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Quantum images and critical fluctuations in the optical parametric oscillator
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In the 6rst part of the paper we define the spatial spectrum of squeezing following an operational
procedure, and we show in general how the spatial structure of squeezed states can be described in
terms of correlation functions of quadrature components of the electric field. In the second part we
formulate an appropriate quantum model for a degenerate optical parametric oscillator (OPO) with
plane mirrors, and we analyze it extensively below the threshold for signal generation The correlation
length diverges when the OPO approaches threshold; this picture provides an ideal completion of
the analogy with critical phenomena in second-order phase transition at equilibrium. The spatial
con6guration of the correlation function exhibits the phenomenon of quantum image:" the signal
field, which is purely generated by quantum noise, shows an ordered spatial structure which is
observable via the spatial correlation function.

PACS number(s): 42.50.Dv, 42.65.—k

I. INTRODUCTION

In the last few years our group activated a research line
which aims at unifying the two fields of transverse non-
linear optics and of squeezing. The first discipline stud-
ies the phenomena of pattern formation and transforma-
tion, which arise in the structure of the electromagnetic
field in the planes orthogonal to the direction of propa-
gation [1—4]. The second studies the nonclassical states
of the radiation field and the procedure to obtain quan-
tum noise reduction and application thereof [5—7]. With
respect to theory, the two fields exhibit traditionally a
complementary situation: in transverse nonlinear optics
models are two or three dimensional in space, but only
semiclassical, whereas in the domain of squeezing, with
few pioneering exceptions [8—12], theoretical treatments
are fully quantum but at most one dimensional in space
because of the plane wave approximation, which ensures
that the electric field is uniform in the transverse plane.
In the last two years we started analyzing theories which
are at the same time quantum mechanical and multidi-
mensional in space; this approach activated, on the one
hand, the analysis of quantum eKects in nonlinear opti-
cal patterns [13—15] and, on the other, the study of the
spatial structure of squeezed states [16].

This paper starts from the analysis reported in [16]
where, in particular, we showed that the description of
the spatial structure of squeezed states requires consid-
eration of a local oscillator field (LOF) with an arbitrary
spatial configuration in the transverse plane. This situa-
tion, however, cannot be easily realized in a laboratory.
We show in this paper that the spectrum of squeezing,
defined in [16] for a LOF of arbitrary shape, can be un-
equivocally expressed in terms of the space-time corre-
lation function of the electric field. This implies that
by measuring the spatial correlation function [e.g. , by a
pair of pointlike detectors with variable position or us-
ing a charge-coupled device (CCD) camera] with a fixed

LOF, available in the laboratory, it is possible to obtain
the level of squeezing which would be measured in any
experiment which utilizes a LOF with the same spatial
phase distribution (modulo vr) of the actually used LOF,
but with an arbitrary spatial intensity distribution. This
implies, expecially, that by using a single LOF, and mea-
suring the spatial correlation function of the electric field
as described below, it is possible to obtain the whole spec-
trum of squeezing without need of changing the spatial
configuration of the LOF itself.

This analysis allows us also to establish formally the
relation between our approach and that of Kolobov and
Soklov. As a matter of fact, Kolobov and Sokolov [10]
started their analysis just &om consideration of the
space-time correlation function, and defined the spec-
trum of squeezing as the space-time Fourier transform
of the correlation function. In our theory, instead, we
pursue an operational approach and start &om the very
definition of the spectrum of squeezing, which arises &om
a balanced homodyne detection procedure. We briefly
discuss also the case of the spectrum of the intensity Quc-
tuations.

While the first part of the paper is general, in the
second part we perform an analytical calculation of the
space-time correlation function (as well as of its Fourier
transform in space and time) in the case of the degener-
ate optical parainetric oscillator (OPO) below threshold,
in a plane mirror configuration. In this way, we can de-
scribe the critical behavior of the quantum fiuctuations,
and the divergence of the correlation length, when the
OPO threshold is approached. These kinds of phenom-
ena are analyzed here in the case of a quantum system
far from thermal equilibrium and, especially, in the case
of an optical system. In addition, these results provid. e
an essential completion of the classic analogy between
lasers (as well as other nonlinear optical systems such
as, e.g. , OPO's) and second-order phase transitions in
equilibrium systems [17—19].

Another relevant aspect of this paper is related to the
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analysis of Ref. [23), which shows that, for negative val-
ues of the detuning parameter, the signal field of the
OPO above threshold is generated in the form of a stripe
pattern instead of a uniform distribution. %e show here
that, for the same values of the detuning parameter but
with the OPO below threshold, the spatial correlation
function of the electric Geld exhibits the same spatial
modulation which characterizes the intensity distribution
when the OPO is above threshold. Below threshold, how-
ever, the intensity and phase configuration are perfectly
uniform on average. Therefore, we have a "quantum im-
age" [15], because the spatial structure does not appear
in the intensity configuration, but in the spatial correla-
tion function of the quantum fluctuations. In this way,
we follow the same nomenclature and the same "spirit"
as Knight and collaborators [24), who develop the idea of
encoding information in the spatial correlation function
of the electric field, rather than in the intensity distribu-
tion.

We mention that, under appropriate conditions, the
"quantum image" phenomenon can appear also above
threshold. ; this result, together with the general defini-
tion of quantum image, is discussed in [15].

In Sec. II we define the spectrum of squeezing obtained
using a I.OF of arbitrary spatial conGguration; in Sec.
III we express this spectrum in terms of an appropri-
ate spatial correlation function. Attention is paid also
to the finite size of the detectors used to measure the
correlation function. Section IV discusses, instead, the
spectrum of the intensity fluctuations in the case that
the mean value of the field is much larger than its Huc-
tuations. In Sec. V we introduce the quantum model
for the OPO, and in Sec. VI we summarize the pattern
formation phenomena which emerge &om the semiclas-
sical approximation of this model. The angular depen-
dence of the level of squeezing is discussed in general in
Sec. VII. Starting &om Sec. VIII, we focus on the OPO
below threshold. The correlation function is discussed in
the temporal domain in Sec. IX and in the spatial domain
in Sec. X; in particular, we emphasize the critical behav-
ior of the quantum fluctuations observed approaching the
OPO threshold, and the concept of quantum image. The
Gnal section summarizes the results of the paper.

Bg

(CAVITY)
B2

~nr.
~

is expressed in cm s
Assuming that the transmission and the reHection co-

eKcients of the mirror M in Fig. 1 are given by t = r =
1/~2, the fields Bi and B2 beyond the mirror are given
by

1B,(x, t) = [A „t(x, t) + nL, (x)]
2

(2)

and

Bg(x, t) = [A „,(x, t) —nL, (x)) .
2

In balanced homodyne detection one measures the differ-
ence between the total powers of the two beams Bi and
B2, which is given by

d x B,(x, t)B,(x, t) —B2(x, t)B2(x, t)

= N E "'(t), (4)

where

EJ7'(t) =, d x [aL, (x)At„, (x, t)
N~
+aL (x)A „,(x, t)],

N= dx oL, x

FIG. 1. Balanced homodyne detection scheme. The mirror
M has transmission and reflection coefEcients t = r = 1/~2.

II. BALANCED HOMODYNE DETECTION AND
SPATIAL STRUCTURE OF SQUEEZED STATES

Let us consider the well known balanced homodyne de-
tection scheme for squeezed states [5] (Fig. 1). The beam
splitter combines the quantum field A „q(x, t) and the lo-
cal oscillator field (LOF) which lies in a classical, station-
ary, coherent state o.L, (x) of intensity much larger than
that of A q, here x = (x, y) denotes the position vector
in the plane orthogonal to the direction of propagation of
the field, and A „q is a free Geld envelope operator which
obeys the commutation rule

Thus the homodyne detection performs the projection of
the Geld A. q onto the local oscillator Geld o.L, . As shown
in the Appendix, this fact can be utilized also to obtain
the coeKcients of the expansion of the mean value of A „q
over an arbitrary set of orthonormaJ. modes.

Here, however, we are interested in the quantum fluc-
tuations around a stationary mean value. They are de-
scribed by the spectrum

V(~) = f

dt's

' '(bs "'(t) Ss '(0)),

where

A „,(», t), At„,(x', t') = 8(x —«')b(t —t'); (1) By using Eqs. (5), (6), and (1), one obtains easily that
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V(~) = 1+S((u),

with

S(~) = f d«(: 6E7t (t) 6Ett (0):) (10)

where:: indicates normal and time ordering. The Grst
term in the right hand side of Eq. (9) represents the shot
noise level, which is normalized to 1. In the following we
will call S(u) the spectrum of squeezing. One has that
S((t)) & —1, and S((t)) = —1 means that at frequency
u there is complete suppression of quantum noise in the
observable E~

We are interested in the case that the Geld A q is
emitted by a nonlinear cavity with a single input-output
mirror with reBection coefficient r 1 and transmission
coefficient t, = (1—r2) 2 . In terms of the intracavity field
A(x, t), the outgoing field A „2(x,t) is given by

nL, (x) ~ f, (x)e",

A(x, t) = ) fi(x)ai(t), (16)

because of the commutation rule [A(x, t),
At(x', t)] = h(x —x'), one has

ai(t), a, , (t) = bi. ( (17)

where 8 is an arbitrary phase, and let us indicate by
S((u, 8) the spectrum obtained with this choice; we call
the set of functions Si(w, 8) obtained by varying l the
spatial spectrum of squeezing. Thus the spatial structure
of a squeezed state is described by the infinite set of func-
tions Si((t), 0) and its observation requires using a LOF
of variable spatial conGguration.

In the case of a generic LOF, one can expand the quan-
tum field A(x, t) on the basis f(

A „,(x, t) = ~2pA(x, t) —A,„(»,t),
where p = ct, /2L is the cavity damping rate of the field,
with 8 being the cavity round trip length, and A,.„ is
the Geld incident onto the cavity, which is assumed to be
in a coherent state (possibly in the vacuum state). The
Gelds A „z, A, and A; have the same carrier &equency.
In writing Eq. (11) we have assumed that the homodyne
detection takes place near the cavity, so that it is not
necessary to take into account the evolution of the Geld
&om the cavity coupling mirror to the beam splitter M.
Accordingly A in Eq. (11) denotes the intracavity field
near the input-output port.

Next we insert Eq. (11) into Eq. (10); by taking into
account that the input Geld A, is in a coherent state and
that the product in (10) is normally and time ordered, we
have that A;„does not contribute to the expression (10)
and

S(te) = 22f dte ' (: 6Ett(t) 6Ett(0):), (12)

By inserting Eq. (16) into Eqs. (13a) and (12), one ob-
tains

S(~) = ).Pipi Si,~'(~) 2

where we have set

1
d'»n~(x)f((x) = p, e

N~
(19)

and

Ste(te) = 20'f dte ' (: 6At(t) 6Ae(0):),

A) —ante'~' + a)e '&' .

(20)

(21)

S( ( (~) = Si(~, Pi) hi, i (22)

In speciGc cases, as in the example of the OPO below
threshold analyzed in the remainder of this paper, the
operators aI with different l are uncorrelated, and one
obtains

where

Z~ (t) = A~t (t) + AH (t),
A~(t) =, d x n( L)Ax( tx) .

¹

(13a)

(13b) S(~) = ).p~'Si(~ &i) (23)

where Si(u, Pi) is just the spatial spectrum of squeezing
defined above. Hence in this case one has the formula

Note that the operators AH and AH obey the harmonic
oscillator commutation relation [A~(t), AH (t)] = 1.

Sirlce the homodyne detection provides only the pro-
jection of the quantum field onto the LOF nr, (x), in order
to analyze the spatial structure of a squeezed state one
Inust use local oscillator Gelds of different spatial conGgu-
ration. Precisely, let us consider a complete orthonormal
basis of functions fi(x), where l indicates an appropriate
set of indices:

We conclude this section with a remark concerning the
observable E~ given by Eq. (13a). Let us express nL, in
the form

nL, (x) = pL, (x)e'4" ~"&,

PL, (x) = arg [nL, (x)] (mode. ), (24)

which expresses the spectrum of squeezing for a generic
LOF in terms of the spatial spectrum of squeezing. Note
that Q, p2 = l.

d2x f(*(x)fi (x) = 8(,i

Let us consider a LOF of the form

(14) where the arbitrariness given by the specification (mod vr)
is included to allow, whenever possible, that the function
pl, (x) is continuous with its derivatives over the trans-
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Eee(x, t) = —f d xpe(x)EH(ee, t),

f~(x, t) = At(x, t)e*~ ~"l + A(x, t)e

(25)

(26)

From this expression one sees explicitly that the homo-
dyne detection picks up a quadrature component of the
field; in general, however, the phase Pr, of the quadrature
component is not constant over the transverse plane.

III. CONNECTION WITH THE SPATIAL
CORRELATION FUNCTION

The main message of Ref. [16],and of the more detailed
description given in the previous section, is that in order
to explore the spatial structure of a squeezed state one
must use a LOF with variable spatial configuration. In
this section we illustrate an alternative method to mea-
sure the spectruin of squeezing S(~) based on the spatial
correlation function of the homodyne Geld. We will show
that, using this method, one can obtain the spatial spec-
trum of squeezing Si(u, a) using only one LOF.

By inserting Eq. (25) into Eq. (12), one can express
S(~) at once in the form

OO

S((u) = — dte ' ' d x
N

x d'x'p, x «x' r x, t; x', 0, (27)

where we have introduced the normally ordered spa-
tiotemporal correlation function of the homodyne field,
defined as

I'(x, t; x', 0) = 2p(: 8EH(», t) 8E'~(», 0):), (28)

verse plane; hence pi, (») is real but not necessarily pos-
itive. With the position (24), the expression for E~ can
be written as

f "d„-,.e f de„ f d.„.~e(~)ee(~')

x I'(», t; x.', 0) . (32)

where C is a real constant. By using the previous pro-
cedure, one can obtain the spectra also for all the other
modes, provided that the functions f~(x) have the form

fi(x) = o((x)e*~~~"l+ 'j

where o.i(x) is real, @(») does not depend on l, and 0(
does not depend on x; this is true, for example, in the
case of Gauss-Laguerre modes. Let us assume, further-
more, for definiteness that 0& ——0. As a matter of fact,
by using the available LOF, one can obtain the function
I'(x, t; x', 0) with Pg(x) = g(») + g. The spectrum of
squeezing Si(~, 0) can be obtained f'rom the formula

S, (~, g) = f dte ' 'f d x

x d'x' o-) x o-) x' I' x, t; x', 0 (35)

The quantity I'(x, t; x', 0) can be obtained from measure-
ments which utilize the available local oscillator n~, by
using Eq. (29) and the known configuration p&(»). Fi-
nally the spectrum Sp ((dd) can be obtained numerically
from Eq. (32) and from the known configuration o.r. (x).
This shows that, using a single LOF, it is possible to
obtain the spectrum of squeezing corresponding to an
arbitrary LOF with the same spatial phase distribution
(modulo vr).

Let us now turn our attention to the spatial spectrum
Si(u, 0). In order to obtain it, one should in principle
measure all the squeezing spectra with the local oscillator
field given by Eq. (15) for all possible choices of l, Assume
that the only available LOF corresponds to one of these
modes (for example, to the TEM00 mode of a complete
set of Gauss-Laguerre modes), say

ng(x) = C f-, (»)e'",

where ter is defined by Eq. (26).
We note that the quantity

I' , (x, t; «', 0) = p (x))o (x')I'( xt; x', 0) (29)

where 0 = g —0~.
Needless to say, all the previous considerations in this

section can be extended to the Fourier transform

is just the quantity obtained in a measurement of the
space-time correlation function of the observable

I'(x, x';e) = f dte ' 'I'(x, t; ee', 0), (36)

Bit(x, t)Bi(», t) —B2t(», t)B2(», t), (30)

where B'~ and B'2 are the Gelds emerging from the homo-
dyne detection [see Fig. 1 and Eqs. (2) and (3)].

Imagine, now, that we would like to measure, in our
laboratory, the spectrum of squeezing Sp ((d)) with the
LOF P~, but that only the LOF ng is available. Provided
that the two LOF's have the same phase distribution
(mod vr), i.e. ,

P~ (x) = (r~ (x)e'~ " nr, (x) = pr, (x)e'~ " (31)

where og and pg are real, we can proceed as follows. We
have

which is more easily determined experimentally.
The previous discussion showed that the spectrum of

squeezing can be expressed in terms of the spatial cor-
relation function; under appropriate conditions one can
show that, conversely, the correlation function can be
expressed in terms of the spectral functions Si ie(u) de-
fined in Eq. (20). Precisely, the conditions are that the
function P~(x) in Eq. (26) is constant, i.e. , P&(») = Pz„
hence @(x) = 0 in Eq. (34). As a matter of fact, start-
ing &om Eqs. (36) and (28), inserting Eq. (26) and the
expansion (16), and using Eq. (34), one can obtain

I'(x)»', ~) = ) o( ))ox(xi'e).Si ie(~. )
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with Pl, replaced by Pl, —8~ in Eqs. (20) and (21).
In a more realistic description of detection the finite

size of the detectors should be taken into account. In
the case of an array of small detectors in the transverse
plane, one is led to consider the operators

S(u) by Eq. (9), the corresponding correlation function
I'~ (x, t; x', 0) such that

te( ) f d„e-f..dt„ f de„ t't(x) 4't(x')

x I' v( x, t; x', 0), (45)
AH;(t) =, d xa I( x)A( x, t),

Q~J

(38)

A~ (t), A~t. , (t) = b„„ (39)

where the index j = (j,j„) indicates the position of
the detector j in the (x, y) plane, the integration is
carried out over the area Oj of the jth detector, and

Nj = f& d x ~nL, (»)~ . Notice that with the defini-0„.
tion (38) one has

is given by

I'v (», t; x', 0) = I (x, t; »', 0) + b (x —x') b (t), (46)

IV. THE SPECTRUM OF THE INTENSITY
FI UCTUATIONS

and the singular part in Eq. (46) corresponds to the shot
noise contribution.

From Eqs. (12) and (13a) we see that the spectrum of
squeezing can be written as

+oo
S(ur) = 2p — dte

N

Up to this point we have considered only the phase
dependent spectrum of squeezing. In this section we an-
alyze, instead, the spectrum of the intensity Buctuations,
which can be detected by direct observation, and is given
by [20]

x ) N,.'N,.', (: hE~ (t) b'E~; (0):),

where the homodyne field Z~J is defined as

(40) tet(x) = f dte ' ' f d'x

x dx bI„gxt bI„gx, 0 (47)

ZH;(t) = A~t,.(t) + A~;(t) . (41) where

A correlation function between the homodyne field mea-
sured at the pixels j and j', similar to that defined by
Eq. (28), can be introduced as and

bI „d(xt t) = I g(x, t) —(I „~(x,t)), (48)

1r„",(t) = 2&, (: bc~, (t) bzH, , (0):) .
(0;0; ) ~

(42)

dte ' ') A~A; p;p„ I'~ (t) . (43)

The quantities pJ pJI I'~~ are those which are actually mea-
sured in a realistic experiment. In the limit of small de-
tector size one easily finds that

If the I OF is a slowly varying function of the transverse
coordinates, or the dimensions of the detectors are small
enough that the function pl. (x) = p~, constant over each
region 0„, the expression (40) for the spectrum reduces
to

I~„,(» 4 t) = A t„,(x, t)A~g (», t)

is proportional to the intensity of the output field, as
measured by a pointlike detector placed at the position
w in the transverse plane just in &ont of the coupling
mirror.

By using Eq. (1) one obtains, as usual,

V.(-) = S i1 + S.(-)i
where

S~ = d 3C I~g 3C, 0

St(x) = Sx'f dte ' 'f d*x

I'~ (t) = d x d x'I'(x, t;x', 0) .
0-)

(44)
x d w': bI~„g w, t bI~„g w, 0 (52)

Clearly, in the limit in which the pixel size becomes in-
finitesimal I'~ (t) converges to I'(x, t; x', 0), and Eq. (43)
reduces to Eq. (27).

The finite size of detectors must also be kept in mind
when one meets integrable divergences in the expression
of the correlation function I'.

We end this section with a simple remark. If instead
of the normally ordered spectrum S(ur) one considers
the spectrum V(~) given by Eq. (7), which is liMed to

x d ~': bI ~, t bI x.', 0 (53)

The first term in Eq. (50) represents the shot noise. Be-
cause of the normal and time ordering, by using Eq. (11)
one has

St(~) = 4p Set f dte ' f d x
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where

I(x, t) = At(x, t)A(x, t); (54)

moreover, S~ ——2pNI, with

Nl —— d x. At x, 0 A ~, 0

Let us now assume that the steady-state mean value
(A(x, 0)) is much larger than the fluctuations of A(x, t).
In this case, if we set

(55)A(x, t) = (A(x, 0)) + bA(x, t)
in Eq. (53) and we keep only the dominant terms, we
obtain

S (~)I= 2p f dte ' '(: HEI(t) bEI(O):), (56)

d Q 0
Nl
+(A(x, o))*A(x, t)] . (57)

As one can see, Eqs. (56) and (57) are identical to
Eqs. (12) and (13a), respectively, provided that nL, (x)
is replaced by (A(x, o)) (which in turn implies the re-
placement of K by I)II and EH by El). Hence in the
direct detection of the intensity Quctuations the mean
field (A(x, 0)) plays the same role as the local oscillator
nL, (x) in the homodyne detection scheme. All the formu-
las (18)—(26) hold also for the intensity spectrum Sl(~),
provided oL, (x) is replaced by (A(x, o)), pL, by )ol, and
$1, by Pl, where

(A(x, 0) ) = pl (x)e'~'~" i . (58)

The same holds true for Eqs. (27) and (28) if one replaces
I' by

I'1(x, t;x', 0) = 2p(: hEI(x, t) HEI(x', 0):),
where

t;(x, t) = A(x, t) e
—'4" + A(x, t) te'&'

It is easy to verify that, under the same hypothesis that
the Geld IIIuctuations are small with respect to the mean
field, I"I coincides with the normally ordered correlation
function of the intensity fluctuations, defined as

(: bI(x, t) hI(x', 0):)
[(I(,o))(I(,o))1

At this point we have finished the general part of this
paper. In the following we turn our attention to the
special case of the optical parametric oscillator.

the cavity. Two longitudinal modes of the cavity, labeled
by 0 and 1, are close to resonance with the fundamen-
tal frequency 2~, and with the subharmonic &equency
u„respectively. We assume conditions such that only
these two longitudinal cavity modes are relevant. More-
over, we assume the validity of the paraxial and slowly
varying envelope approximation for both Belds.

The interaction picture in which the &equency u, is
eliminated for the signal field, and the frequency 2u, is
eliminated for the pump field, is adopted; Ai(x, t) and
Ao (x, t) are the intracavity field envelope operators for
signal and pump mode, respectively, which depend on the
coordinate x = (x, y) of the point in the plane orthogonal
to the optical axis z (Fig. 2).

In order to avoid difBculties arising &om a continuum
of transverse modes, we consider in the transverse plane
(x, y) a square of side b and we assume periodic boundary
conditions for the Gelds. A complete set of transverse
modes of the resonator is then given by

fo,o(x) = b,
~2 cos (k~ x) foi i 1

y

b sin(k . x) for i = 2,

(62)

where k = &, n = (n, n„), n = 0, 1,2, . . . , and
ny ——0, +1,+2, . . . .

In the paraxial approximation, in which the transverse
components of the wave vector are much smaller than the
longitudinal component, the frequency of the transverse
mode n is given by

Q2

~o,n = ~0+
4(ds

2C
~1 n ~1+

2~s

(63a)

(63b)

where ~0 and ru1 are the &equencies of the axial mode
n = (0, 0) for the pump and signal Acids, respectively.

V. THE QUANTUM MODEL FOR THE OPO

The standard model for the degenerate OP 0 in a
Fabry-Perot cavity [21,22] is here generalized to include
diKractive e6'ects during the &ee propagation.

We consider a cavity with plane mirrors containing a
nonlinear y& ~ medium which converts a Geld of &equency
2u, into a field of frequency u, and vice versa. A coher-
ent, plane wave field of &equency 2u, is injected into

Mi

FIG. 2. Scheme of the cavity. The mirror Mz has a high
re6ectivity, Mz is completely reflecting. 8, is the input Beld
of frequency 2u, .
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Ap(x) = ) ) f„;(x)b„;, (64a)

The Geld envelope operators for the two Gelds can be
expanded on the basis (62) as follows:

- 2

Hlxx = d*x Ao(x) S,(x) —A, (x)S',(x)),2

(»)
i=1,2 n

Ai(x) = ) ) f, (x) a„, ,
i=1,2 n

(64b)

where g is the coupling constant, proportional to the
second-order susceptibility g~2l. The interaction (71) will
in general couple the dynamical evolution of all the trans-
verse modes.

The external Hamiltonian is given by

where the operators a, and b, obey the canonical com-
mutation rules [a, , at ...] = b b, ; and [b„;,bt ...] =

n, n ~', '-
The model is formulated in terms of a master equation

for the density operator of the multimode system:

H@xz' = ik d x E,. Ap(x) —f' Atp(x)
B

bo, p
—S;„bp,p

where E'; is the amplitude of the input field.

(72)

—= —. [a,p]+) ~„',p+ )
The Liouvillian terms

(65)
VI. SEMICLASSICAL MODEL AND PATTERN

FORMATION

0A =Pp 2b, pbt, —pbt, bn; —bt, b, p

2an~pa; —pa;an, . —a;ani p

(66a)

(66b)

describe the damping of the mode ni for pump and signal
Geld, respectively; pp and p1 are the cavity damping rates
of the two Gelds.

The system Hamiltonian which describes the coupled
dynamics of signal and pump Geld is given by

The semiclassical model which corresponds to the
quantum model introduced in the previous section is
formulated in terms of dynamical equations for the c-
number fields Ap(x, t) and Ai(x, t), proportional to the
incan values of the field envelope operators Ap(x, t) and
Ai(x, t).

0 ~ 2 . C 2
2—Ap = pp —(1 + imp) Ap + E —Ai + i V'~Ap

Ot 4(d, gp

(73a)
+ —IIFREE + IIEXT + IIINT ~ (67)

Free propagation of the Gelds in the cavity is described
by

8—Ai = pi —(1+ iAi)Ai+ A,*Ap+ i 7'~Ai
Ot 2608 +1

(73b)

~FREE —~ ) [((s'l,n ~s) ansani
ni

+ ((up —2a, ) bt, b„;] . . (68)
Ap ———(Ap),

+1
A, = (Ai);

2'7p 'Yl
(74)

Here the normalized variables are defined as in Ref. [25],

Taking into account the field expansions (64a) and the
k dependence of the mode's eigenfrequencies (63a), the
Bee Hamiltonian (68) can be recast as

HFR~@ = h d xA, (x)
~

(ui —~, — V'~
~
Ai(x)

( c2

2(ds J

+h d xAp(x)
~

(dp —2urs — V'~
~

c'
a 4(s)s

x Ap (x), (69)

t9 0
2+ gy2 (70)

which describes diffraction in the paraxial approxima-
tion.

The standard OPO interaction Hamiltonian is here
generalized to the multitransverse mode case as

where the integration is performed over the transverse
area B = (—b/2, b/2) x (—b/2, b/2) This show. s the con-
tribution of the transverse Laplacian

the parameter E = (g/pi) 8,„is proportion. al to the am-
plitude of the input field, and

~o —2
0 )

Qp
(75)

(76)

08—E(l —ib, p)
1+ A2 (77)

The linear stability analysis of this solution, performed in
the "continuum" limit b + oo, shows that the threshold
for signal generation depends crucially on the sign of the
detuning parameter b, i [23] as follows.

(a) When Ai ) 0 the trivial solution (77) becomes
unstable with respect to the onset of a uniform signal

are the detuning parameters for the pump and signal
Gelds, respectively.

The OPO below threshold is characterized by the uni-
form stationary state
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wave propagating along the longitudinal axis, and, defin-
lllg Ip = Apz, , the threshold for signal generation is
1(thr)

Os 1'
(b) when Ai ( 0 the instability generates signal

waves in two symmetrical off-axial directions; the critical
transverse wave vector which characterizes these waves
is k = g—Ai2td, pi/c . The instability threshold is

——1; hence lower then in the previous case.
These results can be better understood if one considers

a signal field of the form

ik x x = (x, y), k = (k, ky), (7s)

which represents a tilted plane wave that propagates at
1

angle k/k, = (k + k„) ' /k„where k, = id, /c with re-
spect to the optical axis. By inserting Eq. (78) into
Eq. (73b), one finds that the detuning parameter of mode
k is given by

Ak = Ai + (c'/2~. pi)k', (79)

where the second contribution arises from the trans-
verse Laplacian. Hence, when Li & 0, the axial mode
k = (0, 0) is closest to resonance with the frequency of
the signal field, and hence has the maximum gain, which
leads to the emission of a uniform signal wave traveling
along the longitudinal axis.

On the other hand, when Li is negative, the detuning
LI, vanishes for

In conclusion, for Li ( 0, when the input intensity E
overcomes the threshold value E = 1+4o, one has the
emission of a signal field of the form

A, (x) = o.e'4'+e'".*+oe'4' e-*"*

~+-~ ~= o. cos
~

k,x+
) (82)

VII. THE ANCULAR DEPENDENCE
QF SQUEEZING

where the amplitude o. is equal for the two signal waves,
and we have taken into account that P+ + P = 0 [14].
The configuration (82) corresponds to a stripe pattern,
similar to the rolls of the Benard instability in Huids

[19,26]. Thus, for Ai ( 0, when the OPO overcomes
threshold, it breaks simultaneously the translational and
the rotational symmetry. In Eq. (82) we have assumed
that the rolls are orthogonal to the x axis in the trans-
verse plane. The phase difFerence P+ —P is arbitrary,
which means that the roll pattern has an arbitrary posi-
tion in the transverse plane.

When the input intensity E is increased enough above
threshold, one meets the appearance of zigzag patterns
and complex dynamical patterns, as described in [23].

k = kz = g—A i2ldapi/c (so)

k, t' AiA, 2b (s1)

where A, = 2z /k, is the wavelength of the signal field.

this resonance condition characterizes, in this case, the
critical modes, which have the largest gain. These modes
form a cone around the longitudinal axis. However, the
process of parametric down conversion leads to the emis-
sion of photon pairs with conservation of the transverse
photon momentum, and. the system breaks the rotational
symmetry by emitting two signal waves in two symmet-
rical directions.

It must be observed, in this connection, that the model
assumes equal ref'ractive indices for the pump and the
signal fields so that, in the absence of the cavity, the
emission of the signal photons would occur in the axial
direction. However, due to the resonance mechanism de-
scribed above, the cavity is able to force the system to
violate slightly the phase matching conditions, emitting
the signal photons at a small angle with respect to the
longitudinal axis. This violation is admissible, because
the phase mismatch accumulated during the passage of
the radiation through the crystal is very small, as is as-
sumed by the conditions of validity of the mean field (i.e. ,
single longitudinal mode) model used here. By taking
into account that pi ——cubi/2Z, where 2 is the cavity
round trip length and tz is the transmittivity coeKcient
of the input-output mirror at frequency u„one has that
the angle of emission is given by

In Sec. II we said that, in order to describe the spa-
tial structure of squeezed states, one must probe the
squeezed field using various local oscillator fields, cor-
responding to the functions of an orthonormal set in the
transverse plane. We illustrate now that the orthonor-
mal set (62) is appropriate to describe the angular de-
pendence of squeezing.

Clearly, the modes (62) correspond to a field configu-
ration formed by the superposition of two tilted plane
waves exp (ik x) and exp (—ik x). Note that, with
respect to the general case of Eq. (34), the case of
the orthonormal set (62) corresponds to g(x) = 0 and
0, = 0; furthermore, for a local oscillator of the form
nl, (x) oc f„,(x) exp(0) the phase Pl, in Eq. (24) is in-
dependent of x. We also observe that the choice of the
orthonormal set (62) is appropriate for the analysis of the
spatial structure of squeezed. states, because squeezing is
linked to the presence of pairs of twin photons, and, as
occurs in the case of the OPO, it is reasonable that the
two photons are associated with two tilted plane waves
with transverse wave vectors k and —k.

Now, let us consider the spatial spectrum of squeezing
S;(w, 8) and let us assume that, as in the case we will
examine below, it does not depend on the index i. The
functions S (u, o) will therefore describe how the level
of squeezing varies with the angle k /k with respect
to the longitudinal axis. In particular, for n = (0, 0),
S(p p) (cd 8) describes the level of squeezing in the lon-
gitudinal direction, which is the only one described by
plane wave theories.
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VIII. THE OPO BELOW THRESHOLD:
SPECTRUM OF QUANTUM FLUCTUATIONS

We now turn to consider the OPO below the thresh-
old for signal generation, in the approximation in which
the complete quantum model (including both signal and
pump fields) is linearized around the semiclassical sta-
tionary solution (77). In this case, the complete model
of Sec. V reduces to a simpler quantum model which in-
volves only the signal field, while the pump field appears
only as a classical quantity equal to the stationary semi-
classical value. In this way, pump depletion is neglected.
The model is identical to that of Ref. [16], and it is for-
mulated in terms of a master equation for the density op-
erator of the multimode system. The interaction Hamil-
tonian (71) reduces to

~Z' —~~+1

S;(te) = f dte ' 'f dsx

x d x' f„;(x)f„;(x')I'(x, t; x', 0),
B

(86)

where the phase PL, (x) in the definition (28) and (26) of
the correlation function I' must be taken equal to P, .

In the following, for the sake of simplicity, we assume
that the LOF used to measure the spatial correlation
function I'(x, t;x', 0) has a phase PL, which is constant
over the transverse plane. Hence all the phases P, given
by Eq. (19) (with l replaced by ni) are equal to PL, , and
the function 8, does not depend on the index i, which
therefore will be dropped in the following.

Taking into account the translational symmetry of the
OPO below threshold, it turns out that the two-point
correlation function I' depends only the distance (x-
x') and the spectrum is just the spatiotemporal Fourier
transform of the correlation function:

= ihpi
7=1)2 Il

(83)

S;(te) = 20c f die ' (: bA„;(t) bA„;(0):),

&-(t) = .';(t)"' + -(t) -'-
(84a)

(84b)

By indicating ~ = u/pi, these spectra read [27]

2 2 —2 2S„,(~) = 4Ap, (1+4„—Ap, —a) ) +4~

x (2~, + +Re[(1 + P —4& + Qp2, —2iAA, )

x exp( —2ig„,)]j,

where AI, is the detuning of modes with ~k„~ = A, , given

by Eq. (79). For the quadrature component i(at, —a~, ), -

when Li & 0, complete suppression of quantum noise at
zero &equency is predicted at threshold for the critical
modes, i.e. , for k = g—Ai2(A), pi/c2 [16]. Of course, at
threshold or very near threshold the linear model (83) is
no longer valid; however, this result must be viewed as an
asymptotic ideal limit of the behavior of the OPO below
threshold.

The expression of the spectrum of squeezing for a
generic LOF is given by Eq. (23) together with Eqs. (19)—
(22), with I replaced by ni. Note that S, depends on
the index i only via the phase P, .

Following Eq. (35), the single-mode spectrum S; is
given by

where Ap, is proportional to the amplitude of the plane
wave pump field E, according to Eq. (77), and for the
sake of simplicity we assume that Ap, is real and positive.
Thus the model in this case descri" es the dynamics of
infinite, independent, single-mode degenerate OPO's.

The quantum properties of the near field can be ex-
pressed in terms of the spectra of quantum Huctuations
of the single-mode OPO's, defined as

S„(~)= f dte

x d x cos k . x. —x' I' ~ —x.', t (87)

Clearly there exists the inverse relation of Eq. (87):

I'(» —x't)=f e'' ' +
-~(, )'

x cos[k . (x —x')] S (o')), (88)

Hence, the spatial spectrum of squeezing S (ur) and the
space-time correlation function are essentially the Fourier
transform of each other, similarly to what one has in the
theory developed in [10]. This is no longer true for dif-
ferent orthonormal sets, e.g. , for Gauss-Laguerre modes.
By using Eq. (88), from the spectra S (~), one can cal-
iculate the correlation function (28), which provides a
deeper insight into the spatiotemporal behavior of a field,
1~Iike that of the OPO below threshold, which is purely
generated by quantum noise.

If one considers a set of pixels with finite size, the spa-
tial correlation function I'~t (t) given by Eq. (42) becomes

, (1„„&„l+ —sine
~

sine

xcos[k . (x; —x; )]S (~)), (89)

where d and d„are the transverse dimensions of the pix-
els (which are here assumed to be rectangular), sine z =
sinz/z, and x~ is the coordinate of the center of the
jth pixel. Provided that the dimensions of the detec-
tors are small enough, compared to the minimum wave-



1684 A. GAI j.I AND L. LUGIATO 52

length A = 2m/lk
l

for which S is appreciably nonzero,
Eq. (89) reduces to the previous expression (88), and
r„",(t):r(», —x,', t) .

where

( c2 )' fA Zl'
(2~.p, ) (2vrt', )

(o2)

IX. TEMPORAL DYNAMICS
OF FLUCTUATIONS

is the characteristic length of diKraction in a cavity.
Moreover, we shall take the "continuum" limit 6 ~ oo
of Eq. (88), which is then replaced by

In order to simplify notation, here and in the following
we shall consider the scaled variables

r = (» —x')/Li,
(d = LaI/Pi

g = Igk,
C(r, 7 ) = e' cos(g . r) S(q, u), (93)

2vr (2~) 2

and a dimensionless version of the correlation function I'
defined by Eq. (28),

I
C(r, ~) = ' r(r, ~),

+1

where S(q, ~) is still given by Eq. (85), with
(c2/2u, pi) ~ k replaced by q. Note that S depends only
on the modulus of the wave vector q.

As a Grst step we have carried out the integration over
the frequencies u, which gives

i'mS(q, ~):— e' S(q, &u)
2Ke,—4 'sinh p, —4 '~ Sp q —2 p, cos2

+cosh (Ap2, —b,2) ' 7 Sp(q) for Ap. ) &~

1 1
8 Lamkq pp sin Lq p8 7 Sp q — p, cos 2

+cos (A —Ap, ) ~ ~ Sp(q) for 4 ) Ap, ,

(94)

(o5)

where

So(q) = S(q = 0)
Ap, + cos 2/1, —A~ sin 2PL,

1 —A2, +A' (96)

threshold as = (Ip~',
"l —Ip, )

We would like to remark that the quantity Sp(q), given
by Eq. (96), is linked to the variance of the single-mode
quadrature operator for the intracavity field. As follows
from Eqs. (84b) and (94),

(qh, ) 1 —Aoa ~

2

=Ip, —Ios= &+ i —
ps ~

Ag &0
4& &0,

we can write the long time behavior of the Huctuations
of the critical modes as

S~q, ~) = [Sp (q ) (1 + Ap, ) —2Ap, cos 2PL, ]

x exp
I 1+

where q, = g—Ai for Ai & 0 [see Eqs. (80), (90), and
(92)], and q, = 0 for b, i ) 0. Hence the fluctuations
arising in the critical modes die out over a long time
scale, and the relaxation time diverges approaching the

This function evidences the well known phenomenon of
critical slowing down of Buctuations. By de6ning a pa-
rameter e which measures the distance from threshold

S ( )=2(:(;):),
=aqi qi

q = lgl (ooa)

(oob)

2

So(q) =—
1+Ap, e2+ (q2 —q2)2 ' (100)

and it can be noted that the bandwidth of wave vectors
for which there is significant quantum noise reduction be-

i.e., if we consider the discrete basis of transverse
modes (62), 1 + 2Sp(q) gives the variance of the single-
mode operators A~;. Figures 3(a) and 3(b) plot Sp(q),
for PL, ——n/2 and Ai ——0 and —1, respectively. For
the $1. = vr/2 field quadrature component, the level of
quantum noise is reduced below shot noise for a band of
wave vectors around the critical wave vector q, . For this
choice of the parameters Eq. (96) can be recast as
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d narrower as the threshold for signalcomes narrower an narro
generation is approached.

X. SPATIAL DYNAMICS OF FLUCTUATIONS

~ ~stri e attern. By performing the spatial integration in
Eq. 93, and taking into account Eq. 9, q

stripe pa em.
96 the e ual-time

correlation unc ion e owt' b low threshold can be expressed in
terms of the modified Bessel function of zero order Ko [ j
as

In this section we shall give some resuults about the
equa — ime spa

'1-t atial correlation function r, v = 0 . We
shall analyze separately the cases Lq (
Li )0.

A. Case Aq & 0

2 Aos(Aos + cos 2/1, ) IC(r, ~ = 0) =—

—AQ, siii 2/1, ReKQ (ZP) (Io1)

= 1- theThe threshold for signal generation is ~o, ——

instability arises a es'1' ' t threshold in the modes with q
and the signal Beld above threshold is ai, an

where

&((gz = —zg(q2+ ze) - —zq, + (»2)

0.0

and s is defined by Eq. (97).
We now focus on the cases PL, == 0 or L, = m. /2, which

the fieldcorrespond to the quadrature components of th d

behavior of the spatial correlation can e de

-0.2

-0.4

lim C(r, 7 = 0) = C(0, 0)
gc7 ~GO

x 1+0
i

2
e ~~ sin q r+—

(103)

-0.6

-o.e

'8.o 0.5
I

1.0
I

1.5
I

2.0
I

8.5 3.0

0.0

0
-0.2-

-0.4-

-0.6-

-0.8-

'8o I
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1.5
I
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FIG. 3. Plot of S(q, z = 0) [see Eq. (96)], which describes
the level of quantum noise 1n mo e q.
As, ——0.95, and (a) Az = 0, (b) Az ———l.

where C(0, 0) is the value of the function at r = 0.
Two points are worth noting.
(1) As the system gets closer to thresh, dshold the field

becomes correlated over larger an g plar er s atial dis-
E . (103) defines a correlation length ( = 2q /stances; q.

with a owerwhich diverges approaching the threshold wi p
( —I ) This behavior js standard inOe ~

equilibrium phase transitions, an i is a
classical nonequilibnum systems

~ ~ ~

s 26 ' here it is predicte
for an optica sys em an or1 t d for a quantum system far &om
equilibrium.

which lotThis effect is shown in Figs. 4(a) and 4(b), w ic p o
the correlation function (101) for ae corr ' ' a A = 0.99, and (b)

old A = 1; one has Ai ———1 in both figures.
(2) The spatial correlation function shows a mo u a-

sr&A: identical to that of thetion with a wavelength 2' i
eshold.stripe pattern w ic ah' h appears above the OPO thres o
b thehence t e onse o a sh t f patial structure is heralded y e

behavior of the correlation function. Other examp es o
ated b quantum noise are well nown e.g. ,

t our resultsthe case of the laser below threshold), but our resu s
h the existence of a quantum no' -goise- enerated Geld

which exhibits an ordered spatial structure.
e ~15 24& since the intensity distribution is

constan over et er the transverse plane (the sta ionary s a e

ulation appears in e
have a clas-e have shown phenomenena w ic have a cSo ar we ave s

sica coun er1 terpart' one could won er w ic ea ures o
corre a ion1 t on function show manifest y t e quan um

s atialof the noise. e smaTh ll distance behavior of the sp
correlation function can be seen to be



A. GATTI AND L. LUGIATO 52

Ao e

lim C(r, & =0) = +
A0, (A0, +1) for PL, = 0.

(1o4)

(105)

0.02

The quantity C(r = 0, 7. = 0) = (: [SZH x t ':
e normally ordered Quctuations of the homo-

); q. ( ) shows that for the quadraturedyne field (26); E . (104
field component & = sr&G &I, ——sr&2 this quantity is negative at
finite distance e &fi

' &om threshold, a circumstan h' h
r y in e to the squeezing property of this field

)

0.00

—0.02

—0.04

C(r = 0, ~ = 0) = d
S(q, u), (106) —0.06

and the fact that S~~q, u&~( 0 is a signature of nonclas-
sicity. This eKect tends to disappear wh'1i e approacriing

I

10
I

15
I

20 25 30

0.015-

FIG. 5.
seal d d

qual-time spatial corre ap relation as a function of the
sca e istance r, for Ai = —1 d P
has a space modul t d

'
an I. ——~ 2. The fu nction

Here AQ, ——0.99.
u a ion an is ne ative atg

' a small distances.

0.010-

0.005-

0.000 .

-0.005

-0.010-

the threshold b, because of the narrowing of the bandwidth
o wave vectors for which there is quantum noise reduc-
tion below shot noise in the function S Eo q see qs. 96
and (100) and Fig. 3]. Figure 5 plots the equal-time spa-

e sca e istance r foria correlation as a function of th l d d

I, = 7r/2 and A, = —l.
Normally ordered critical Huctuations of the ortho o-

nal field component = 0 are of course enhanced and

C 0 0 div(, ) diverges approaching the threshold as (I
Ip, ) 2 [see Eq. (105)].

30 40 50 60 70 80 90 100

B. Case A~ ——0

0.10—

The s
F

patia correlation function
' t'llis s i given by

q. (101), but the argument of the Bessel fe esse unction is

zp = +Eexp t—
4

(1o7)

0.00-

—0.05

Hence in this case t e spatial correlation function de-
pends onl on r
by

y on r, where the correlation length
'

on r '
eng is given

—0.10—

1
Ilthr) I 4

OB 08 (los)

30
I

40
I

50 60 70
I

BO
I

90 100
&I, ——vr 2, for example, the asymptoticWhen $1, = 0 or

behavior of thee unction at large distance can be

plG. 4. The ratio C(r, 7. = 0)/C(0, 0) is plotted at large
distance r for Pr, = x/2 0. a j~ os = 0.99

e unc ion is exponentially damped (h) at thr h

e exponential damping vanishes because the cor-
relation length diverges. In both figures q

———I and the
Inodulation is identical to th t f th 'p po a o e stripe pattern which

appears above threshold.

lim C(r, ~ = 0)
v» j$—+oo

2= 2C(ii, 0) e 'ii sin ( /(+ —), (109)
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0.005

0.000—

1
n(&»

+28., (113)

—0.0 10

It can be easily seen that, as expected, this function has
no spatial oscillation at all and the long range part of
this correlation function has an exponential behavior at
large distances:

—0.020 lim C(r, r = 0)-
r /$1 —+OO

e—r /$1

Qvrr/(i
(114)

—0.0350
I

15
I

20
I

25

FIG. 6. Equal-time spatial correlation function for
Pi, = 7r/2 and Ai ——0. The spatial modulation of the cor-
relation function has almost disappeared, and the function
reproduces the spatial structure of the plane wave 6eld which
emerges above threshold. Here Ao, ——0.99.

li n C(nv= 0) -, —In (I,. ' —Io.)r/g1 gmO
(115)

As in the case Lq & 0, the correlation length diverges
approaching the threshold as (Io, —Io, )

(thr)

At r = 0 the correlation function gives the normally
ordered Huctuations of the homodyne field, which in this
case show a logarithmic-type divergence, when threshold
is approached:

fol'
C(0 p) 2(l+Ao, )

Ao, (i+AD ) f y p26

(110)

C. Case A~ & 0

In this case the threshold for signal generation is Ao2, ——

1 + Ly and the 6eld above threshold is constant over
the transverse plane. The equal-time correlation function
turns out to be given by

C(r, r = 0)

[Ito(r/&i) —Ito(r/6)]

where

—Ao. sin 2pn )ICo (n/6) + ICO (n/(~)] ),

=id, — b.
)

(112)

The spatial correlation not only is slowly damped, as in
the Lq & 0 case, but has also a slower and slower mod-
ulation as threshold is approached; also in this case the
radial dependence of the correlation function reproduces
the spatial structure of the signal field, which emerges
from this instability, and is constant over the transver. -.e
plane.

Figure 6 shows an example of this correlation function
for the field quadrature PL, = m/2. As in the previous
case the fact that for $1, = vr/2 C(0, 0) is negative is
linked to the quantum noise reduction for a bandwidth
of wave vectors around q, = 0 [Fig. 3(b)].

D. Frequency behavior of the spatial correlation
function

Instead of the equal-time spatial correlation function,
we can consider another quantity which is more eas-
ily measured in an experiment, namely, the spatial cor-
relation function in the frequency domain defined by
Eq. (36). In terms of the normalized frequency u the
spatial correlation function C(r, ~) is defined as

d qC(r, ~) = I i I (r, ~) = cos (q r) S(q, u) . (116)
(2vr) 2

Figure 7 shows the spatial spectrum of squeezing S(q, w)
«» 4z, = ~/» &o~ ——0.95, ~ = 0, and (a) Ai ——0, (b)

= —1. Note that this spectrum for fixed phase $1.
looks quite difFerent (apart from a small neighborhood of
q = q, ) from the optimized spectrum shown in [16], in
which for each wave vector q one selects a diBerent phase
PL, which optimizes the level of squeezing for o/ = 0. As
a matter of fact, in the spectrum for fixed PL, the region
of q where there is squeezing becomes narrower and nar-
rower as the OPO threshold is approached, whereas in
the optimized spectrum it remains broad.

By comparison of Figs. 3 and 7 we see also that
for $1, = vr/2, S(q, u = 0) is mostly positive, whereas
S(q, r = 0) is negative for all values of q. The quantity
C(r, ~ = 0) can be again computed in terms of modified
Bessel functions of first and zero order, and it is shown
in Fig. 8, for Ai ———1 and PL, = vr/2.

Most of the properties of the equal-time correlation
function are preserved, namely,

(1) when Ai is negative, this correlation function has
a spatial modulation with a wavelength identical to that
of the pattern which appears above threshold;

(2) the function is exponentially damped at large dis-
tance, and the correlation length diverges approaching
the threshold with a power law
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squeezed quadrature component Pl = z./2, for small dis-
tances the equal —time correlation function takes negative
values.

In the OP 0 below threshold the signal Geld is exactly
zero in the semiclassical picture. Hence the signal Beld is
purely generated by quantum noise and, under the condi-
tion of negative detuning, quantum noise creates an im-
age which can be observed via the space correlation func-
tion. A quantum image is met also above threshold, in
a "mesoscopic" OPO with reduced photon number [15).
In this case quantum noise destroys the classical image
(stripe intensity pattern) and what remains is a quantum
image. In the model of the OP 0 below threshold that
we analyze here it is not necessary to reduce the physi-
cal dimensions of the OPO to obtain a quantum image,
because the number of photons is not huge.

In a future work, we plan (1) to analyze the effect of
a breaking of the translational symmetry in the system,
as was done in [15] for the OPO above threshold, and
especially (2) to study the more standard case of an OPO
with spherical instead of plane mirrors.

Capital and Mobility Network No. 920887 "Nonclassical
light ."

APPENDIX

Let f~(x) be a complete set of orthonormal modes,
where l indicates an appropriate set of indices. Let us
consider the expansion

(A „,(x)) = ) cia(x), (A1)

where () indicates the mean value, and a LOF of the
form

ng (x) = fI (x)e'", (A2)

with

N~ (E~) = 2cr) cos (() —g), (A3)

where q is an arbitrary phase. Using Eq. (5) and the
orthonormality of modes f~, we obtain
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Hence, if one varies rl until N2 (EJr) assumes its maxi-
mum value, one has that

(A5)
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