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It is shovrn that the mutual trapping of the fundamental and second-harmonic beams in a
diffractive (or dispersive) medium with quadratic nonlinearity can support a family of two-wave
(2+1)-dimensional solitons of circular symmetry. The stability analysis shows that these (2+1)-
dimensiona1 solitons are stable in the physically important region of parameters, although unstabIe
solitons are also revealed and their instability dynamics is analyzed numerically. Phase-dependent
and, in some cases, nondestructive collisions of these solitons are also considered.

PACS number(s): 42.50.Rh, 42.60.3f, 42.65.3x, 03.40.Kf

There is growing interest in the subject of self-guided
waves (spatial soliton. s) in nonlinear materials (see,
e.g. , [1—5] to cite a few). This interest is not oxily for
fundamental reasons, but also because of the potential
use of optical solitons in all-optical switching based on
the concept of light guiding light [2,6]. Until recently,
it has been usually believed that self-trapping of light
beams and stable propagation of spatial optical solitons
can be observed only due to the intensity-dependent non-
linear re&active index of a dielectric medium with a
third-order (cubic or y( )) nonlinear response, whereas
the second-order (quadratic or y& )) nonlinearities have
been discussed in the theory of second-harmonic genera-
tion (SHG) (see, e.g. , [7 ). However, it has been recently
shown that eR'ective y ~-like nonlinearities of noncen-
trosymmetric media can be obtained by cascaded second-
order eKects and they lead to such a phenomenon usually
related to y( ) materials as a nonlinear phase shift [8] (see
also the earlier papers [9,10]). It has also been demon-
strated that cascaded nonlinearities can support para-
metric self-guided waves in the (1+1)-dimensional (or
planar geometry) case [5,11—15], which form a family of
self-trapped (spatially localized) nonlinear waves [13].
Development of this concept for the three-dimensional
[i.e., in fact, (2+1)-dimensional, which means two trans-
verse and one longitudinal directions] case is nontrivial,
and it is a problem of fundamental importance which,
if solved, could allow one to create reconfigurable guid-
ing structures in bulk y~ ~ materials. Recent numerical
simulations [16] and earlier analytical results [5,11] di-
rectly indicate that self-trapping of light can be expected
due to solely parametric interactions; however, the cor-
responding family of stationary localized solutions of cir-
cular symmetry is not known yet, and its stability prop-
erties have not been fully understood. We would like to
emphasize that for the self-focusing cubic (the so-called
Kerr) nonlinearity this problem meets serious difficulties
since any self-trapped beam [1] (spatial soliton of circular
symmetry) described by the (2+1)-dimensional nonlin-
ear Schrodinger (NI.S) equation is unstable and displays
collapse (see, e.g. , [17]). Several physical mechaxiisms
which can suppress or even eliminate such collapse-type

(or blowup) instabilities are known, but these mecha-
nisms usually require one to include either nonlocal [18]
or effectively dissipative [4] efFects.

The purpose of this paper is to present a family of
(2+1)-dimensional [(2+1)D] solitons of circular symrne-
try which can be supported by solely parametric inter-
actions between the fundamental and second-harmonic
waves in a difFractive (or dispersive) quadratic xnedium.
It is shown that these ~(2 + 1)D~ solitons are stable in a
physically important region of parameters forming a fam-
ily of self-trapped two-wave beams of circular symmetry.
However, we also 6nd the parameter region where the
(2+1)D solitons are unstable and show that the develop-
ment of this instability can have two difFerent scenarios.

We consider interaction of the first (ux ——w) and
second (w2 ——2w) harxnonics in a difFractive dielectric
medium with y~ ~ nonlinear susceptibility, and, assum-
ing the harmonic envelopes E» and E2 to be slowly vary-
ing, derive &om Maxwell's equations the system of two
nonlinear equations coupled parametrically through com-
ponents y,. -& of the nonlinear susceptibility tensor,

2ik» + V', E»+ y»E»E2e ' = 0,
8E» —i hk.Z

OE2

where V'~ = 0 /BA + 8 /M'2, the coefficient yx and
characterize the nonlinear (quadratic) response of

the medium, Z is the propagation distance, and Ak =
2ki —k2 ——2[n(u) —n(2w)]w/c is the wave vector mis--
xnatch between the harmonics, where n(w) and n(2u) are
re&active indices of an optical medium for the erst and
the second harmonics, respectively. A similar model can
be derived to include the efFect of dispersion on (1+1)-
dimensional spatial solitons, i.e., for the so-called light
bullets [19] in y( ) planar waveguides.

We are interested now in stationary, spatially local-
ized solutions of Eqs. (1) and apply the following ex-
act transformation: Ex —— (2ki p/+2yx y2) tee'x z and
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E2 ——(2kqP/yq)ve'( ~+ ")z. Now the equations for ur

and v take the form (cf. [14])

10

. |9'W t9 'W |9 QJ
'l + + —rv+'ur v: 0,

t9v |9 v t9 v 1"a(+ a ~ + a ~ "+ " = ' (2)

)o
09 4

where n = (2P + Ak)a/P, g = PZ, z = v 2kqP X, and
y = /2kqP Y. Equations (2) are the exact reduction of
the system (1) and they take into account explicitly the
nonlinearity-induced shift P of the propagation constant.
We should note that for the spatial solitons discussed
in this paper 0 = 2 since for deriving Eqs. (1) we have
assumed Ak/kq (( 1. The system (2) with a different
definition of n can also be derived [in a way similar to
that shown in [14] for the (1+1)D problem] for a more
general case when a small spatial walk-oK eKect between
the harmonics is taken into account. This makes the cor-
responding stationary solutions and the linear stability
analysis of these two problems (i.e. , with and without
the walk-off effect) mathematically identical, in spite of
the fact that physically the beam dynamics and beam
generation are expected to be different (see, e.g. , [16]).

For the stationary solutions of circular symmetry we
omit in Eqs. (2) the derivatives in ( and treat the real
envelopes ur(r) and v(r) with r = A+2 + y2 as two coor-
dinates in the corresponding mechanical problem with
the potential U(ur, v) = 2(ur v —nv —zo ) and the
effective "anisotropic" dissipation (1/r) (ur, v) where
ur—:dur/dr and v = dv/dr. Then spatially localized
solutions of Eq. (2) correspond to special (separatrix)
trajectories in the phase space (w, v, ur, v) which start at
the point (urp, vp 0 0) at r = 0 and approach asymp-
totically the point (0, 0, 0, 0) for r -+ ao. We have found
these separatrix trajectories and therefore soliton profiles
numerically by the shooting technique for various values
of o. , and the corresponding results are summarized in
Fig. l. As can be seen in Fig. 1(a), (2+1)D solitons ex-
ist for any value of n ) 0 and the maximum amplitudes
of the fundamental, too, and second-harmonic, vo, waves
grow monotonically with increasing o.. When o. (( 1, the
amplitude of the second-harmonic wave becomes larger
than that of the fundamental harmonic [see Fig. 1(b)].
In the other limit o. )) 1 the amplitude wo of the first
harmonic is much larger than vp [see Fig. 1(c)]. This situ-
ation resembles the case of the (1+1)D solitons discussed
in [13] and it can also be explained quantitatively. In-
deed, for o. )) 1 we can neglect the derivatives in the sec-
ond equation of the system (2) and. obtain approximately
the relation v zo /2n, reducing the first equation of the
system (2) to a standard (scalar) NLS equation which is
usually analyzed in the theory of self-focusing in a Kerr
medium [1]. However, as is shown below, in the limit
n )) 1 the solitons of the model (2) are stable, in con-
trast to the solitons of the (2+1)D NLS equation which
display a blowup instability (see also [20]).

To analyze the stability of the parametric (2+1)D soli-
tons presented in Fig. 1 we can use the well known crite-
rion of soliton stabihty theory [21]. In the original form
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FIG. 1. (a) Family of twp-wave (2+1)-dimensional solitpns
of circular symmetry characterized by the harmonics ampli-
tudes urp and vp vs the efFective parameter n. (b), (c) Two
particular examples of the soliton profiles at n = 0.1 and
n = 9.0, respectively.

this approach has been proposed for NLS-type models,
and it is based on the analysis of the behavior of a sys-
tem Hamiltonian H as a function of the system energy,
which is Q = f (~tp~ + 2cr~v] )dxdy for the model (2).
If a system of equations has 6xed parameters, then for a
family of stationary soliton solutions the stability prop-
erties change at a critical point in the dependence H(Q),
so that this point determines the instability threshold.
However, for the model (2) we have obtained the family
of soliton solutions presented in Fig. 1 by varying the
parameter o.. Thus, we do not have a family of soliton
solutions for a system of equations with fixed pararne-
ters. To be able to use the criterion of soliton stability
theory [21], we should renormalize the system (2) and
its stationary soliton solutions to make o. be an internal
solution parameter, but not the parameter of the system
(2) itself. It can be done by using the following scaling
transformations:

~ 2
ur = a ur(ax, ay, a g)e'

v = a v(ax, ay, a ()e ' (3)

where we have "—"and a:—go/(2o —n) for o. & 2o or
"+"and a—:ger/(n —2a ) for n ) 2o. [The critical case
of exact phase matching (or n = 2o, in our natation)
has already been investigated in [20], and the stability of
the corresponding solitons has been proven there. ] The
transformations (3) change the energy invariant Q and
Hamiltonian II of the system (2). For the family of sta-
tionary soliton solutions of circular symmetry shown in
Fig. 1 the values of the renormalized invariants Q and
H can be calculated using the following expressions:
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Q = 2vra (m + 2rrv )r re,
0

f'Bm) ' /Bv)+i —
i

—mv rdr.
o E~r ) &~r)

The dependence II vs Q for the family of (2+1)D soli-
tons discussed in this paper is shown in Fig. 2. Using
the standard reasoning of soliton stability theory [21] or
an exact stability analysis analogous to that presented
for the (1+1)-dimensional problem in [22] we obtain the
result that the upper (dashed) branch of the curve II(Q)
corresponds to unstable solitons whereas the lower (solid)
branch corresponds to stable solitons. We have carried
out direct numerical simulations which con6rmed that
this statement is correct. The same result follows &om
the analysis of the growing modes in the equations lin-
earized around the corresponding soliton solution. Thus
we reveal that the parametric (2+1)D solitons of the fam-
ily shown in Fig. 1 are unstable provided o. & n „=0.38
[at 0' = 2.0 in Eqs. (2)], but stable otherwise. It is impor-
tant to note that there is a threshold value Q,„=Q(n, „)
of the normalized energy Q which should be exceeded
to generate such (2+1)D solitons (see Fig. 2), i.e. , in
fact, to observe self-trapping of light beams due to solely
parametric interactions.

For unstable solitons which exist for n & o..„=0.38,
small perturbations initially grow exponentially fast, but
later nonlinear eKects become important. To analyze the
nonlinear regime of the instability development we have
carried out direct numerical modeling analyzing the evo-
lution of slightly perturbed solitons with the values of o.
which belong to the unstable (dashed) branch shown in
Fig. 2. We have found that there are generally two very
diferent scenarios of unstable soliton evolution. "Nega-
tive" small initial perturbations (which slightly decrease
the energy Q of an unperturbed soliton) lead to the fast
decay and disintegration of two-wave solitons [see Fig.
3(a)]. For "positive" small initial perturbations (which
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FIG. 2. Renormalized Hamiltonian H vs energy Q cal-

culated at o = 2 for the family of (2+1)D solitons pre-
sented in Fig. 1. Solid branch corresponds to stable solitons
(o. ) o., —0.38) and dashed branch to unstable solitons.
Numbers and open circles show the corresponding values of
n. Filled circle at n = 1 indicates the particular case consid-
ered in [5].
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FIG. 3. Two scenarios of the evolution of slightly per-
turbed unstable solitons at n = 0.3. The maximum of the
6rst harmonic amplitude is shown by the solid curve and the
maximum of the second harmonic amplitude is shown by the
dashed curve. (a) The initial perturbation slightly decreases
the energy q of the unperturbed soliton. (b) The initial per-
turbation slightly increases the energy Q of the unperturbed
soliton.

slightly increase the energy Q of an unperturbed soli-
ton) the initial exponential growth of the amplitudes
of both harmonics saturates due to nonlinearity and fi-
nally large in-phase oscillations of the amplitudes of the
tw~ components are observed. These oscillations are ac-
companied by periodic beam compressions with a very
small amount of radiation emitted [for the case shown
in Fig. 2(b) Q(( = 600) ) 0.999Q(( = 0)]. The large-
amplitude beats of two harmonics are observed around
certain averaged amplitudes m and 6 which, as can
be easily checked with the help of the dependencies pre-
sented in Fig. 1, correspond to a stable (2+1)D soli-
ton. Indeed, for the case shown in Fig. 3(b) we have
Co 2.53 and 6 —2.19 which correspond to the ef-
fective a 0.49 () 0.38). The detailed analysis of such
"oscillating optical solitons" will be presented elsewhere
for both (1+1)- and (2+1)-dimensional problems.

We would like to note that recently multidimensional
parametric solitons have been discussed by Hayata and
Koshiba [5] where an approximate soliton solution has
been found with the help of a Hartree-type ansatz for
certain relations between the system and solution pa-
rameters. Our simple analysis indicates that the case
discussed in [5] corresponds to the particular point n = 1
(see Fig. 2) of the soliton family found in this work. As
can be seen &om the stability analysis, this value of o.
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does correspond to stable solitons of the model (2) at
0 = 2.0 as was correctly pointed out in [5].

Experimental verification of (2+1)-dimensional self-
trapping of light beams in y~ ) materials and parametric
spatial solitons can be based on the conventional method
of phase-matched SHG, similar to the recent experimen-
tal observation of (1+1)D solitons in LiNbos waveguides
[23]. Because the (2+1)D parametric spatial solitons of
circular symmetry have been shown to exist, being sta-
ble in a wide region of the parameters of the system (2),
they can be generated by launching a monochromatic
Gaussian beam in the direction of the phase matching

to generate a second-harmonic beam. In the low-power
regime, this leads to standard SHG in a bulk medium;
however, above a certain power threshold, one can ex-
pect to observe mutual self-trapping of the fundamental
and second. -harmonic beams, similar to that recently re-
ported in numerical simulations [16). The results of the
stability analysis presented above also give a simple suf-
ficient condition for the existence of stable (2+1)D soli-
tons: Ak & 0, i.e. , n(cu) & n(2~).

In general, the system (2) is not integrable and it does
not possess translational (Galilean) invariance. However,
we note that Eqs. (1) [and Eqs. (2) at cr = 2] have the
property of Galilean invariance and moving solitons can
be obtained by means of the simple gauge transformation
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where R = (X,Y) is the transverse coordinate and the
"velocity" parameter V = (Vx. , Vv ) characterizes the
beam displacement in the transverse plane. Using this
property we investigate numerically collisions between
two (2+1)D solitons of circular syinmetry in the frame-
work of Eqs. (2). In particular, we reveal that these
collisions depend strongly on the initial relative phase
between the solitons, and two examples of such collisions
are presented in Figs. 4(a) and 4(b) in the form of con-
tour plots. The corresponding evolution of maxima of
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FIG. 4. Collisions of (2+1)D solitons of equal amplitudes
(at o. = 4) for the initial relative phase (a) P = 0 and (b)
P = 7r/2. Only the first harmonic is shown.

FIG. 5. The same as Fig. 4, but for the dynamics of the
soliton amplitude maxima of the first (solid curves) and sec-
ond (dashed curves) harmonics.
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both soliton amplitudes for the first and second harmon-
ics is shown in Figs. 5(a) and 5(b), respectively. When
the relative phase of two colliding solitons is zero, the
solitons attract each other and finally fuse into a single
(2+1)D solitoii of larger amplitude [see Figs. 4(a) and
5(a)]. The amplitude of this "fused soliton" oscillates
similarly to that shown in Fig. 3(b). However, when
the relative phase of two colliding solitons is vr/2, the
interaction between them is repulsive, and both solitons,
after exchanging some energy, still survive in the collision
as shown in Figs. 4(b) and 5(b). However, the soliton
amplitudes after the collisions also oscillate. Such phase-
dependent collisions of two (2+1)D beams can be useful
for soliton-based switching in a bulk y~ ~ medium.

In conclusion, we have shown that the self-trapping
of light beams in a diKractive y~ ~ medium leads to the
existence of a family of two-wave (2+1)D solitons of cir-
cular symmetry which have been shown to be stable in

a physically important region of parameters: o. = 2,
0.38 ( n ( oo (i.e. , near n = 4 which corresponds to
exact phase matching between the harmonics). The sta-
bility of these sohtons has been determined by analyzing
the diagram II(Q), and has been verified by direct nu-
merical simulations and by investigating the instability
mode evolution of the corresponding linearized problem.
We have also analyzed collisions between the (2+1)D soli-
tons, which have been found to be strongly phase depen-
dent and, in some cases, nondestructive. The approach
and results obtained can be readily applied to other mod-
els of diferent physical context where resonant paramet-
ric interactions between waves are generated by quadratic
nonlinearities.
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