cavity frequency v, the fre-
quency u associated with the energy gap, the coupling
constant go, and an incoherent pumping parameter o as-
sociated with the injection current. The model includes
several decay rates: m is the inverse photon lifetime in
the cavity and p~ the relaxation rate of the dipole polar-
ization. The population difFerence D has a decay rate p~I
associated with spontaneous decay, while d has a decay
rate

~J = 1~~+2~~. (2.9)

Laser
output

FIG. 2. Geometry of a surface-emitting laser.

The decay rate p~ accounts for the mixing of the pop-
ulations with opposite value of J, . This parameter is
introduced to model spin-fhp relaxation processes. For
simplicity we assume the same decay rate p~ in the con-
duction and the valence bands. Several spin relaxation
processes for electrons and holes have been identified in
semiconductors [20] as, for example, hole interaction with
static scatterers [21] or exchange interaction between
electron and hole [22]. These processes are often stud-
ied in the context of luminescence phenomena [23] and
significant difkrences in relaxation times between bulk
and quantum-well materials are found [23,24]. For our
purposes the parameter p~ can be understood as a phe-
nomenological modeling of a variety of complicated mi-
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croscopic processes. From experimental measurements
[24] of spin relaxation times in quantum wells one can
estimate that

i " t+i(8p+vPp)

f ~Q'=—
E~ )

N=1, n=0
(3.6)

p() & p~ & 10 p(), (2.10)

III. RATE EQUATIONS APPROXIMATION

where
p~

~

= 1 nsec. The spin mixing described by pz

typically occurs on larger time scales than photon decay,
where K = 1 psec. The fastest time scale included in
(2.3)—(2.6) is the dipole polarization decay rate pz )) p~ ~.

The implications of these differences in time scales will
be considered throughout the remainder of the paper.

where Ho and @0 are arbitrary phases. The global phase
Op is the familiar arbitrary phase of conventional theory.
The relative phase $0 indicates the arbitrary direction of
linear polarization in the transverse plane of the laser.

The linear stability of this solution can be studied by
writing

E~ = (Q+ ag)e'~~',
N= 1+4, n=b.

In terms of S = a++ a and B = a+ —a, the linearized
equations decouple into two sets

In this section we analyze a rate equation approxima-
tion to describe polarization dynamics of a single lon-
gitudinal surface emitting semiconductor laser in cases
where transverse effects can be neglected. Given the
much faster relaxation rate p~ of the dipole polarization
variables, they can be adiabatically eliminated:

S = —"(1 —in) QA,
b, = ——'~' A —Q[(S+ S') + 2b, Q];

B = —"(1—in)Qh,
8 = —~' b —Q[(B+R*) + 2hQ].

(3.7)

(3.8)

(3.1)

where 0 = u —v is the detuning. The conventional con-
stant o. factor of single-mode semiconductor laser theory
[13] is defined in terms of the susceptibilities y~ as

Rey~
Imp~

(3.2)

K K
r9gE~ = — E~ + (1 —in)(N + n)E~,

QJ QJ

(N —~/~. ) —(IE+I'+ IE- I')N
QJ

—(IE+ I' —IE- I')n

—(IE+ I' —IE- I')N
PJ

—(IE+I'+ IE-I' )n,

where time has been rescaled as t + p~t and

(3.3)

(3.4)

(3.5)

E=~2gE, N= D, n= d,
K K

Igol'
g —

2 2) Oc
p~+ 02

We note that formally taking n = 0 and E+ ——E, (3.3)—
(3.5) reduce to the familiar rate equations, where N is
the difference between the actual carrier number and the
carrier number at transparency.

The rate equations have a cw solution above threshold
that corresponds to linearly polarized light:

and it can be formally identified with a large positive
detuning 0 of the four-level model [14].

Replacing (3.1) and (3.2) in (2.2)—(2.5) we find a gen-
eralized set of rate equations

In a linear analysis, the imaginary part of ag is associ-
ated with the phase of the perturbation of Q, so that the
imaginary part of S is associated with the perturbation
of the global phase Op and the imaginary part of B with
the relative phase $0.

The set of equations (3.7) is independent of the cou-
pling p~ between the transitions +1/2 -+ +3/2. This set
describes the small signal analysis of the global transi-
tion from the conduction to the valence band. It coin-
cides with the small signal analysis of conventional rate
equations. There is a zero eigenvalue and two complex
eigenvalues (complex conjugate). The only nonvanish-
ing component of the eigenvector corresponding to the
zero eigenvalue is the imaginary part of S. Such an
eigenvalue reflects the invariance of the equations under
time translation or, equivalently, the arbitrary value of
the global phase Op of the complex electric field. The
complex conjugate eigenvalues describe relaxation oscil-
lations of &equency uR. In the usually considered limit

(—) (( —"(——1), the complex eigenvalues areO'c
I I

&c

&I I —+ ZuR,
2Pg OC

( )1/2
Q

The second set of equations (3.8) describes the dynami-
cal response associated with the polarization degrees of
freedom. There is a zero eigenvalue associated with the
imaginary part of B. This eigenvalue reflects the invari-
ance of the equations under rotations of the vector elec-
tric 6eld or, equivalently, the arbitrary direction of linear
polarization determined by the relative phase @o. The
other two eigenvalues can be real or complex conjugate,
but they always have a negative real part, which ensures
the stability of the linearly polarized laser light. They
describe the relaxation of polarization fluctuations and,
when they are complex, they identify relaxation oscil-
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lations associated with polarization degrees of freedom.
The change &om complex to real eigenvalues separates
two regimes of dynamical response of the polarization.
Each regime exists for a range of values of ~ . For

&I I

(pz
——0) the two transitions +1/2 ~ +3/2 are

uncoupled, the set of equations for R and b is degenerate
with the set for S and 4, and the eigenvalues are com-
plex. Increasing pg/pII from pg/pII = 1, the eigenvalues
continue to be complex, with a growing absolute value
of the real part, up to a value (~~),. In this regime the

damping rate of the polarization relaxation oscillations
grows. For pg/pII = (—), the two complex conjugate

&I I

eigenvalues become two real eigenvalues and there is a
change of behavior in the dynamical response &om re-
laxation oscillations to exponential relaxation with two
real time constants. In the limit ~~ —+ oo one of the real

&I I

eigenvalues approaches zero. In this limit the linearly po-
larized emission becomes marginally stable with respect
to amplitude fluctuations. The growth of such fluctua-
tions would imply the growth of the real part of B, that
is, the suppression of one of the two circularly polarized
components of the field, and it would lead to circularly
polarized emission (Fig. 3). The value of (~~ ), at which

two comple~ eigenvalues of (3.8) become real is given, for
8~ )) ~ ~c

~c

(pgb f 8~ a —a, ) 1/2

& &I I
) & &I I

a~

For ~
&& (~ ), the dominant eigenvalue becomes

&I I &I I

8K o —o~ p~~

oc pJ
(3.10)

,'0 7j ~y,

(Q -60

FIG. 3. Real part of the polarization eigenvalue A' = A/ —"
YJ

vs pq/pI~ for (~/p~~) = 10 . The curves correspond to different
values of ': (a) 0.1, (b) 1, and (c) 3.

In summary, the dynamical response depends on the rel-
ative time scales of spontaneous emission and spin-flip
relaxation. When the spin-flip process is fast enough,
the relaxation oscillations associated with the polariza-
tion degree of &eedom disappear and the faster this pro-
cess becomes, the longer the relaxation time of amplitude
polarization fluctuations. The result is that, as the cou-

pling p~ between the two transitions +1/2 m 13/2 in-
creases, there is a crossover &om well stabilized linearly
polarized emission to a poorly stabilized situation with
a long relaxation time of the fluctuations away &om lin-
early polarized emission. The relaxation time diverges
for ~' m oo.

&I I

Our previous discussion neglects the eKect of
spontaneous-emission noise. When taking noise into ac-
count the two arbitrary phases Oo and go diffuse. The
diffusion of the global phase 00 results in the loss of &e-
quency coherence of the laser and gives rise to the laser
linewidth. The diffusion of vPo leads to a random mo-
tion of the direction of linear polarization. Both di8'u-
sion processes are driven by the same source of noise and
occur on the same time scale, which is the coherence
time of the laser. This time is estimated &om the laser
linewidth. The consequence is that, in the absence of
cavity anisotropies, a well determined direction of linear
polarization @o is only maintained during the time scale
of laser coherence.

IV. TRANSVERSE EFFECTS

In this section we study the interplay between trans-
verse eKects and polarization dynamics. In the rate equa-
tion description we have identified two arbitrary phases
ep aild gp with associated zero eigenvalues. It is gener-
ally expected that, when considering transverse eKects,
long-wavelength fluctuations can destabilize these de-
grees of freedom through a phase instability. The sta-
bility of oK-axis laser emission predicted for broad area
semiconductor lasers [18] is limited by an instability of
the phase 00. We will find here alternative spatiotempo-
ral instabilities associated with the direction of polariza-
tion @o. A natural way to study these aspects would seem
to be a generalization of the rate equations to include
transverse effects. However, it has been shown that such
equations, obtained by adiabatic elimination of the dipole
polarization variable, lead to unphysical high-transverse-
wave-number instabilities [17]. An alternative approach,
which we follow here, is to consider situations close to
threshold where an amplitude equation description is ap-
propriate. The dynamical regime covered in this descrip-
tion does not include relaxation oscillations. In terms of
the eigenvalues discussed in Sec. III, we will be consider-
ing regimes in which ~ & (~ ), and in which relaxation

&I I &I I

processes described by the most negative real eigenvalue
of (3.7) are considered to be instantaneous. For an or-
dinary semiconductor laser such a regime is limited to
operation very close to threshold, but it is in here where
a first clear understanding of the interaction of polariza-
tion and transverse degrees of freedom can be obtained.
This regime can be easily enlarged by appropriate coat-
ings that produce a better optical cavity reducing the
value of the inverse photon lifetime K.

It is convenient to rescale the system (2.3)—(2.6) to
write it in dimensionless form
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t =, (x, y) = L(x', y'), F~ =
PJ gp

P = —~~P' D — = —~~N
Idol'

+'
lupi'

'
Igol'

(L is the transverse length scale. ) Then the dimensionless
equations read, with the primes omitted,

cftF~ = pF~—+ pPy +iaV'~Fg, (4 1)
OtP~ = —(1+in)P~ + rF~ —Fp(N y M), (4.2)

BtN = bN +—(F+P+ + F*P + c.c.) + df V~N, (4.3)
c)tM = hM—+ (F+P+ —F*P + c.c.) + df V'~M, (4.4)

where

C2

2v+~L

b=, h=, d =, T= o..'Yll » Df
pJ pJ QJ L pJ K

The nonlasing solution is given by E~ ——Pg ——N = M =
0. As the pumping T is increased, the nonlasing solution
loses stability at some threshold. A linear stability anal-
ysis of this solution identi6es the most unstable modes
at threshold. The linearized equations are

BtFg —i aV'~Fg + PFp —PPg ——0,

BtP~ + (1 + in) P~ —rF~ = 0,
N=M=O.

(4 5)
(4.6)
(4.7)

We assume that the transverse plane is sufFiciently large
so that we can neglect boundary conditions and trans-
verse modes form a continuum. Then the solutions for
the linear system are of the general form E~, P~ oc
e" +', where Ie is the transverse wave vector and
m = (z, y). For a given wave number k, the real part
of one of the eigenvalues Re(Ai) crosses zero Rom nega-
tive as r is increased. Thus Re(Ai) = 0 gives the neu-
tral stability curve rp(k) [Re(Ai) ( 0 for r ( rp(k) and
Re(Ai) ) 0 for r ) rp(k)],

&n —ak' )
rp(k) = 1 +

I~1+P J
Minimizing rp(k) with respect to k gives the lasing
threshold ming rp(k) = rp(k ) = r, = 1 with critical wave
number k, and frequency ur, (which is the imaginary part
of Ai evaluated at k, ),

k, = gn/a, (u, = n.

The corresponding eigenvectors are

(4.8)

i(k, .s —~, t) ( & ~ ~ » )+' ' +' ' ' (0 1 0 1 0 0).

The fact that the most unstable wave numbers are differ-
ent &om zero implies that, close to threshold, the laser
will choose to emit off axis. Such off-axis emission occurs
in the general model (2.3)—(2.6) for a positive detuning n.
For semiconductor laser modeling this detuning is identi-
fied with the positive definite n factor [13,14]. Our sim-

plified homogeneously broadened four-level model of the
semiconductor laser leads to a constant o, factor, which,
due to generally smaller transverse intermode spacing,
should be a better approximation for transverse effects
than for longitudinal multimode problems.

Near threshold any mode with wave number IkI
Ik I

= k, can be excited due to the rotational symme-
try in the transverse plane. In this paper we will only
consider the one transverse dimensional case Ie +k m.
The amplitude of the most unstable modes can be deter-
mined from amplitude equations, an approach of weakly
nonlinear analysis that now has become standard [15],

(F+,F,P+, P, N, M)

(1 0 1 0 0 0) A i(k x—u t) +B i(—k z —(a) t)
J +e +e

+(p 1 () 1 p 0) A i(k x —~ t)+B i( kx (—u t)—
) ) )

+h.o.t. (4.9)

(h.o.t. stands for "higher-order terms"). A+ (A, B+,
B ) is the amplitude of the right (left, right, left) circu-
larly polarized, right- (right-, left-, left-) traveling wave.
They are assumed to be slowly varying in space and
time to take into account a continuum of transverse
wave numbers in the small bands centered around +k,
which are unstable slightly above threshold. The deriva-
tion of the amplitude equations is outlined in the Ap-
pendix. By changing variables t ~ &~t, x ~ " x,

and (A~, B~) ~ (& + &) (A~, B~), the amplitude
equations can be written

(c)t + vc) )A~
= pA~+ (1+ i')c) A~

—[IA+I'+»IB+I'+»IA+I' +»IB+I']A+
—p3BgB~A~, (4.10)

(c)t —va. )B~

(1+P)'
'U = 1+ —

~ P —T Tci
P

' 4Pak2 4nK '

(b+4d k ) + (h+4d k )
+1 — +

b —1+6—1

= 1+ h'l
l

+ 4'll df kc) ' + (Vz + 4 ft df kg)

II
+~J

h b PJ
b+ h ~J+ ~ll ~2+ ~ll

(b+4dfk') ' —(h+4d k2)
b
—1+6—1

(Pll + 4&zdf k, ) —(P~ + 4y~d fk, )

II'+~J'
These equations are a set of coupled complex Ginzburg-

= @BE+ (1+ ib)c)'Bg
—[IB+I'+ ~ilA+ I'+» IB~I'+» IA~ I']B+
—p3A~A~B~, (4.11)

where
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Landau equations (CGLE's) with the important pecu-
liarity that all the coefBcients of the nonlinear terms are
real. In addition, it is important to note that

1 & P& & 2, 0 & P2 & 1, P& + P3 & 1. (4.12)

When neglecting carrier diffusion (Df = 0), pq ——2, and
In addition, p2 & 2 for the typical parameter

range p~ & p~~ discussed in Sec. II. We also note that
the coupling between right and left circularly polarized
amplitudes vanishes as p~ ~ 0 and takes a maximum
value p2

——1 as pg/p~~ ~ oo. In the reduced descrip-
tion (4.10)—(4.11) the efFect of the n factor is taken into
account through the parameter b.

The spatially homogeneous solutions of a general set
of four CGLE's, as well as their stability with respect to
homogeneous perturbations, have been studied in Ref.
[28] in a difFerent context. It turns out that in our range
of parameters (4.12) there are only two linearly stable
solutions. The Grst of these solutions is given by

iA+i =Q, B+ ——B =A =0 (4.18)

are unstable for p2 & 1, which is the same reason why
they were not considered when neglecting transverse ef-
fects. A second unstable solution is the circularly polar-
ized SW

fA+f = /B+/, A =B =0. (4.19)

i(kx+wC+Op +Qp) ~ O~ —~e
—k2

Q =, ~ = —k(v+bk) .1+p2

(4.20)

(4.2i)

This solution is unstable for p~ & 1, which is the same
reason why no stable standing waves are found in broad
area lasers when neglecting the polarization degree of
freedom [15].

In addition to the homogeneous solutions discussed
above, the amplitude equations (4.10) and (4.11) describe
slow modulations of the dominant wave vector k, . Gen-
eral linearly polarized TW solutions are

or

=q.'("+&), B =0, q'= 1+p2

A~ = 0, B~ = Qe*( '+ ')

(4.13)

(4.14)

Close to threshold, the range of wave numbers k for which
these polarized TW are stable is restricted by phase in-
stabilities. A straightforward linear stability analysis of
(4.20) is made by writing

These solutions correspond to waves traveling in the right
or the left direction, linearly polarized in an arbitrary
direction zto. They are the counterpart of the linearly
polarized states discussed in Sec. III, but now transverse
eKects and the o. factor lead to a preference for laser emis-
sion at a Gnite transverse wave number k . The stability
of these solutions is guaranteed by p2 & 1, pj + p3 & 1.

A second set of linearly stable solutions is given by

A~ = (Q+ a~)e'(" + '), Bg = bg . (4.22)

A' = p, —Q (pg+ p2+ ps) —q +i(qv —q b), (4.23)
= p, —Q (pq + p2 —ps) —q + z(qv —q b), (4.24)

The linear equations for b~ decouple and perturbations
of wave number q are described by two pairs of complex
conjugate eigenvalues

or

A+ —qe'("+~ ), B = q.'('-~ ), A = B+ ——0

(4.i5)

where b+ + b are the corresponding eigenvectors. The
real part of A ' vanishes at a wave number k~ 2, so that
polarized TW's with wave number k are only stable for
k&k&2

qex(80 v/io ) B—
Q

i (8 +'40)oA B 0
(k, 2 P('Yg 6 Ys

—1)
kg 2)

+1 ++3++2 (4.25)

(4.i6)

Their stability is guaranteed by the same conditions p2 &
1 and p~ + p3 & 1. These laser light states correspond
to a superposition of traveling waves with the same wave
number and opposite circular polarizations. In terms of
the Cartesian components E and F„ofthe vector Geld F
these states can be visualized as linearly polarized with
a periodic direction of polarization @ = k,x + go.'

oc cos(k, x + go), E„oc sin(k x + @o). (4.17)

c),S = (1+ib)( —2ikc) S+ 8 S)
—(p —kz)(S+ S'),

OzR = (1+ ib)( —2ikP R+ c) R)

—(p —k') (R+ R') .1 —p
1+~2

(4.26)

(4.27)

The linear equations for a~ are most naturally written
in terms of the linearly decoupled variables S = a+ + a
and R=a+ —a

Each Cartesian component of the Geld is a standing
wave (SW). We will not consider these solutions any fur-
ther since they do not exist when considering any small
anisotropy of the laser cavity (see Sec. V).

Among others, there are two additional natural solu-
tions of Eqs. (4.10) and (4.11). The circularly polarized
traveling-wave (TW) solutions

Both of these equations have an amplitude eigenvalue
with a negative real part and a phase eigenvalue that van-
ishes for zero wave number (q = 0) of the perturbation.
Explicit expressions for these eigenvalues can be obtained
by a straightforward calculation. A more transparent
physical approach focuses on long-wavelength Huctua-
tions: We write S and R in terms of real and imaginary
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parts as 9 = s +i8 and B = r + i@. As in the analy-
sis of (3.7) and (3.8), the imaginary parts are associated
with the global and relative phases of the vector electric
field. The real parts are fast relaxing variables that can
be adiabatically eliminated. In the long-wavelength limit
such elimination leads to phase difFusion equations for the
phase variables. The calculation is formally identical for
S and R. For S we explicitly find

ct, s = c]2s ~ 2kB 8 —b'8 0+ 2bkB 8 —2(p —k )s,
(4.28)

(4.29)c],8 = 820 —2kB s+ bO s+ 2bkB 0 .

In terms of the Fourier components sqe 'q and Oqe
of the fjuctuations it is obvious that for q = 0 there is
a zero eigenvalue associated with 0 and a real negative
eigenvalue associated with the amplitude s. The adia-
batic elimination of the amplitude setting t9qsq = 0 leads
to

kp k ] kt k2

FIG. 4. Stability boundaries for linearly polarized TW s.
DJ' ——0 and pq

——0.7.

Sq = Sq'~1—
2(~ —k')

2k'
~

—2ikq Oq+0(q ) .
p —k2)

(4.30)

independent of Dy. At least for small values of Dy, the
smallest of these wave numbers is k„, so that the stability
range of linearly polarized TW solution is determined by
the g instability. For Dy = 0 we explicitly have

Substituting this expression in the equation for Bq0q,
keeping terms up to order q, and going back to x space,
a phase equation describing the linear dynamics of long
wavelength phase fIuctuations is obtained. With a simi-
lar analysis for R the phase equations become

8,0(x, t) = 2kb'. e+ DsO.'0,
0,$(x, t) = 2kb' Q+ D~B g,

(4.31)
(4.32)

where

2k2
DH ——1—

p —k2 (4.33)

(1+»)k'
2

(1 —»)(~ —k') (4.34)

The diffusion coefIicient Dg vanishes at a wave number
k„

(4.35)

which identifies the conventional Eckhaus instability.
TW's with wave number k & kq are unstable with re-
spect long-wavelength fIuctuations of the global phase 0.
This stability boundary is the one found in the analysis
of broad area lasers when disregarding the polarization
degree of &eedom and therefore it is independent of the
coupling parameter p2. An alternative phase instability
associated with the direction of polarization occurs at the
wave number k„ for which Dy(kz) = 0,

V(1 —») k, = p/2
2

(4.37)

and therefore for the physical range of parameter p2 &
1/2,

k„&k2&k, &ki. (4.38)

V. PHASE ANISOTROPIES

Figure 4 shows the stability boundaries of linearly polar-
ized TW's in the (p, k) plane. In the limit of very strong
coupling» ~ l(p~ )) p~~), k„-+ 0 and kq ~ 0, so that
the two inner parabolas in Fig. 4 collapse to zero width.
All TW solutions of finite k become unstable and the
dominant TW at k becomes marginally stable. The po-
larization phase instability merges in this limit with an
amplitude instability of the solution (4.13). This ampli-
tude instability leads to the circularly polarized solution
(4.18), which is stable for» ) 1.

In summary, the rate equation approximation leads to
stable linearly polarized laser light with a relaxation time
of the polarization perturbations that becomes very large
for a large coupling constant p~, compared with the dif-
ference between the injection current and its threshold
value. Transverse effects close to threshold lead to off-
axis linearly polarized lasing within a range of wave num-
bers that shrinks to zero in the limit of very large p~. The
range of stable wave numbers is determined by a long-
wavelength instability of the d.irection of polarization and
it is independent of carrier difFusion.

1+2'+"
1—p2

(4.36)

We have identified four stability boundaries: ki 2,
which depend on carrier diffusion, and kq, k~ which are

In the previous sections we have assumed perfect
isotropy of the laser cavity in the transverse x-y plane.
Our results indicate that linearly polarized emission is
a consequence of the microscopic dynamics of the laser
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( v
'bQp P
0 0

( o o

(5 1)

where the parameter pp measures the strength of the
anisotropy. It is arbitrarily taken here that pp ) 0. A
change of sign of pp accounts for the arbitrary change of
the z and the y axes.

When p„g 0 the SW solutions (4.15) and (4.16) no
longer exist. However, there still exist polarized TW so-
lutions (4.20) with a general wave number k, but now
with a fixed value of @p. We find two solutions

cos 2t/)p —+1 (5.2)

which correspond to linearly x-polarized and y-polarized
emission. Both solutions have the same amplitude, which
is independent of pp,

even under perfect isotropic conditions. However, in most
cases, the laser cavity has some anisotropies due to the
crystallographic properties of the semiconductor mate-
rial or due to accidental or intentional cavity built-in
anisotropies. Such anisotropies break invariances of the
system and lead to preferred directions of linearly po-
larized emission. For example, it is known for certain
gas lasers [3,4,8] that, due to phase anisotropy, there
is a switch of polarization direction when changing the
cavity detuning through the center of the gain profile.
We are particularly interested here in the efFect of these
anisotropies when transverse efFects are important so that
we will discuss them in the context of the amplitude equa-
tion description. Generally speaking, cavity anisotropies
can be classified among amplitude and phase anisotropies
and linearly and circular anisotropies [27]. We will con-
sider here a linear phase anisotropy associated with bire-
&ingence. Under general symmetry considerations, such
phase anisotropy can be modeled by a modification of
the set of equations in which the parameter p is re-
placed by a matrix defined in the space of the amplitudes
(A+, A, B+,B ),

R = a+ —a = r + iv) we find

f = —Q(1 —p2) —q —2ibkq

+[Q'(1 —q, )' —(bq' + 2q„)'
+4k q + 4ikq(bq 6 2p„)]i~2 . (5.8)

Some simple understanding of the implications of (5.8)
can be obtained by looking at particularly interesting lim-
its. For the dominant wave vector k = 0, the real part of
8 is negative for any perturbation wave number q. This
ensures the linear stability of the x- and the y-polarized
traveling waves with wave number k, which have equal
damping rate at q = 0. The fact that the two directions
of polarization are stable is a consequence of transverse
efFects since the &eedom to choose a preferred nonvan-
ishing mode k compensates for the detuning. Traveling
waves of finite k are also stable at q = 0. However,
for finite k and finite perturbation wave number q one
expects a competition between the stabilizing efI'ect at
q = 0 of the phase anisotropy and the remnant of the g
instability analyzed in Sec. IV when pp = 0. The result
is that destabilization of a TW with a preferred direc-
tion of polarization can still occur. Such competition
can be described by a damped phase equation associated
with the long-wavelength limit q (( 1 of (5.8). If ad-
ditionally we consider the small phase anisotropy limit
4p (( Q (1 —p2) we obtain

8,r = 8 r+ 2bk8 r —2Q (1 —p2)r
+2k8 g —b'8 @6 2'@, (5.6)

8qg = 2k—8 r + b8 r + 8 @+2bk8 Q p 2p„r, (5.7)

where the upper (lower) sign refers to the 2: (y) polarized
solution. We note that for the dominant wave number
k = 0 and homogeneous perturbations, the phase dy-
namics is only driven by perturbations in the relative
amplitude of A+ and A

Taking r, g e'i the phase eigenvalue of (5.6) and
(5.7), that is, the one that vanishes for p„= 0 and q = 0,
is given by

—k2
~A+~2 = [A ~2 = Q2 =, B+ ——B = O, (5.3)1+p2

but they have difFerent &equencies
where

8gg(x, t) = Ip+ 2k
~
b~

~

8 @

+Dg (k, 7„)8'@, (5.9)

y
———vk —bk (5.4)

(5.10)

A~ = (Q+ a~)e' '+*" +'~', B~ = b~ . (5.5)

The equations for a~ and b~ are still decoupled and the
b~ perturbations are damped under the same circum-
stances as for pp ——0. The only Inodification of the
eigenvalues (4.23) and (4.24) is the addition of imagi-
nary contributions +imp. The linear equation for S =
a+ + a also decouples and it is independent of pp. For

The stability of these states with preferred direction of
linear polarization can be studied in the same way as in
Sec. IV, but now for each of the two fixed values of 2v/ip

and

2bp„

Q'(1 —v2) ( Q'(1 —v2) )
(5.11)

Equation (5.9) accounts for the modification of (4.32)
for a small phase anisotropy. The term Eo gives a phase
damping responsible for phase stabilization at q = 0.
The other terms have difFerent contributions for the x-
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and the y-polarized solutions. The vanishing of the dif-
fusion coefficient identifies a modified k~ vector of the vP

instability. To lowest order in pz,

p, + 2bp„,'+"
,'(~~) =

1—pg

(5.12)

For k & k„(p„) the phase eigenvalue grows with q for
long-wavelength Huctuations so that an instability can
occur at a finite q. Since E(q = 0) & 0, k„gives a lower
bound for the emergence of the instability. It follows
from (5.12) that

(5.13)

x-polarized

0. 004

0.002

—0. 004

-0.006

y-polarized

0 004

0.002

-0.002

k„*(p„)& k„(p = 0) & k„"(p„),
where k„(ki') refers to the x (y) polarized solution. As
a consequence, the range of wave numbers for which the
x-polarized solution is expected to be stable is increased
due to phase anisotropy, while the y-polarized solution
has a narrower k-stable range than the x-polarized solu-
tion. These general conclusions are illustrated in Fig. 5,
where the eigenvalue (5.8) is shown for the same wave
numbers k for the x- and the y-polarized solution. For
the x-polarized solution, wave numbers k & k„(p~ = 0)
are such that Dy(k, p„) & 0, while for the y-polarized
solution D~(k, p„) & 0 already for k = k„(p„= 0). We
also see that the k range of stable TW's is larger for the
x-polarized TW than for the y-polarized TW, the lat-

ter being larger but practically coincident with the one
for p„= 0. For larger anisotropies the larger value of
Eo tends to compensate for a larger Dy so that the
range of stability is not very sensitive to p„. In addition,
the preference for x-polarized TW solutions of finite k
persists.

The main conclusion of the above analysis is that the
interplay between the polarization degrees of freedom
and transverse efFects is such that stabilizing preferred
polarization directions for the dominant wave number
does not guarantee the stability of polarized TW of
nearby wave numbers. This is a consequence of the
remnant of the instability of polarization direction for
isotropic cavities. On the other hand, also due to trans-
verse efFects, there is a discrimination between the two
selected directions of polarization in the sense that one
of them has a broader range of wave numbers for which
polarized TW are stable.

VI. SUMMARY

We have introduced a four-level model for the dy-
namics of single longitudinal mode, surface-emit ting,
quantum-well semiconductor lasers that includes the po-
larization degrees of &eedom. The model generally pre-
dicts, for a perfectly isotropic cavity, linearly polarized
laser emission. The stability and dynamical response to
fIuctuations of the linearly polarized states is determined
by the ratio of time scales associated with spontaneous
decay and with spin relaxation processes. For a single
transverse mode situation we have analyzed a rate equa-
tion approximation that identifies the possibility of po-
larization relaxation oscillations. Transverse effects have
been studied by an amplitude equation description close
to threshold, which features a set of four coupled com-
plex Ginzburg-Landau equations. We have found pre-
ferred ofF-axis lasing emission with transverse spatially
homogeneous intensity and arbitrary direction of linear
polarization, as well as outputs with periodically alter-
nating states of linear polarization in the transverse di-
rection. The stability of the ofF-axis emission states has
been discussed in terms of phase equations. We have
found that the range of wave numbers for linearly sta-
ble traveling-wave solutions is limited by a phase insta-
bility associated with the direction of polarization. We
have also considered the efFect of anisotropies associated
with bire&ingence, in the &amework of the amplitude
equation description of transverse efFects. Such phase
anisotropies select two orthogonal preferred directions of
linearly polarized emission. The remnant of the polar-
ization phase instability found for isotropic cavities gives
rise to difFerent wave-number stability boundaries for the
two directions of polarization.

-0.006 '-

FIG. 5. Real part of the eigenvalue E, Eq. (5.8) for the
x- and the y-polarized solutions. DifFerent lines corre-
spond to difI'erent wave numbers k. Prom bottom to top
k = 0, k = k„= 0.127, k = 0.140, k = 0.160, k = 0.165,
and k = 0.170. The parameter values are p = 0.2, b
= 2.6, p2 ——0.7, and p~ = 0.005.
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APPENDIX

In this appendix we outline the steps for deriving the
amplitude equations with a multiple scale method [15].
It is convenient to rewrite Eqs. (4.1)—(4.4) in the compact
form

[Bt + L(O, r)]v = N(v, v), (Al)

where v denotes the column vector (I'"+,F,P+, P
M)T (the superscript T means transpose), L is a linear
operator, and K a nonlinear one. We expand v as an
asymptotic series in a small parameter e,

(m, Mv) = (Mtu, , v)

for vectors n and v periodic in x and t with periodicity
27r/k, and 2vr/cu„respectively (the inner product is de-
fined as (u, v) = f (v, )*vdxdt) T.he explicit form of Mt
can be obtained by partial integration and solving (Alp)
gives four adjoint eigenvectors

(I p p 0 p 0)T t(kcx —m t)c

= (1 0 P 0 0 0) 'e'(

(0 I 0 P 0 0)T a(kcx unct)—

(() 1 () P () 0)Tea( —ken —(act)

At order e, the solvability condition requires

(m, , G2) =0, i=1, . . . , 4,

which leads to
= EVy+E' V2+6 V3+2 3

where

(j 0 1 0 0 p)T A t(kcx 4lct) + B 1(—kcx —cdct)

+(0, 1,0, 1, 0 0) [A e'(

2aA:

1+ ~X'A+1 ~

2aA:

1+P
—~x&+~

BT;A~g ———

T;&+i =

Then the solution at this order is given by

(All)

(A12)

E = P —Pc.2

i(—k, x —cu, t)] (A3)

(A4)

X = ~~, T, = ~t, T2 = ~2t.

Using the chain rule for differentiation, one has the sub-
stitution

t ~ t +68&1 + 6 072) B~ + t9~+ A9~) (A5)

The small parameter t provides a measure of the distance
above threshold. The amplitudes A~q and B~q are as-
sumed to be functions of slowly varying variables

++2 =0, (A13)
P+2 — ~T A+ie'(" * ' —&T B+&e' " ' (A14)

~2 =
~

(IA+il' + IB+il'+ IA-il'+ IB-il')
c

+ „(A+iB+i + A iB*i)e '" + c.c.6+ 4df k2

(A15)

M2 =
~ (IA+il'+ IB+il'+ IA-il'+ IB-il')

+
~ d k2 (A+iB+i —A —iB i)e ' + c c.6+ 4dfk2

(A16)
thus the operator L can be expanded as

I. = I.(0., r.) + eL, + e'L, (A6)

The e -order solvability condition is (tt;, Cs) = 0, i
1, . . . , 4. Making use of (A13)—(A16) we obtain

Substituting (A2) —(A6) into (Al) yields a hierarchy of
equations for successive orders of e,

63:

[c)t + L(c),r, )]vi ——0, (A7)
[c)t+ L(8, r, )]v2 —— Liv, + N(vi, v—,) =—G2,

(A8)
[c)t + I (c)~, r~)]vs —— Liv2 —L2vi + N—(vi, v2)
+N(v2, vi) = Cs. (A9)

The e equation is solved by (A3). In order to solve e2 and
equations, solvability conditions must be satisfied. To

apply the solvability condition, we first need to solve a
linear problem adjoint to (A7),

(Alo)

where the adjoint operator Mt of M—:c)t + L(0, r, ) is
defined by the relation

1+P (2ak, )' . a
Oz, A+i ——A+i +

I I
+ i — t9x A~iil+ )

/2 2i—
I
-+ —

I
[(IA+il'+»IB+il'

ib Ii)
+»IA+il'+»IB+il')A+i
—»B~iB~iA~i], (A17)

1+p f 2ak, 5 a.
c)T.B+i = B+i+

I I
+t — c)xB+i&1+ )

t'2 2l—
I

-+ —
I [(IB+il'+»IA+il'ib It)

+»IB+il'+»IA+. I')B+.
—»A~i A~i B~i]. (A1S)

The total time and space derivatives of the amplitudes
are given by BtA~i ——t'Bz A+q+ ~ OT A+q and o A+j. ——

oe)x A~ i (same for B~i) . Then combining (Al 1), (A12),
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7 (Bt + vsB )A~ = e A~ + ( (1+ ib)0 A~
I 2 2b—

I

- + —
I [(IA+ I' +» IB+I'

ib h)
+»IA~I'+»IB+I') A+
—psB~B~A~], (A19)

(A17), and (A18) and changing variables eA~q ——A~ and
eB~q ——B~, we obtain the amplitude equations

(A20)

where w = 1 + I/P and ( = 2ak /(1 + P).

&(cd —v, cl.)B+ = e'B~ + ('(I + i,b)8.'B~
(2 2i—

I —, + -„ I KIB+I'+»IA+I'

+»IB~I +»IA~I )B+
—ps A~ A~ B~],
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