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Higher-order squeezing in a boson-coupled twa-made system
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We consider a model for nondegenerate cavity fields interacting through an intervening boson
6eld. The quantum correlations introduced in this manner are manifest through their higher-order
correlation functions, where a type of squeezed state is identi6ed.

PACS number(s): 42.50.Dv, 32.80.—t, 42.65.Dr

I. INTRODUCTION

Quantum mechanics dictates that there is an inherent
uncertainty in the simultaneous measurement of noncom-
muting observables. A single, cavity electromagnetic field
mode has complementary quadratures (or fields) that do
not commute and therefore their uncertainties are con-
strained by a Heisenberg uncertainty relation. Amplifiers
act to magnify the quantum fields to a macroscopic level,
but at the same time they inject additional noise into the
fields. Thus they cannot be used to determine the state
of the microscopic fields with precision exceeding that
dictated by Heisenberg's result.

Squeezed state generation of electromagnetic fields
provides a means of reducing uncertainty in one electric
field quadrature at the expense of a larger uncertainty
in its conjugate partner [1,2]. It is one realization of
nonclassical states (ideally, minimum uncertainty states)
that has received wide attention. Ordinarily, in single or
multimode squeezing, the fluctuations of linear combina-
tions of the field operators are considered [1]; however,
Hillery [3] introduced quadratic combinations of the field
operators as a type of higher-order squeezing [4]. The
higher-order combinations are examined to help elucidate
the nature of the phase space occupied by the squeezed
states.

We consider a two-mode model originally developed
to study stimulated Raman scattering [5,6]. In a cavity
environment the model has features of amplifiers [7,8]
in which quantum states are rendered macroscopic and
therefore classically measurable, while at the same time
the fields retain some quantum mechanical correlations.
The introduction of both Stokes and anti-Stokes fields
indirectly coupled through a boson field, whose origin
stems either from phonons or weak atomic excitation of
the medium, is an interesting two-mode quantum system.
It difFers from several previous two-mode systems (see,
e.g. , [1,8,9]) because the two modes are coupled through
the intermediate field that acts like a reservoir.

In this paper we provide an analysis of two modes cou-
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pled via a reservoir of bosons. The Hamiltonian and its
solution within the quantum Markovian approximation
is sketched in the following section; details are relegated
to the Appendix. The results are examined in Sec. III;
the emphasis is placed on higher-order squeezing found
in the fields because squeezing of the linear combinations
of the operators is not present in this model. The type
of higher-order squeezing found is in the variance of the
variables defined by Hillery, so-called sum or difFerence
squeezing variables; they are used to infer that quantum
correlations exist between the electromagnetic fields and
the boson fields. Finally, the results are summarized and.
discussed in Sec IV.

II. MODEL

We investigate the model Hamiltonian for a stimulated
Raman scattering process with undepleted laser field el„
which can be treated classically. The fields in the inter-
action are the Stokes field, subscript S, and anti-Stokes
field, subscript A, that are coupled through a boson field
with multiple modes [5,6]:

+ = ~sosas + ~A.o~uA + ) ~BLOB('aBl
l

—) (hgiel, asaBi + br*el, a~aB( + H.c.).

This model has a bath of bosons, e.g. , phonons; in
other words, the excitations have energies spread over a
range of frequencies. In this model the bosons are re-
sponsible for coupling the electromagnetic fields and for
introducing damping as well. The Heisenberg equations
of motion are given by

dQs

dt
= —zugQg + z g~eL, Q&&,

l

dQ~

dt
= —zw~Q~ + z vt eI,Q~I,

I,

dQ~~

dt
—z&~)Q~( + Zg)el, Qg + ZK)eI Q~.

The equations can be simplified by introducing the
Markovian approximation [5,6] and using the interaction
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picture:

a~ = A~ exp (—i(u~t —iAt), j = 9, A,

where the detuning parameter is

A = LalL,
—(Los + cd~)/2. (4)

The parameters introduced from the Markovian approx-
imation with the boson excitation frequency u~ ——uL—
uS are

Vs = 2~1g(~B) I'p(~B)
p~ = 2vr/r(cuB) /'p(cuB),

pS~ = 27rg((uB)r*(urB) p((uB)

and. the laser field is

EL, = el, exp (i~I, t). (6)

The reduced equations of motion are written as

dAs f'1 2 . ) 1

dt 2
ps~@—r,

~
+ i&

~
As+ —ps~&L, A&+ &I,Is,

) 2

dAt"' = ('--',.(E.(
—;~

)

At2'7A I

2~SA L S + L (7

The Langevin forces due to the boson field are

I's = i ) g~aB&(0) exp (i [(ws —tv~)/2 + wB~] t),

+& = i) .KpaB&(0) exp( i [(~s —~a)/2+ ~Bl] t) (S)

they satisfy the quantum fIuctuation-dissipation theo-
rem.

The solution of the equations of motion is straight-
forward and some details are provided in the Appendix.
The calculation of the moments is done by determining
the characteristic function of the operators in normal-
ordered form. The usual definition of the two-mode op-
erators is a linear combination of the creation and an-
nihilation operators. However, we find that the model
discussed here does not yield the usual squeezed state
correlations between the Stokes and anti-Stokes fields.
The coupling through the reservoir is also expected to
degrade the coherence developed between the Stokes and
the anti-Stokes fields during evolution. It is therefore
surprising that the fields do d.isplay quantum coherence
in the higher-order correlations between the fields. To
show this we adopt of the definitions of sum squeezing
and difference squeezing used by Hillery [3].

Sum and difI'erence squeezing operators are quadratic
in the fields and it represents one particular example
of higher-order squeezing; experiments on higher-order
squeezing and quantum correlations were examined in a
series of papers by Hong and Mandel [4]. The partic-
ular variations we examine in this paper can be mea-
sured by mixing the fields together in a second-order

nonlinear material by either sum-frequency generation or
by difference-frequency generation [3] and measuring the
variance of the new field by techniques already developed
for normal squeezing. For example, when the Stokes and
anti-Stokes fields are mixed in a y~ ~ material, the out-
put field operator is related to the product of the two
by Ao ——y~ ~AsA~. The new field Ao is then measured
by the usual homodyning methods. An extension of this
transformation concept can also be used in third order,
i.e. , y~3~ nonlinear materials, as well by applying a classi-
cal pump field Ez. By nondegenerate four-wave mixing,
the output field is given by Ao ——y~ ~E„*AsA~.

A. Sum squeezing

For sum squeezing we define the operators

1
Vg

———(AtsAt~ + As A~),
2

V2 ———(AtsAt~ —AsA~).
2

The moments of these operators are calculated by us-
ing the characteristic function discussed in the Append. ix.
For instance, the first and second moments of Vj are

1 f O'C~ O'CN.
&i = — +

~( &s)~( P&-) r &,, =-.l

and

(10)

84C~ 04C~
4 l,,(~&s)'(~& )' (~(—&*))'(~(—&*))'

+2
0 C~

Ws~( n;) W~~( -/3.*)-
CN ~ CX

~&s~( /js) ~&~~-( ~~)—
The standard. deviations LV, are constructed from both
operators; their product satisfy the Heisenberg inequality

1
AVg A V2 ) —(N~ + Ns + 1) .

4
(12)

(AVj) ( —(N~ + Ns + 1) .2 1
4

To determine whether the dynamics produces a higher-
order squeezed state, we define the shifted variance

4 V~ = (4Vj ) ——(N~ + Ns + 1), (14)

which is negative in the region of the quantum state.

The operators are in a quantum state, said to be sum
squeezed in the Vi direction when the variance of Vj sat-
isfies the inequality
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B. DifFerence squeezing

For the definition of difference squeezing, we define

1
Wi ———(As At~ +- At~A~),

2
z

W2 ———(As AA —As Ax ) .
2

The state is difference squeezed in the Wi operator
when the variance of the operator satisfies the inequality
((N~) & (N~))

(AWi) ( —(Ng —N~) .2 1

The moments are calculated from the characteristic func-
tion, as discussed already in the preceding subsection.
We also define a shifted variance of Wi in analogy with
Eq. (i4)

AV, = (AWi) ——(N~ —Ns)
4

which is negative when the state is squeezed along the
TVi direction.

III. R,ESULTS

The calculations of the preceding section have been
examined for a variety of parameters. The model in-
corporates the damping of the Stokes photons and anti-
Stokes photons and the magnitudes and phases of the
initial fields and the coupling coefIicients. Values of the
variables are chosen to illustrate the phenomena.

The choice of initial state for the Stokes and anti-
Stokes fields is dictated by experimental conditions. Two
experimentally useful states are the coherent state and
the chaotic state, but other situations, such as a Fock
state or a squeezed vacuum state, could also be identi-
fied. The squeezed state is generally difricult to achieve
as an initial state and, moreover, it is often the desired
final state, so we do not consider it further here. We
restrict our discussion to combinations of the first two
cases and examine their quantum correlations.

There are several parameters occurring in the model
and appearing in Sec. II. The dynamical parameters, i.e. ,

those appearing in the evolution equations, have been
previously defined. We note that the detuning was as-
sumed to be small in our model and this parameter is set
to zero. The initial states of the fields represent another
set of important parameters, but the discussion of these is
relegated to the Appendix. The boson field is considered
to be in a chaotic state with an average number of exci-
tations n~, when the Stokes and/or anti-Stokes Acids are
in a chaotic state, then their phases are randomized and
their statistical properties are also represented by their
average photon number np and n~, respectively. We do
not discuss the Fock state and the squeezed initial state,
although the results are easily derived using formulas in
the Appendix. When the Stokes and anti-Stokes fields
are in coherent states, in addition to the average photon

number, the phase of the fields Ps and P~ is also needed.
The three-dimensional plot of Fig. 1 is a display of

the shifted variance of the operator Vj versus the phase
P = 2/1. + gs —g~ and the interaction time t The
Stokes and anti-Stokes fields are both initially in a co-
herent state ng ——n~ ——2 and the reservoir is in the
vacuum state n~ ——0. The time has been scaled to the
product p~EI, ~, where EI, is the laser field amplitude
and in the results presented here we set p = ps ——p~,
i.e., the damping constants are equal. The region of the
surface with negative ordinate values corresponds to the
case when light is Vj-sum squeezed and for large times
squeezing occurs near the point P = vr/2. The squeez-
ing is more apparent in Fig. 2, which displays the shifted
variance of Vi for three different values of the phase. The
phase value of P = vr/2 continues to decrease as the in-
teraction time increases.

As the average number of excitations is increased in
the boson reservoir, the squeezing deteriorates. Figure
3 shows the effect of a small increase in the average; in
this case P = 0.4a. The minimum squeezing rises un-
til it becomes tangent to the zero value of the variance.
For values of nv above this point, no squeezing is found.
Squeezing is found only for a range of interaction times
when the phase is not precisely $1, = a/4. The range of
values where squeezing can be expected is given by the
contour plot in Fig. 4. The outer contour n~ ——0 has the
largest domain to find the squeezed state and the domain
shrinks as the average number of excitations is increased.

The values of the reservoir variable nv over which
squeezing can be observed, even for a small time interval,
depends upon the phase P. Figure 5 is a plot of the nv
versus the phase P and the summary phase of the initial
coherent fields @ = P~ + P~. Near P = 7r/2, the range of
values over which the squeezing occurs becomes narrower
as the excitations in the bath increase. Away from this
value, the amount of squeezing is severely restricted by
the bath excitation and the phase g. Squeezing is found
in the regime below the contour lines.

When both the Stokes and the anti-Stokes fields are
initially in a chaotic state, the sum-squeezing variable

FIG. 1. Surface and contour plot of the sum squeezing
shifted variance versus the phase P = 2/1. + @s —g~ and the
interaction time for initially coherent Stokes and anti-Stokes
6elds. The zero value lines separate the regions of sum squeez-
ing and excess fluctuations.
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FIG. 2. Time slices of the surface plot in Fig. 1. The phase

P has the values 0, 7r/2, and vr.

FIG. 5. Plot of the boundaries between the squeezed and
the nonsqueezed states for various values of the average num-
ber of bosons versus the phase P: the summary phase Q = 0
is denoted by a dashed line, and Q = 0.17r by a dash-dotted
line, and ajar

= 7r/2 by a solid line.
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FIG. 3. Sum squeezing shifted variance versus time
for three values of the average value of the boson field:
n,„=0, 0.1,0.2. The laser phase is Pr, = 0.2vr.

FIG. 6. Sum squeezing shifted variance versus time for ini-
tially chaotic Stokes and anti-Stokes fields.
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FIG. 4. Contour plot of the region of the interaction time
versus phase P space where squeezing is found. The numbers
on the lines denote the values of n~.

FIG. 7. Boundary between the squeezed and the non-
squeezed state regimes for initially chaotic Stokes and
anti-Stokes fields.
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FIG. 8. Difference squeezing shifted variance for two sep-
arate cases: the initial Stokes and the anti-Stokes Gelds
are coherent (solid lines) and the initial fields are chaotic
(dash-dotted line).

of higher-order squeezing, over a range of interaction
times and initial states. There are two salient features of
our results: first, the intermediate field has a continuous
spectrum of a reservoir, but still the two fields develop
quantum mechanical correlations; second, the quantum
nature of the correlations is not manifest through the
usual first-order or even simple higher-order correlations
among the operators but through special combinations
of the field operators.

There are other models where the fields are mediated
by either electronic or acoustic fields, e.g. , a polariton
or Brillouin scattering model [5,6,10]; these processes are
analogous to the present model where the directly cou-
pled fields are not detected in an experiment. In such
cases experiments designed to measure higher-order cor-
relations can reveal the underlying quantum correlations
induced through the fields.
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Vi still shows squeezing and the phase P = 7r/2 is very
robust to the values of the initial state (Fig. 6). We note
that the initial value of the shifted variance has been
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No squeezing was found for the variable R i with ei-
ther coherent or chaotic initial states. The behavior of
the shifted variance of TV& is shown in Fig. 8 for initially
coherent states and one value for initially chaotic states.
In the coherent state cases, the variance decreases for a
certain range of the phase P, but does not become nega-
tive for any value of the phase. For chaotic initial states
the variance is a monotonically increasing function of the
interaction time.

IV. SUMMARY

In this paper we have examined a special model for the
interaction between two modes in a cavity mediated by a
boson reservoir field [5,6]. We find sum squeezing, a form

AP PENI3IX

The linear equations of motion Eqs. (5) can be directly
solved and the annihilation operators have the form

As(&) = vs(t)&s + vs(t)o~ + ) .nisi(t)&~i,
l

A~(t) = u~(t)a~ + v~(t)as + ) tv~i(t)a~i.
l

(Al)

The operators on the right-hand side are with respect to
the initial state. The normal characteristic function af-
ter reducing the intermediate reservoir in the dynamical
equations is expressed as an average over an initial dis-
tribution of complex amplitudes ((s, (~}, which is the
coherent state representation for the initial field opera-
tors appearing in Eq. (Al),
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~~(Ps P~ t) (e
—{&s(&)IPsI

—&w(~)IP&I +(~st(&)OsP~+c. c.]+[Ps''s(t)+P~(~(t) —c.c.])i
/) (A2)

where we assume that A = 0 in Eq. (7) and define

(A3)

The angular brackets denote the average over the initial

states of the Stokes and the anti-Stakes fields. The vari-
ous cases are discussed in Sec. II. The coefIicients in the
above expressions are obtained from a long but straight-
forward solution of the Heisenberg equations of motion
and the subsequent reduction of the boson modes in the
normal characteristic function using disentangling theo-
rems. The results are, setting I = (ps —p~)IEL,

~
/2,
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us(t) =

uA(t) =

(ZSe —ZA),
r~

QS QA

(yS —ZAe ),It
QS fA

the functions tost(t) and tvAI(t) are not required; their
correlations satisfy the following relations, derived from
conservation of the number of excitations in the Hamil-
tonian operator and commutation relations [7,8]:

(t) v (t) V
(

I't I) t(24 r. +Ms Mw)—
QS QA

lus(t) I' —lvs(t) I' —).I~st(t) I' = I, (A5)

Bs(t) =
z Ys(

' —1.) + 2 YsPA(1 —e ')
(&s —zA)'-

YA v
(

zrt 1)
PS QA

(t)
Ys 7A

(
rt I)z '7Anv

(I zrt
)

( YS 'YA) Ys YA

DsA(t) =
~

(e"' —1) (pA —pse"')
Ws —

WA (Ws

P 2rt 1) ei(24 t, +As —4~)e (A4)

The phases are defined by EL, = IEL, I
exp(i/I, ), g

lgl exp (its), and r = Irl exp (i/A). Explicit forms for
I

luA(t)
I

IvA(t) I
+ ) ltvAI(t) I (A6)

and

us(t)vA(t) —vs(t)uA(t) —) tost(t)tvA, (t) = O. (A7)

The case ps ——pA can be obtained &om the above results
by applying l'Hospital's rule.

The calculation of the sum —squeezing variance is
lengthy but straightforward. The normal characteristic
function is applied to Eqs. (10) and (11). The result for
the sum squeezing shifted variance of Vi is

~+j — (([((s(t)(A(t)] + 4DsA(t)(s(t)(A(t) + 2(DsA) + 2DsA~S(t)~A(t) + c.c.f

+2[l&s(t)Ga(t)l + Bs(t)l(A(t)l + BA(t)l&s(t)l + IDsA(t)l + Bs(t)BA(t)]&

4(~ (t)~ (t) + D (t) + )

and for the difI'erence squeezing variable W» we have

(A8)

~~' = -((K ()&*()]'+ * ()( ()( ()+
+2[1(s(t)(A(t)l + Bs(t)l&A(t)l + BA(t)l(s(t)l + IDsA(t)l + Bs(t)BA(t) + l(A(t)l + BA(t)])
——(~ (t)~ (t) +") .

4 (A9)

The averages are performed over the initial conditions. There are two cases considered in this paper: fields initially
in a chaotic state or a coherent state. They are defined by the following expressions. The coherent state is an
eigenstate of the annihilation operator. The displacement operator generating these states from the vacuum state is
defined by

D(~)IO) = e(-'-- l
IO) (AIO)

the coefficient is ct = ~nexp(ig). A chaotic system is characterized by averaging over a distributed set of states. The
variables are Gaussian distributed and the average of the number operator is denoted by an overbar

(ata) = n. (A11)
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