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The concept of the classical-like Wehrl entropy is shown to be a very sensitive and informa-
tive measure describing the time evolution of a quantum system. Its applications to the 3aynes-
Cummings model reveal relevant aspects of the field dynamics. The Wehrl entropy provides a
compact one-parameter description giving, among other things, a clear signature for the splitting
of the q function. It gives also a clear indication of the phase randomization of the coherent
electromagnetic field states during the interaction with a two-level atom.
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I. INTRODUCTION ~n) = D(n) ~0) = exp(nut —a*a) ~0) . (2)

Solvable models in quantum theory are so rare that
they are worth studying in their own right. Even sim-
plified they provide a clear understanding of the physi-
cal phenomena involved and can be useful in controlling
various approximations indispensable for the treatment
of more realistic cases. In quantum optics, the Jaynes-
Cummings model (JCM), where a single two-level atom
is resonantly coupled to a single mode of the quantized
electromagnetic Geld of a lossless cavity, is probably the
best example of this sort [1—3]. In the dipole and rotat-
ing wave approximations, the dynamics of this model is
governed by the Hamiltonian

II = h —o.s + Grata + hA(ato. + ao.+),
2

where the boson operators a and at are the annihilation
and creation operators of the electromagnetic Geld and A

is a coupling constant assumed to be real, without loss
of generality. Operators o, (i = 3, +) are the Pauli ma-
trices. In the following we set h = 1 for convenience.

In spite of its apparent simplicity, the JCM ex-
hibits a quite complicated behavior and fully quantum-
mechanical efFects such as the vacuum Rabi oscillations,
sub-Poissonian statistics, and squeezing of the radiation
field (see, e.g. , [2,3] and references therein). The JCM
is also an important ingredient of the micromaser theory
and, because of the recent progress in experiments with
single Rydberg atoms in high-Q micromaser cavities, it
is now possible to test theoretical predictions with great
accuracy [4]. Many details of the JCM dynamics strongly
depend on the initial conditions, i.e., on states in which
the field and the atom are prepared at the beginning. It
is interesting to note that most of the above-mentioned
nonclassical effects are particularly transparent when the
field is initially prepared in a coherent state [5]

Coherent states are known to be as close as possible
to classical states: quantum Huctuations are minimal in
these states and equal to those of the vacuum. Just in
this case we have very striking collapses and revivals of
the atomic inversion and the state preparation effect by
the quantum apparatus [6]. Also squeezing of quantum
fIuctuations of the quadrature operators can be observed
when the field is initially in a coherent state. Moreover,
the squeezing increases with the increasing coherent com-
ponent of the initial electromagnetic field [7]. In contrast,
if the field is prepared in a photon-number state (Fock
state), being an eigenstate of the photon-number opera-
tor N, the inversion exhibits a completely periodic behav-
ior. The latter is equivalent to that of the mean photon
number of the radiation Geld, as the operator N+ 2o3 is
the constant of motion. Although the atomic inversion
is very illustrative and can be easily handled, it contains
only a restricted amount of information about the system
dynamics. It was advocated by Risken and collaborators
[8—11] that the behavior of this parameter is connected
with the phase-space dynamics of the Q representation
of the radiation Geld p, namely,

Let us note that, for simplicity, we use a rescaled Q rep-
resentation as compared to that defined by Eisett and
Risken in Ref. [10]. In the case of an initially inverted
atom they observed that the Q representation splits into
two parts rotating in opposite directions. They found
that revivals occur at the same time when these two
parts collide. Matsuo [12] investigated the Q functioii in
even more detail. He found that this function can be di-
vided into clockwise, counterclockwise, and nonrotating
terms. It happens that just the last term is closely con-
nected with properties of the atomic inversion: it appears
when the inversion oscillates and vanishes during collapse
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Sq(t) = —Tr[p(t) ln p(t)] (4)

and the Shannon information entropy for the photon-
number distribution [17]

SI = —) p(n;t) In@(n;t),
n=o

times. The infj.uence of the initial atomic state on the
splitting of the Q function has also been investigated:
atomic coheren. ces can cause asymmetrical splitting [12].
In fact, it is possible to suppress the splitting completely
by the proper choice of the initial atomic states [13].

The Q representation, when known as an analytical
function, contains all information about the dynamics of
the electromagnetic field in the 3CM, being completely
equivalent to the density operator p(t). From the knowl-
edge of the Q function we can recover all matri~ elements
of the density operator in an orthonormal basis provided,
e.g. , by the photon-number states [14]. It is, however,
rather complicated to use it in practice: for careful mon-
itoring of the time evolution of a quantum system we
would need a real function of two variables (or a three-
dimensional picture) for any time moment t. There are
no doubts that the existence of a reasonably simple pa-
rameter that nevertheless still contains enough informa-
tion to display many of the rich manifold of nontrivial
features of the system is desirable.

It is the main objective of this paper to show that
there i8 indeed an interesting single quantity, namely, the
Wehrl entropy [15], which contains in a condensed, one-
parameter form essential information about the field dy-
namics. We show that this entropic parameter, first in-
troduced as a classical entropy of a quantum state, gives
additional insight into the Geld dynamics, as compared
to other entropies. It will be clearly seen below that
the Wehrl entropy is completely difFerent &om the other
well-known entropic concepts such as, e.g. , the quantum-
mechanical von Neumann entropy [16]

the von Neumann entropy, and the Shannon information
entropy (in some cases the last two entropies are equal
to each other). The usefulness of the Wehrl entropy as
a compact but nevertheless informative one-parameter
measure describing the field dynamics is clearly demon-
strated. We conclude in Sec. IV with some remarks and
comments.

II. WEHRL ENTROPY

In full analogy to the classical entropy in phase space,
the Wehrl entropy is defined as

Sg (t) = —— Q (n, n'; t) ln Q(o. , n*; t) d a (6)

There are important reasons that a classical phase-space
probability distribution function is replaced in the above
expression just by the Q function of the radiation field
and not by other quasiprobabilities. It is known that
there exist many different quasiprobability distribution
functions over quantum-mechanical phase space [19].
They are closely related to the existence of different oper-
ator orderings of the noncommuting operators in quan-
tuin mechanics. The Wigner function [20], connected
with the symInetrical ordering, is known to be very useful
in many branches of physics, but it can take on negative
values. The Glauber-Sudarshan P representation of the
density operator [5,21], connected with the normal order-
ing, is singular for relevant pure states such as Fock states
[24] and can take on negative values too. Having many
advantages, e.g. , providing a formal equivalence between
classical and quantum coherence theories [22,23], it can-
not be used to define entropy. In contrast, the Q repre-
sentation is always a positive and well-behaved function.
It is normalizable

where p(n;t) = (n~p(t)~n). Both entropies (4) and (5)
were extensively used to study the field dynamics of
the JCM [18], but both have some deficiencies as com-
pared to the Wehrl entropy: the von Neumann entropy
measures the purity of quantum states, being difFer-
ent from zero only for mixed. states. The Shannon en-
tropy for the photon number uses only diagonal elements
p(n;t) = (n~p(t)~n) of the density operator in the Fock
basis and contains no phase information, although it can
provide some useful information about the behavior of
the photon-number distribution.

This paper is organized as follows. In Sec. II we in-
troduce the concept of the Wehrl entropy and present its
basic properties, including the Wehrl-I. ieb inequality and
another inequality that gives an interesting relationship
between the Wehrl entropy and the von Neumann en-
tropy. In Sec. III the time evolution of the Wehrl entropy
in the Jaynes-Cummings model is studied in some detail.
Different initial states of the field and the atom are con-
sidered. The dynamical behavior of the Wehrl entropy is
compared to the time evolution of the atomic inversion,

)t d 0!=1)

but it does not possess correct marginal properties im-
posed on any distribution pretending to be a true phase-
space probability distribution in quantum mechanics
(see, e.g. , [19] and references therein). Indeed, the Q
function gives broader marginal distributions than actual
quantum-mechanical expressions [25]. Therefore it is still
only a quasidistribution. Despite this, it has an appeal-
ing physical meaning in the case of the so-called simul-
taneous measurements of noncommuting quantities: un-
der certain conditions, the Q function can be interpreted
as the joint probability distribution for the simultane-
ous (noisy) measurements of the two field quadratures
[26—28]. In this context, the Wehrl entropy can be inter-
preted as being an information measure for such a joint
measurement.

I.et us note that the Wehrl entropy cannot be nega-
tive. It follows from the properties of the Q represen-
tation, namely, from the fact that 0 & Q(o.) & 1 and
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&om the normalization condition (7). The Q function
can never be so concentrated as to make S~ negative.
On the contrary, classical distributions can be arbitrarily
concentrated in phase space and classical entropies can
take on negative values. They may even tend to —oo if
the distributions tend to b functions. Moreover, Wehrl
[15] proved the even stronger relationship

S (t) &S~(t)

which establishes a connection between the Wehrl and
the von Neumann entropies of a given state.

However, the most important property of this classical-
like entropy is perhaps the inequality

S~(t) ) 1,

first conjectured by Wehrl [15] and then proved by Lieb
[29]. The equality holds if and only if the considered
state p(t) is a coherent state. It is straightforward to
check that for coherent states S~ ——1. The proof that
it corresponds to the global minimum is, however, rather
complicated and requires some nontrivial background in
functional analysis. The Wehrl entropy clearly distin-
guishes coherent states and has been recently used by
one of the present authors as a measure of the statistical
properties of quantum states of light [30]. Indeed it is
a good measure of the strength of the coherent compo-
nent in a given quantum state, i.e., it measures how much
"coherence" a given state has. As such it can be used to
classify quantum states with respect to their statistical
properties. We will see in the following that also the time
evolution of the Wehrl entropy gives some insight into
important details of the field dynamics governed by the
Hamiltonian (1). The Wehrl entropy clearly indicates the
times of the revivals of the atomic inversion. Moreover,
it also gives indication of other interesting problems such
as, e.g. , randomization of phase due to the spontaneous
emission.

First, we want to elucidate additional basic features
of the Wehrl entropy from which its usefulness for the
description of the dynamics in question becomes evident.
We will study the change the Wehrl entropy undergoes
in the processes of spreading (expansion) and splitting of
the Q function.

To study the efFect of spreading of the Q representation
on the Wehrl entropy in its simplest form, we choose the
Q function as a Gaussian centered at the origin of the
phase space

(
Q(n, n*) = —exp

Ia a (10)

From this formula it becomes obvious that spreading of

where the (positive) constant o, is bounded according to
the inequality a & 1. The equality sign corresponds to
the vacuum state. Since it is a special case of the coherent
state, its Wehrl entropy equals 1 (see above). For the Q
function (10) the Wehrl entropy is readily calculated to
be

S~ ——1+ lna.

the Q function is reffected by a smooth increase of Siv.
To study the effect of splitting, we start from a Q func-

tion that is nicely localized. in a certain phase-space re-
gion. Let us now assume that this Q function splits, as
a result of a certain interaction, into N similar parts Q,
(i = 1, 2, . . . , N) well separated Rom each other and be-
ing all of the same shape as the initial Q representation.
Such behavior can be observed, e.g. , during Schrodinger
cat state formation in the Kerr media [31]. Before split-
ting, the Wehrl entropy is given by Eq. (6), while after
splitting it takes the form

N

Sw = ——) f Q;(w, n')1nQ;(w, w')d'w,
i=1

(12)

where the assumption of separation is used. It is geomet-
rically evident that the integrals in the above equation
are all equal. Their value is readily found, from the re-
quirement of correct normalization of the Q function, to
be given by Eq. (6) with Q substituted by ~Q

S~ = — Q, (n, n*)[lnQ;(n, n*) —in&]d'n

1 1= —S~ + —in%, (13)

where the normalization condition (7) has been observed.
Hence Eq. (12) leads us to the simple result

Sgr ——S~ + in%, (14)

which ind. icates that the Wehrl entropy exhibits a jump
whose height is simply given by the logarithm of the num-
ber of parts into which the Q function splits (without
changing its shape).

So we can state that the Wehrl entropy exhibits two
basic features: diffusion of the Q function, in the sense of
spreading over larger regions in phase space, gives rise to
a monotonic, smooth increase of S~, whereas splitting
of the Q function leads to a jumplike increase of Siv. Al-
though the above-mentioned effects will not appear in the
pure form in the JCM, we will Bnd some more involved
counterparts of both types of these processes reflected in
the Wehrl entropy when studying the field evolution in
this model.

III. ILLUSTRATIVE EXAMPLES

In this section we investigate the dynamics of the
Wehrl entropy of the electromagnetic field in the JCM
for different initial conditions. Especially striking and
informative behavior is observed when the field is ini-
tially in a coherent state, but also in other cases we find
some interesting features.

It is well known that the JCM can be solved analyti-
cally with arbitrary initial conditions. Let us assume that
at t = 0 the atom is prepared in an arbitrary pure state,
i.e. , as a certain coherent superposition of the ground
state ~g) and the excited state ~e)
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IA) = cos 8le) + e '~ sin 8lg). 1.0

We assume that the density operator describing the
whole system at time t = 0 is decorrelated, i.e., it can
be written as a direct product of the initial density op-
erators for the field and the atom, respectively,

S(0) = ~~(0) I&)(&l.
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The time evolution of the field density operator p~(t) is
then described by ~ - rgb — ~ 0 +v ~egypt Tel ~

py (t) = Cpy (0)Ct + Sjp-(0) St, (17)
2.5

0 50 100
t

150 200

where the time-dependent operators C and S are given
by

sin AtV'ata
C = cos 8 cos (At V'aat ) —i e '~ sin(8) a

v'ata

(18a)

0
~ M

w0

M
1
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sin AtgaatS = e'~ sin 8 cos (Atv at a) —i cos(8) at
gaat

(18b)

In the above expressions we corrected a misprint over-
looked in the analogous expressions in Ref. [12]. The Q
representation of the field is siinply given by Eq. (3) with
p(t) replaced by p~(t).

3.5
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A. Field initially in a coherent state 0.0
0 50 100

t
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In this subsection we assume that the field is at the
beginning in a coherent state Ino)

,--,'I .I

n=0 n'

The parameter no is assumed to be real. It causes no loss
of generality because any phase of the field can simply be
added to the atomic phase P. The mean photon number
is then given by n = no.

First, let us assume that the atom is initially prepared.
in the excited state le). This case was extensively stud-
ied and there are many interesting results available, es-
pecially in the limit of the large mean photon number
[8—11,13]. To describe the field evolution it is very useful
to investigate the phase-space behavior of the Q represen-
tation. In the considered case, the initial well-localized
Gaussian Q function splits into two parts rotating clock-
wise and counterclockwise. Their maximal separation
takes place at half the revival time. Then they start to
collide and overlap again at the revival time. As the
Wehrl entropy (6) is defined using the Q representation,
we expect that the rich dynamical properties of the latter
should somehow be seen in the behavior of the former. In
Fig. 1 we show the time evolution of the Wehrl entropy of
the field for n = 25 under the assumption that the atom
is initially fully inverted. The dynamical behavior of the
Wehrl entropy is compared to the evolution of the atomic

FIG. 1. Time evolution of the Wehrl entropy. The field
is initially in the coherent state with n = 25. The atom is
initially in the upper state. The atomic inversion, the Shan-
non information entropy, and the von Neumann entropy are
plotted for comparison.

inversion, the von Neumann entropy, and the Shannon
information entropy for the photon-number distribution.
The first eye-catching property of the Wehrl entropy is
the existence of the pronounced local minima appear-
ing in the middle of the revival times. There also are
the well-developed maxima at the times corresponding
to the beginning of the revival regions. Thus the essen-
tial properties of the atomic inversion are also exhibited
by the Wehrl entropy. The above-mentioned modulation
imposed on the systematic increase of the Wehrl entropy
indicates its sensitivity to the splitting of the Q repre-
sentation. The von Neumann entropy indicates other
aspects of the field dynamics, namely, the degree of the
purity of the field state. The first local minimum of the
von Neumann entropy, corresponding to the almost pure
state, appears approximately in the middle of the col-
lapse region. The Shannon information entropy is in this
case quite similar (qualitatively) to the von Neumann
entropy.

The sensitivity of the Wehrl entropy to splitting of the
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(22)

i.e., to the second eigenstate of the semiclassical Hamilto-
nian, rotates counterclockwise without splitting and the
Wehrl entropy again exhibits the smooth and system-
atic growth analogous to that presented in Fig. 2. All
other quantities plotted in this figure also exhibit rather
smooth behavior. The atomic inversion remains close to
zero. The von Neumann entropy also rises quite slowly.
The reason is again the same: the state (20) is the eigen-
state of the semiclassical JCM Hamiltonian and therefore
the state of the whole system remains approximately dis-
entangled for a reasonably long time. The Shannon en-
tropy changes only a little and the reason can be traced
to another property observed in Ref. [13]. In the limit of
the large (real) no, i.e., for large values of the mean pho-
ton number, the state of the Geld corresponding to the
initial atomic state ~+) can be approximated with great
accuracy by the (pure) state

1.0

0.5

0.0
0 50 100

t
150 200

FIG. 2. Time evolution of the Wehrl entropy. The Geld is
initially in the coherent state with n = 25. The atom is ini-
tially in the symmetrical superposition of the upper and the
lower levels, corresponding to the eigenstate of the semiclas-
sical Hamiltonian ~+). The atomic inversion, the Shannon
information entropy, and the von Neumann entropy are plot-
ted for comparison.

Q function is further supported by Fig. 2. As in the previ-
ous case, we plot the Wehrl entropy as well as the atomic
inversion, the von Neumann entropy, and the Shannon
information entropy. Now, however, the atom is initially
in a symmetrical coherent superposition

I+) = (le) + l~)) (20)

Under assumption of real o.o this state is one of the two
eigenstates of the semiclassical JCM Hamiltonian. As
shown by Gea-Banacloche in Ref. [13], the Q function of
the Geld does not split in this case. It forms a hump in
the phase space, which rotates clockwise. In addition to
the rotation it is difFusively deformed and squeezed, but
it does not split. Consequently, the behavior of the Wehrl
entropy is apparently di8'erent &om that observed in Fig.
l. It slowly increases without any essential modulation,

It is an example of the so-called generalized coherent
states [32—34). It is easily seen that the photan-number
distribution of the state (22) does not change in time.
Thus it is clear that the Shannon entropy calculated for
the photon-number distribution of the state p~(t) does
not change appreciably if the quality of this approxima-
tion is good enough. The considerably Hat curve describ-
ing the time evolution of the Shannon entropy shows that
for o.o:25 it is a very good approximation indeed.

Let us stress that if the amplitude o.o of the initial
coherent state is not real, the atomic states ~+) are no
longer the eigenstates of the semiclassical Hamiltonian.
In the general case of the complex no ——

~no~ exp(iv))
such eigenstates are given by the superpositions ~@~) =
exp(ig) ~e) + [g). Thus it is clear that if we start evolution
from the coherent state of the field with the complex o.o
and from the atomic state ~+), the Q representation of
the field density operator can split during the time evolu-
tion. It can be shown that this splitting is asymmetrical
[12].

The second essential feature, easily seen from Figs. 1
and 2, is the systematic loss of coherence by the radia-
tion field. It manifests itself by the saturation level of
the Wehrl entropy observed for longer times. In all cases
corresponding to the Geld prepared initially in a coher-
ent state, the Wehrl entropy stabilizes at a certain level
after a sufBciently long time and then it exhibits only
some oscillations with a relatively small amplitude. This
amplitude increases in time and for longer times we see
some additional quasiperiodic structures. The long-time
properties can be better observed in Fig. 3, presenting
the behavior of the Wehrl entropy af the field (for pa-
rameters corresponding to Fig. 1) at longer times and
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FIG. 3. Long-time behavior of the Wehrl entropy. The pa-
rameters are the same as in Fig. 1. The saturation level given
by the Wehrl entropy corresponding to the random-phase co-
herent state with n = 25 is plotted.

with higher resolution.
Since the coherence properties are very sensitive to

phase relations, this lack of coherence should correspond
to the randomization or diffusion of the phase. This
phase redistribution seems to be irreversible. The sat-
uration limit is a clear limit for chaotic behavior of the
field. Using results of Ref. [30] we find that the Wehrl
entropy saturates below the level corresponding approxi-
mately to that of random-phase coherent states, i.e. , the
mixed states described by the density operator [30,35,36]

p~(0) = exp( —~) ).„, l~)(~l.
n=O

(23)

It is seen that the probability of finding n photons is
given by the Poisson distribution, which is exactly the
same as for the pure coherent state lP) with the mean
photon number lPl = n. The Q representation of the
random-phase coherent state reads

Q(n, n*) = exp ( —lnl —n) Io(2lnl~n), (24)

where Io denotes the modified Bessel function. The
Wehrl entropy of the random-phase coherent states as
a function of the mean photon number was calculated
numerically by Orlowski in Ref. [30]. For n = 25 it is
approximately equal to 3.37. The Wehrl entropy of the
random-phase coherent state corresponding to n = 25 is
plotted in Fig. 3 to indicate the above-mentioned satu-
ration level.

It is seen from the above figures that the phase ran-
domization is practically irreversible, at least for the pe-
riods of time investigated. Let us repeat that the Wehrl
entropy enables us to estimate quantitatively the degree
of this phase randomization. The resulting states of the
field cannot be more chaotic than the random-phase co-
herent states. In particular it proves that the thermal-
ization of the coherent state during its interaction with a
two-level atom is not possible: the Wehrl entropies corre-
sponding to the thermal state with the same mean pho-
ton numbers lie highly above the saturation levels. For

example, the Wehrl entropy of the thermal state with
n = 25 is approximately equal to 4.26.

The Wehrl entropy of the field, calculated under the
assumption that the initial atomic state is l+), is al-
ways smaller than for the atom fully inverted. This is
due to the fact that it is possible to introduce additional
phase information into the system via atomic coherences.
Therefore the saturation limit of the Wehrl entropy is also
dependent on the initial atomic state. The maximum i.s
given by the random-phase coherent states.

B. Field initially in a photon-number state

n 2"
Q(n, n*; t) = cos (Attn + 1)

A.

~2( +1)
sin'() tgn+ 1) e

—
~

!'
)(n+ 1)! (26)

The Wehrl entropies plotted in Fig. 4 show the expected
behavior: oscillations between the Wehrl entropies of the
two Fock states ln) and ~n+ 1). As shown by Orlowski
[30], the Wehrl entropy for the photon-number state ln)
can by calculated analytically giving

1S~ ——1 + n + ln n! + pn —n ) -k'
k=i

(27)

where p 0.577 215 664 9 is the well-known Euler con-
stant. There is an interesting aspect of the Wehrl entropy
behavior in this case, namely, the flatness at times when
the atom tends to be in the ground state. It would be in-

2.4

2.2 /
c 20~
~ 1.8

~ 1.6
M 14

1.2
Q 1.0

0.8
0.6

0 1 2 3 4 5 6 7 8 9

FIG. 4. Time evolution of the Wehrl entropy. The 6eld is
initially in different Fock states ln): n = 0, 1, 2, 3, and 4 (from
the bottom). The atom is initially fully inverted.

If at the beginning the field is in a pure Fock state so
that py (0) = ln) (nl and the atom is in the excited state,
we get [18]

py (t) = cos (Attn + 1)ln) (nl

+ sin (Atgn + 1) ln + 1)(n + 1 l. (25)

Consequently, the Q function reads
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The Q representation of the above state has a quite sim-
ple form

Q(n, n*; t) = e ~ ' ) p„cos (At/n+ 1)

n2
sin2(Aty n+ 1)

)n+ 1

The corresponding Wehrl entropy is plotted in Fig. 6.
The numerical value of the mean photon number cho-
sen for this figure is n = 5 and the atom is initially
inverted. According to [30] the evolution of the Wehrl
entropy starts from

1.3—
0 1 2 3 4 5 6 7 8 9

S~ = 1 + ln(1 + n)

(i.e. , &om S~ —2.79) and shows a complicated behavior

FIG. 5. Time evolution of the Wehrl entropy. The 6eld is
initially in the pure one-photon state

l
1). The atom is initially

fully inverted. The atomic inversion and the von Neumann
entropy (equal in this case to the Shannon information en-
tropy) are also plotted.
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2.0
0 20 40 60 80 100

teresting to elaborate in further investigations whether it
is only a mathematical artifact or there is some physical
explanation.

If the Geld is initially in a pure photon-number state,
the von Neumann entropy and the Shannon information
entropy are always equal. Together with the atomic in-
version they show the expected periodic behavior. In Fig.
5 we plot the Wehrl entropy, the atomic inversion, and
the von Neumann entropy (equal to the Shannon infor-
mation entropy) in the case of the field prepared initially
in the one-photon state p~(0) = ll)(ll. The Wehrl en-
tropy and the atomic inversion oscillate with the same
&equency but with diferent locations of the minima and
the maxima. The von Neumann entropy oscillates with
the double &equency as compared to S~.
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C. Field initially in a thermal state
2.75

The electromagnetic Beld prepared at time t = 0 in a
thermal state is described by the density operator

2.7
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(2S)

where the initial photon-number distribution is given by
the Bose-Einstein distribution

FIG. 6. Time evolution of the Wehrl entropy. The 6eld is
initially in the thermal state with n = 5. The atom is initially
fully inverted. The atomic inversion and the von Neumann
entropy (equal in this case to the Shannon information en-
tropy) are also plotted.
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even after a short time. Also in this case the von Neu-
mann entropy is equal to the Shannon entropy all the
time. All quantities mentioned show rather complicated
and irregular behavior.

IV. CONCLUSIONS AND REMARKS

We have shown that the Wehrl entropy is a useful one-
parameter quantity, providing a compact and informative
description of the time evolution of the Geld in the JCM,
especially for the Geld being initially in a coherent state.
It is shown to be very sensitive to the phase-space dy-
namics (such as, e.g. , spreading and splitting) of the Q
representation. It extracts &om the Q function essen-
tial information about the investigated system. Other
quantities usually considered in the investigation of the
JCM, such as the atomic inversion, the Shannon informa-
tion entropy, and the von Neumann entropy [18], usually
show the rapid oscillations of the Rabi frequency with
rather large amplitude already for the relatively short
times. It makes a deeper insight into the field dynamics

less straightforward. Although the Wehrl entropy also
exhibits some oscillations of the Rabi &equency, their
amplitude is very small, even for reasonably long times.
In Fig. I these oscillations of the Wehrl entropy are prac-
tically invisible, in contrast to those easily seen for the
other quantities considered. The Wehrl entropy illus-
trates very clearly that during the time evolution the Geld
loses its coherence with the upper limit for the phase ran-
domization corresponding to the random-phase coherent
states. The observed phase redistribution seems to be ir-
reversible and we see that the Wehrl entropy saturates up
to some oscillations. We see that complete thermaliza-
tion is not possible: the limit for the chaotic behavior is
given by the random-phase coherent states. It should be
noted that this level is never reached for the time scales
investigated.

As the Wehrl entropy has been proven to be a very sen-
sitive and useful parameter to describe the phase-space
dynamics of the Geld in the JCM, we are convinced that
it can also be successfully applied to study other prob-
lems. Some of them are currently under consideration
and the results should be presently available.
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