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A general analysis of squeezing transformations for two-mode systems is given based on the
four-dimensional real symplectic group Sp(4, I). Within the framework of the unitary (metaplectic)
representation of this group, a distinction between compact photon-number-conserving and non-
compact photon-number-nonconserving squeezing transformations is made. We exploit the U(2)
invariant squeezing criterion to divide the set of all squeezing transformations into a two-parameter
family of distinct equivalence classes with representative elements chosen for each class. Familiar
two-mode squeezing transformations in the literature are recognized in our framework and seen to
form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The
need to extend the heterodyne detection scheme to encompass all of U(2) is emphasized, and known.
experimental situations where all U(2) elements can be reproduced are briefly described.

PACS number(s): 42.50.Dv, 42.50.Ar, 03.65.Fd

I. INTRODUCTION

The theoretical analysis [1] and experimental [2—4],
realization of squeezed states of radiation continue to
receive a great deal of attention. While much of the
work so far has concerned itself with single-mode situ-
ations [5,6] some analysis of two-mode states has also
been presented [7,8]. Other nonclassical effects of radi-
ation beyond second order have also received attention
in the literature [9]. More recently, a general invariant
squeezing criterion for n-mode systems has been devel-
oped by some of us elsewhere [10].

The purpose of the present paper is to study squeez-
ing transformations for two-mode systems and to develop
a classification scheme for them motivated by the above-
mentioned invariant squeezing criterion. Basic to all such
discussions is the four-dimensional real symplectic group
Sp(4, R), of real, linear, homogeneous canonical trans-
formations and the unitary metaplectic representation of
this group acting on the Hilbert space of states for a two-
mode quantum system. The structure of the noncompact
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group Sp(4, R) [and its n-mode counterpart Sp(2n, R)]
leads to a natural separation of its elements into photon
number conserving and nonconserving types. The former
give rise to a maximally compact U(2) subgroup and will
be referred to as passive; the latter are responsible for
the noncompactness of the underlying group and will be
referred to as active. This group-theoretical framework
gives us an unambiguous way of de6ning precisely the
family of squeezing transformations; they are the active
elements of Sp(4, R) and they do not form a subgroup.
The action of U(2) on the set of squeezing transforma-
tions by conjugation leads to a natural equivalence rela-
tion, leading to the emergence of equivalence classes and
convenient representative elements as well. In studying
the physical properties of a state subjected to squeezing,
therefore, we are able to isolate the dependence on intrin-
sic squeezing parameters and separate them &om other
passive factors. As might be expected, the single squeeze
factor encountered in the studies of single-mode states
gets enlarged here to two independent intrinsic squeeze
factors; it turns out that the two-mode squeezing trans-
formations so far studied in the literature form a very
small subset of all the independent available possibilities.

The material in this paper is arranged as follows. Sec-
tion II sets up the basic kinematics for two-mode systems.
The variance matrix for a general state and its change
under Sp(4, R) are derived. After identifying the maxi-
mal compact or passive U(2) subgroup of Sp(4, R), the
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II. SYMPLECTIC GROUP FOR TYCHO MODES
AND THE SQUEEZING CRITERION

We consider two orthogonal modes of the radiation
field, with annihilation operators a~, j = 1, 2, and corre-

sponding creation operators at. These two modes could,
for example, be two different &equencies for the same or
different propagation directions and polarizations, two
different propagation directions at a common &equency,
two difFerent polarization states of plane waves degener-
ate in frequency and direction of propagation, etc. We
arrange these operators in the form of a four-component
column vector

((c) (((c))

ay
a2
at1

ta2

a = 1,2, 3, 4. (2.1)

The superscript (c) indicates that the entries here are
complex, i.e., non-Hermitian, operators. For a discus-
sion of quadrature squeezing, however, we need to also
deal with the Hermitian quadrature components of these
operators. Therefore we define another column vector (
with four Hermitian entries as

(&-) =

Ep. )

(a' + a, )
2

g(c) —ng

n = (n-')t

pi = (ai a, ),
2

—i ((c)

(10 i 0

1 0 —i 0
0 1 0 —i

(2.2)

U(2) invariant squeezing criterion for two-mode systems
is discussed. Section III introduces the polar decompo-
sition theorem for general elements of Sp(4, R), which
then leads to a precise definition of squeezing transfor-
mations: These are single exponentials of linear combi-
nations of the noncompact generators. We then proceed
to break up the set of all squeezing transformations into
equivalence classes under U(2) actioii. We find that these
classes form a continuous two-parameter family describ-
able by points in an octant in a two-dimensional plane.
The families of Caves-Schumaker transformations and es-
sentially single-mode transformations correspond to one-
dimensional lines bounding this octant and so are of mea-
sure zero. Section IV applies our formalism to two-mode
squeezed coherent and thermal states. In Sec. V we see
how the heterodyne detection scheme fits into our anal-
ysis. We argue that it is necessary to experimentally
realize all elements of the U(2) subgroup of Sp(4, R); the
heterodyne scheme handles only a one-parameter subset
of U(2). Two examples of two-mode situations, where
all elements of U(2) can be experimentally realized, are
briefIy described. Section VI contains some concluding
remarks.

[(., rb] = 'P...
[((c) ((c)] p

0 0 1 0
0 0 0 1

—1 0 0 0
0 —1 0 0)

(2.3)

A general real linear homogeneous transformation on
the q's and p's preserving the commutation relations is
described by a 4 x 4 real matrix S acting as

(' = ).S b(b
6

SPS =P. (2 4)

This is the defining property for the elements of the group
Sp(4, R).

We denote the Hilbert space on which ( and ((') act
by 'R. Since the Hermiticity properties and commutation
relations of the ( are maintained by the transformation
(2.4) for any S E Sp(4, R), and since the ( act irre-
ducibly on 'R, it follows &om the Stone —von Neumann
theorem [11] that it should be possible to construct a
unitary operator M(S) on 'R implementing (2.4) via con-
jugation

S c Sp(4, R): ) S b(b = M(S) ( M(S),

~(S)t M(S) = 1 on Q. (2.5)

The generators of the operators M(S) are the ten in-
dependent Hermitian quadratic expressions in a~ and
a [12]. We define the four photon-number-conserving

2
generators Q, J„,r = 1, 2, 3, and six photon-number-
nonconserving generators K„,L„,r = 1, 2, 3, as

1 1
Q = —(N + 1) = —(aiai + a2a2 + 1);

2 2

J, = —(a,a, + a,a, ),t t
2

1, = —'(a, a, —a,a, ),
Z t t
2

Js ———(a,ai —a, a2);t t
2
1 t2 2 t2 2Ki ——(ai + ai —ag —a2),4

K2 = ——(a, —a, + a2 —a2),
Z t2 2 t2 2

4

Ks ————(a,a, + a,a, );t t
2

t2 2 i2 2Li = -(ai —ai —a. + a.)

L2 = —(ai +ai+a2 +a2),t2 2 t2 2

4

I., = ——'(a, a, —a,a, ).t
2

(2.6a)

(2.6b)

(2.6c)

(2.6d)

The canonical commutation relations can now be written
either in terms of ( or in terms of (('),
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They obey the commutation relations

[J„,1,]
[Q, J„]

[J„,K, or L, ]

[Q, K„k iL, ]

[K„K,]
[K„,L, ]

&&V StJt)
0

ie„.,(K, or I.,),
~(K„+iI„);
[L„L,] = —ie„,J„
ih„,Q.

(2.7a)

(2.7b)

(2.7c)

The elements of U(2) and their effects on a~, at are

U = X —iY c U(2) -+ S(X,Y)

I
e Sp(4, IR),

(X
( —Y' X)

Ll(S(X, Y))a,M(S(X, Y)) = ) Ub~ab . (2.8)

These operators H(S(X, Y)) are generated by Q and J„.
On the photon-number-nonconserving generators K„,L„
the effect is

e' K+iL e ' =e+' K+iL
e' ' (K„orL„)e ' ' =R,„(n)(K, orI, ),

1 —cos 0!R, (n) = h„cos n + n„n, + &esto't
sin cl

(2.9)

Now we consider physical states of the two-mode sys-
tem, the action of Sp(4, IR) on them, and the statement
of a suitable squeezing criterion. Let p be the density
operator of any (pure or mixed) state of the two-mode
rad. iation Beld. . With no loss of generality we may assume
that the means Tr (p( ) of ( vanish in this state. (Any
nonzero values for these means can always be reinstated
by a suitable phase-space displacement, which has no ef-
fect on the squeezing properties. ) Squeezing involves the
set of all second-order noise moments of the quadrature
operators q~ and p~. To handle them collectively we de-

fine the variance or noise matrix V for the state p as

V = (Vb),
1

V b = Vb =
2

Tr (p((, (b)),

(( (b) =( (b+(b( (2.10)

This definition is valid for a system with any number of
modes. For a two-mode system it can be written explic-
itly in terms of q~ and p~ as

(qi)
(qiq2)

—,'((qi »))
{qip2)

{qiq2)
(q')

(q2pi)
—,'((q2 »))

-'{(qi pi))
(q2J i)
(pi)

(Pip2)

(qis. )
—.'((q2»))

(pa 2)
{pl} )

(2.11)

This matrix is real symmetric positive deBnite and
obeys additional inequalities expressing the Heisenberg
uncertainty principle of quantum mechanics [10].

When the state p is transformed to a new state p' by
the unitary operator M(S) for some S 6 Sp(4, R), we see
easily Rom Eqs. (2.5) and (2.10) that the variance matrix
V undergoes a symmetric symplectic transformation

S c Sp(4, R): p' = Q(S) p M(S)
mV'=SVS (2.12)

This transformation law for V preserves all the properties
mentioned at Eq. (2.11).

As discussed in detail elsewhere [10,13], for a mul-
timode system it is physically reasonable to set up a
deBnition of squeezing that is invariant under the sub-
group of passive transformations of the full symplectic
group. For the present case of two-mod. e systems, we ev-
idently need a U(2)-invariant squeezing criterion. That

is, our definition must be such that if a state p with
variance matrix V is found to be squeezed, then the
state U(S(X, Y)) p U(S(X, Y)) with variance matrix
V' = S(X,Y) V S(X,Y) must also be squeezed, for
any U = X —iY E U(2).

Conventionally a state is said to be squeezed if any
one of the diagonal elements of V is less than 1/2. The
d.iagonal elements correspond, of course, to Quctuations
in the "chosen" set of quadrature components of the sys-
tem. The U(2)-invariant definition is as follows: the state
p is a quadrature squeezed state if either some diagonal
element of V is less than 1/2 (and then we say that the
state is manifestly squeezed) or some diagonal element of
V' = S(X,Y) V S(X,Y) for some U = X —iY E U(2)
is less than 1/2:

p is a squeezed state ~ (S(X,Y) V S(X,Y) ) (—T 1
2

for some a and some X —iY E U(2). (2.13)
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That is, running over all S(X,Y) is the same as running
over all possible sets of quadrature components. We may
say that since any element of U(2) passively mixes the
two modes, the appropriate S(X,Y') that achieves the
above inequality for some a (assuming that the given
V permits the same) just chooses the right combination
of quadratures to make the otherwise possibly hidden
squeezing manifest.

To implement this definition in practice, it would ap-
pear that even if a state is intrinsically squeezed, we

may have to explicitly find a suitable U(2) transforma-
tion that when applied to V makes the squeezing man-
ifest. This, however, could be complicated. Here the
point to be noticed and appreciated is that diagonaliza-
tion of a noise matrix V generally requires a real orthog-
onal transformation belonging to SO(4) that may not lie
in U(2) = O(4) 0 Sp(4, R). It is therefore remarkable
that, as shown in [10], the U(2)-invariant squeezing cri-
terion (2.13) can be expressed in terms of the spectrum
of eigenvalues of V, namely,

II = S 9 Sp 4, R S = S = positive definite

c Sp(4, R). (3.1)

We shall hereafter denote elements in II by P, P', . . .. The
decomposition mentioned above is then

S c Sp{4,R): S = P S(X', Y),
P e II, X —iY c U(2), (3.2)

with both factors being uniquely determined by S. For
the operators U(S) we have the corresponding statement

M(S) = M(P) Q(S(X, Y)),

It is a well known fact [14—16] that each matrix S C
Sp(4, R) can be decomposed, globally and uniquely, into
the product of two particular kinds of Sp(4, R) matri-
ces by a polar decomposition: one factor belongs to the
subgroup U(2), the other to a subset II defined in the
following way:

p is a squeezed state

1
E(V) = least eigenvalue of V ( —.(2.14)

2

That is, while the diagonalization of V is in general not
possible within U(2), which is a proper subgroup of O(4),
any one particular (and hence the smallest) eigenvalue of
V can be made to become one of the diagonal elements
of V transformed by an appropriate S(X,Y). In other
words, any one quadrature component can be taken to
any other quadrature component by a suitable element
of U(2). We shall hereafter work with the U(2)-invariant
squeezing criterion (2.13) and (2.14).

U(P) = exp i(real linear combination of K and I,)

U(S(X, Y))

= exp i(real linear combination of q and J) . (3.3)

We may now identify precisely the most general squeez-
ing transformation within the Sp(4, R) framework, as
the operator U(P) characterized by two numerical three-
dimensional vectors k and l appearing as coefBcients of
K and I in the exponent

III. CLASSIFICATION OF TWO-MODE
SQUEEZING TKANSFORMATIONS

M(k, l) = exp i(k K+ l I) (3.4)

We have shown in the preceding section that the
group Sp(4, R) of linear canonical transformations con-
tains two kinds of elements: passive total photon-
number-conserving elements belonging to the maximal
compact subgroup U(2) and active noncompact elements
lying outside this subgroup, which do not conserve to-
tal photon number. It is clear from the U{2)-invariant
squeezing criterion (2.13) and (2.14) that the former
elements cannot produce squeezing. This is because
the corresponding changes in the variance matrix V' =
S(X,Y) V S(X,Y), being similarity transformations,
preserve the eigenvalue spectrum of V; hence E(V) & 1/2
implies E(V') & 1/2 and conversely for every S(X,Y).
The noncom@act elements of Sp(4, R), on the other hand,
have the potential to produce a squeezed state start-
ing &om a nonsqueezed state. Thus they may be called
squeezing transformations. The following questions then
naturally arise: what are the really distinct squeezing
transformations that are not related to each other by just
passive transformations, and how can they be invariantly
labeled or parametrized?

Thus we reserve the name squeezing transforvnations for
these elements of II within Sp(4, R), with M(S) repre-
sented by a single exponential factor.

We may relate the decomposition (3.3) to a gen-
eral quadratic Hamiltonian quite directly. Any such
Hamiltonian containing both photon-conserving and
-nonconserving terms with possibly time-dependent coef-
ficients would lead via the Schrodinger equation to a uni-
tary finite time evolution operator that can be uniquely
decomposed into the product form (3.3). Thus integra-
tion of the Schrodinger equation leads in general to a spe-
cific passive factor and another specific squeezing trans-
formation. In the case where the Hamiltonian is time
independent and a combination only of the generators
K and L, this evolution operator is already of the form
M(P).

Since we have a U(2)-invariant squeezing criterion, as
we have seen, elements of U(2) have no effect on the
squeezed or nonsqueezed status of any given state. This
means that the U(2) transform, by conjugation, of a
squeezing transformation is another squeezing transfor-
mation that should be regarded as equivalent to the first
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one. It is clear that, in any case, any equivalence relation
among squeezing transformations as defined by us above
should be based on processes that take one squeezing
transformation to another.

Now &om the commutation relations (2.7b) we can
see that the squeezing transformations u(k, /) defined in
Eq. (3.4) behave as follows under conjugation by elements
of U(2):

e"qu(k, /).
(k' )

/

e' u(k, /)e
k„" or l„"

u(k', / ),
( cos0 —sin0 l ( k l
I sine cos0 )
u(k", /'),
R„,(8) (k, or /, ).

(3.5a)

(3.5b)

(ik iF&
M(k, /) =

i

q k / /. / )
(3.6)

This is a real, symmetric positive semidefinite matrix.
With respect to U(1) action, we see from Eq. (3.5a)
that M(k, /) undergoes a similarity transformation by the
rotation matrix of angle 0:

Here we have listed separately the efFects of U(l) and
SU(2) within U(2) on the squeezing transformations. The
questions raised at the start of this section can now be
posed more precisely: if the set of squeezing transfor-
mations u(k, /) is separated into distinct nonoverlapping
equivalence classes based on the U(2) action (3.5), how
can we conveniently choose U(2)-invariant parameters to
label these classes and then pick a convenient representa-
tive element &om each class? We answer these questions
in this sequence.

It is clear that we need to construct a complete set of
independent expressions in k and I, invariant under both
U(1) and SU(2) actions (3.5a) and (3.5b). We begin by
defining the matrix M of scalar products among k and I,
which is then SU(2) invariant:

k = (O, a, o), / = (6, 0, 0), a ) 6 (3.S)

(A further reason for this choice will emerge shortly). Qq
and 82 can now be evaluated in terms of a, 6 to obtain
the relations

Qg(k, /) = a 6,
82(k, /) = a + 6,

a & 6 & 0, (a, 6) g (0, 0). (3.10)

With this parametrization we can now say that there
is a twofold infinity of distinct equivalence classes of
squeezing transformations for two-mode systems, each
class corresponding uniquely and unambiguously to a
point (a, b) in the octant a ) 6 & 0 in the real a6-
plane, excluding the origin. Different points in the octant
correspond to intrinsically distinct equivalence classes.
Within an equivalence class determined by a point (a, 6),
of course, one can connect different squeezing transforma-

+

tions u(k, / by conjugation with suitable U(2) elements.
Given a squeezing transformation P 6 II & Sp(4, IR) its
class (a, 6) is determined by solving the equations

a —6 a+6
Tr (P) = 2 cosh + cosh

2 2

we see &om its U(1) transformation law (3.7) that by a
suitable choice of' the angle 0 we can arrange the trans-
formed matrix M(k', /') to be diagonal and in the case of
unequal eigenvalues to place the larger eigenvalue in the
first position. This means that in each equivalence class
of squeezing transformations there certainly are elements

u(k, /) for which k / = 0 and ~k) ) ~/ . This still leaves
us the freedom of action by SU(2). We may now exploit
this freedom to put the (mutually perpendicular) vectors
k and l into a convenient geometrical configuration. A
look at the forms of the noncompact generators K and L
in Eq. (2.6) suggests that we choose k and / as follows:

M(k', / ) = R(0) M(k, /) R(0)

~(
cos0 —sin0

&~

0 0)' (3.7)
Tr (P') = 2 cosh(a —6) + cosh(a + 6) (3.ii)

One now sees that there are two independent U(2) in-
variants that can be formed

Qq (k, /) = det M(k, /) = ~k h /

92(k, /) = TrM(k, /) = ~k~ + ~/ (3.8)

and it is easily checked that there are no other invariants
independent of these.

Next let us tackle the problems of finding convenient
parameters and representative squeezing transformations
for the U(2) equivalence classes, one for each class. We
see from Eq. (3.8) that if 8q & 0 (i.e. , Bq g 0), then
the two vectors A: and l are both nonzero and nonparal-
lel, while if Bq ——0 they are parallel (and one of them
could vanish). These are therefore clearly different ge-
ometrical situations. Starting with the matrix M(k, /),

u~ l(a, 6) = u~ l(a, O) u~ l(0, 6),
u~ l(a, o) = exp(iaK2)

—'La= exp (glpx + 2292)
2

u~ l (0, 6) = exp(ibl g)

ib= exp —(qgpg —q2p2)
2

(3.12)

The two factors u~ol(a, o) and u&ol(0, 6) commute and

subject to the conditions on a and 6 appearing in
Eq. (3.io).

Then we have the following convenient two-mode
squeezing transformation representing the equivalence
class (a, 6):
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may be written in either order, since according to Eq.
(2.7c) the noncompact generators Kz and I,i commute.

Finally, one can easily calculate the symplectic ma-
trix 8( ) (a, b) E Sp(4, R), corresponding to the operator
U(o)(a, b), hy using Eq. (2.5). The result is

M( )(a, b) (M( )(a, b) = S (a, b) (,

g(o) (o bi dia e(a —b)/2 e(a+b)/2 e
—(a—b)/2 e

—(a+b)/2
) )

(3.13)

Now we can clarify that the particular choice (3.9) was
dictated by the desire to have S( )(a, b) diagonal. This
element of Sp(4, R) describes independent reciprocal scal-
ings of the standard quadrature components of each
mode. This amounts to showing geometrically that it
is possible to diagonalize every P E II using conjugation
by U(2).

We illustrate our classification scheme of two-mode
squeezing transformations by giving two examples. The
extensively studied Caves-Schumaker (CS) [6] transfor-
mation uses the operator

B (z) =exp za~a2 —z a&am).(cs) t t (3.Z4)

By appearance, this attempts to involve or entangle the
two modes maximally. In our notation this squeezing
transformation corresponds to the generator combination

z ati at2 —z' ai a2 ——i(k K+ l L),

k = —2(0, 0, Imz),

l = 2(O, O, Rez). (3.l5)

Thus the invariant parameters a and b have values

a = 2lzl, b = 0. (3.16)

The Caves-Schumaker squeezing transformations and
their U(2) conjugates, all taken together, form a one-
parameter family or a one-dimensional line in the a-b
octant. In that sense they are a set of measure zero.

Another interesting case is a squeezing transformation
that refers essentially to a single mode but masquerades
as a two-mode transformation

After some simple algebra we find

bl(z; n, P) = exp i(k K+ l L)

k + il = 2z [—i(n*' —P* ), (n* + P*2), 2in*P*I .

(3.la)

The associated invariants and parameters are

U(z; n, p) = exp z(n" u, + p*a2) —z'(nai + pa2)

lnl'+ IPI' = l.
(3.&7)

FIG. 1. Equivalence classes of two-mode squeezing trans-
formations, Caves-Schumaker (CS) and single-mode limits,
and the squeezed thermal region.

~ = b = 2lzl. (3.»)
These equivalence classes thus lie along the line a = b in
the octant, again a one-parameter family of zero measure.
Our results are depicted in Fig. 1.

We note here that the size of an equivalence class
depends sensitively upon the point (a, b). Since for
a g 0, b g 0, and o, P b none of the generators of U(2) or
a linear combination of them commute with aK2 + bI q,
we have a full four-parameter equivalence class. For the
cases a P 0, b = 0, and a = b, respectively, the vanishing
of the comrnutators [J2, K2] and [Q+Js, K2+Li] leads to
reduction of the dimensionality of the equivalence class
to 3.

We conclude this section with a few comments. Each
point (a, b) in the octant denotes an equivalence class
of squeezing transformations, whose dependences on a
and b would be of physical significance and would show
up in a variety of U(2)-invariant properties. The two-
mode transformations discussed so far in the literature
lie basically along the two lines shown in Fig. 1. In this
sense, most of the intrinsically distinct two-mode trans-
formations, their eKects on various states, etc. , remain to
be explored. Those equivalence classes (a, b) for which
a ) b involve the two modes in an essential way. We may
say purely qualitatively that the distance of the point
(a, b) &om the line a = b, or perhaps better the expres-
sion (1 —b/a), is a measure of the extent to which two
independent modes are involved in the transformation.
In this sense, as remarked earlier, the Caves-Schumaker
transformations involve the two modes maximally.

IV. SQUEEZED COHERENT AND THERMAL
STATES FOR TWO MODES

The general two-mode coherent state with complex
two-component displacement n = (ni, n2) is defined by
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in) =exp(n. at-n . a) IO, O)

= exp
I

—-lnil' —-ln2l'
I2 2 J

x exp ola + o2a2 0, 0 .t t (4.1)

For this state the means of the quadrature components
do not vanish in general:

(nl&ln) = ~2(Ren„Ren„rmn„lmn, )

The variance matrix is, however, independent of o, :

(4 2)

V(in)) = V(iO)) = —1,„,.1
(4 3)

The most general squeezed coherent state is obtained
by applying M(P) for some P C II C Sp(4, R) to ln)
for some n. This U(P) is conjugate, via some U(2) el-
ement, to U~ &(a, b) for some a, b No. w the effect of a
U(2) transformation on in) is to give us another coher-
ent state ln'), n' being the U(2) transform of n But .the
variance matrix is in any case 6 independent. To examine
the U(2)-invariant squeezing condition, therefore, it suf-
Gces to examine the particular class of squeezed coherent
states

1 +~ 1
(4 6)

(qi, q2in;a, b) = 0"(qi, ni, a —b) 0 "(q2, n2, a+ b)

e—aj4 —a 2
2

exp in Ima —— q' e ~ —&2m)~l/4 2

These states are thus always squeezed.
If we apply any passive U(2) transformation S(X,Y)

to any one of the states in; a, b) defined above, the
variance matrix will in general change as V m V'
S(X,Y') V S(X,Y); but its eigenvalue spectrum, and
in particular E(V), remains unaltered. Thus all the states
symbolically written as M(U(2)) ln; a, b), for various U(2)
elements, are squeezed to the same extent as in; a, b) and
have E(V) given by Eq. (4.6).

The Schrodinger wave functions for the subfamily of
squeezed coherent states (4.4) are particularly simple
since they are products of single-mode squeezed coher-
ent state wave functions

In;a, b) = M~ l(a, b) in). (4.4)
(4 7)

From Eqs. (2.12) and (3.13), the calculation of the vari-
ance matrix for this state is trivial and it is in fact diag-
onal:

V(ln;a, b)) = S~ l(a, b) V(ln)) S~ l(a, b)

= —S~ l(2, 2b)
2
1= —dia e a 6) e(a+6) e(b —a) e

—(a+6)
)

2
' ) )

(4.5)

Since a and 6 are non-negative and in addition a+ 6 & 0,
we see that the least eigenvalue of this variance matrix is

[For a general state M(U(2)) in; a, b), we do not expect
such a product form. ] When we set b = 0 (the Caves-
Schumaker limit), both factors show the same amount
of squeezing, while when we set a = b (essentially the
single-mode situation) we see squeezing only in the factor
referring to the second mode. These features are as we
would have expected.

The next example we look at is the case of a two-mode
thermal state subjected to squeezing. The motivation in
making this choice is that the starting density operator
is explicitly U(2) invariant. The normalized density op-
erator corresponding to inverse temperature P = hcu/kT
is described in the Fock and Schrodinger representations
by

po(P) = (1 —e ) exp —P(ai ai + a2 a2)

=(1—e ~)2 )
n1,ng ——0

e-~&" +" ll~„~,)(~„~,i,

2 2p 1( p p&
po (qi, q2, qi', q2; P) = —tanh —exp ——

I
tanh —+ coth —

I

(4.8a)

x (q' + ' + q" + "
) —

I
tanh ——cath —

I
(q' q" + q' q") (4.8b)

with U(2) invariance expressed by p(P;a, b) = M l(a, b) po(P) M~ l(a, b) (4.10)

p (p) e ' = e' ' p (p) e ' ' = p (p). (4.9) The most general squeezed thermal state is evidently

Therefore it suKces to examine the properties of the
density operator obtained by conjugating po(P) with
u&'l(a, b),

U(U(2)) p(P; a, b) M(U(2)) (4.11)

but this has the same squeezing properties as p(P; a, b).



1616 ARVIND, B. DUTTA, N. MUKUNDA, AND R. SIMON

1
V(po(P)) = —coth —14„4 .

2 2
(4.12)

For the thermal state po(P) the variance matrix is well
known [10] g(&) = a W) + aW)']

1

2
(qq + q2) cos —+ (pq + p2) sin —.(5.3)

2 2 2

Therefore, for the particular set of squeezed thermal
states (4.10), we have diagonal variance matrices

V(s(»~ b))

The only experimentally adjustable parameter here is the
angle Q. The family of U(2) elements realized in the
heterodyne scheme is thus only the one-parameter set
given in Eq. (5.2) parametrized by @ and belonging to
SU(2):

~"(o b) V(po(P)) ~"(~ b)

coth —S (2a, 2b)
2 2
1—coth diag e e~ + &—a) e

—a—6

(4.13)

The least eigenvalue is evidently

E(V) = —coth —e ~ + l,
2 2

(4.14)

so for a given temperature, squeezing sets in when

a+ 6 ) lncoth —.
2

(4.15)

In Fig. 1, this region consists of all points in the a-6
octant to the right of the line a+ b = lncothP/2, which
is a line perpendicular to the line a = b and at a distance
ln coth(P/2)/~2 from the origin.

V. DETECTION SCHEMES
AND THE ROLE OF U(2) TRANSFORMATIONS

This can be regarded as the first component of a U(2)-
transformed pair az, az

& a', ) 1 t' e-'+~' e-'+~' l (a~ l

a' = ~(@). (5 2)

The Hermitian quadrature component whose fluctuation
is measured is

We have so far not specified in any detail the two or-
thogonal modes of radiation being subjected to squeez-
ing. I et us at this point consider a situation well studied
experimentally by the heterodyne detection scheme [17].
Here the two modes difFer only slightly in &equency, but
are otherwise similar. In this kind of experimental ar-
rangement what is actually measured is the fluctuation
of a certain photocurrent and this in turn gives the fIuc-
tuation or variance of the q-quadrature component of a
particular (passive) combination of the original modes.
The combinations of ai and a2 that are involved form
the one-parameter family

1
a(@) = (aq+a2) e '", 0& Q &4~.

2

&Jr(@) = I;A(2;gg I
& SU(2)

2 ( —e' e' )
(5.4)

We notice that this is not a one-parameter subgroup of
SU(2); in particular, even the identity element of the
group is not contained here.

With this description of the heterodyne setup in our
&amework, let us see to what extent it can be used to de-
tect U(2)-invariant squeezing. Now a general two-mode
state p with variance matrix V, even if it is squeezed in
the intrinsic sense of Eq. (2.14), may not be manifestly
squeezed. That is, it may happen that V ) 1/2 for
all a = 1, . . . , 4. As our discussion in Sec. II shows, we
need to be able to experimentally realize a general U(2)
transformation applied to the state p and change its vari-
ance matrix to a form where one of its diagonal entries
(say the leading one) becomes less than 1/2. However,
the heterodyne method is generally unable to do this job
for us, as it can only realize the one-parameter subset of
SU(2) transformations U~(g) for 0 & g & 4~.

In the two examples of squeezed coherent states and
squeezed thermal states studied in Sec. IV, we have a
family of states related to each other by conjugation with
U(2) for each point in the a bplane. Eac-h equivalence
class has appropriate dimensionality depending upon the
point (a, b) as explained in Sec. III. It turns out that for
each (a, b) the heterodyning scheme can detect squeezing
in only a one-parameter subset of the family of states.
Although heterodyning detection covers the whole 0;6
plane, it does not reach all the states corresponding to
each point in the a-b plane. For example, in the repre-
sentative chosen in Eqs. (4.4) and (4.10), for which the
variance matrix is already diagonal, the squeezing can-
not be detected by this scheme because of the absence
of the identity in U~. It should be possible to detect
squeezing in these states by a suitably modified scheme.
We wish to emphasize that there is a definite need to
be able to experimentally implement the most general
element of U(2). This w'ould allow the experimenter to
detect the degree of squeezing unambiguously, if the state
is squeezed, without any prior knowledge of the elements
of the initial variance matrix.

Having stressed the need to implement arbitrary U(2)
transformations on the two modes of radiation in order to
reach the proper quadrature to exhibit squeezing, we now
describe how it can be achieved in some situations. We
discuss two particular cases of the two modes involved,
the first when the two modes have the same &equency
but difFerent directions of propagation and the second
when the modes have the same frequency and direction
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QI

&1&2

'Q2

BSI

FIG. 3. Implementation of an arbitrary SU(2) element on
two modes with the same frequency and directions of prop-
agation, but difFerent polarizations. Here Qi, Qz are quarter
wave plates and H is the half wave plate. o., P and 7 are the
angles that the slow axes of Qi, H, and Qs make with the
x axis, respectively. az, az are the annihilation operators at
the input port and az, az are the annihilation operators at the
output port.

FIG. 2. Mach-Zehnder interferometer implementing arbi-
trary U(2) transformation on two modes at the same fre-
quency but differing in their direction of propagation. BSz
and BSq are 50:50 beam splitters and thick lines are phase
shifters by angles indicated. az, az are the annihilation opera-
tors at the input port and az, az are the annihilation operators
at the output port.

of propagation but difFerent polarizations.
The experimental setup for the Grst case is shown in

Fig. 2. We achieve an arbitrary U(2) transformation on
the two modes by using a Mach-Zehnder interferome-
ter with two 50:50 beam splitters (BSi and BS2) and
appropriate phase shifters [18]. The input modes with
annihilation operators a~ and a2 are subjected to equal
and opposite phase shifts by angles P and —P, then the
modes are mixed in the beam splitter BSi, and the mixed
modes again undergo equal and opposite phase shifts by
angles 0 and —0 and further mixing through the beam
splitter BS2. Finally, they undergo unequal phase shifts
by angles @i and @z. If the annihilation operators at the
output are a& and a2 then all the above operations when
combined are implemented through the transformation

Qz, all three of them being coaxially mounted and with
their slow axes in the x-y plane making angles of n, P,
and p, respectively, with the x axis. The two modes hav-
ing annihilation operators aq and a2 moving along the z
direction pass through this arrangement. If the annihila-
tion operators at the output are az and a2 then they are
related to the operators at the input by an SU(2) trans-
formation given in terms of n, P, and p. By changing
these parameters one can reproduce any desired SU(2)
element. As pointed out earlier, going to U(2) now is
just a matter of free propagation.

In both the above cases, by going to the proper U(2)
element we can make the squeezing (if present) manifest
and bring it to the leading diagonal element of the vari-
ance matrix, i.e. , in the quadrature qi ——~(ai + ati').1
The squeezing in this quadrature can now be measured
by any standard one-mode detection method.

These remarks show, on the one hand, the way the
heterodyning scheme fits into our general analysis and, on
the other hand, the need to devise new schemes capable
of realizing all elements of U(2), tailored to the definition
of the two modes involved.

t' a', ) ( e'(&+@~) cosa —ie-'«-@~) sine ) (ai l
( nz ) ( —ie'(~+~') sin 0 e '&~ ~'& cos 8 )

(5.5)

relating the two sets of annihilation operators. The above
matrix is the most general U(2) transformation matrix.
We note here that if g2 ———@i then the transformation
matrix is the most general SU(2) transformation. Going
&om SU(2) to U(2) is just a matter of overall phase and
can also be achieved by &ee propagation.

For the second case when the two modes di8'er only
in polarization we achieve the arbitrary U(2) transfor-
mation by using two quarter wave plates Qi, Q2 and a
half wave plate H as shown in Fig. 3. The detailed dis-
cussion of this setup is given in [19]. It turns out that
the configuration Q H Qis not the only one, -bu-t Q-Q-
H and H Q Qalso accomplish-th-e same result, as shown
in [19]. We basically have three elements: a quarter wave
plate Qi, a half wave plate H and a quarter wave plate

VI. CONCLUDING REMARKS

We have presented a classification scheme for two-
mode squeezing transformations, based on the structure
of the real four-dimensional symplectic group Sp(4, 1R),
and the separation of its elements into passive (compact)
and active (noncompact) types. The structure and action
of the maximal compact subgroup U(2) in Sp(4, R), and
the U(n)-invariant squeezing criterion formulated else-
where for a general n-mode system, have guided our con-
siderations.

We mention at this point two useful algebraic prop-
erties: one relevant for any number of modes and the
other specifically for two-mode systems. 'We have seen
in Sec. II that the real symplectic transformations act-
ing on irreducible and Hermitian canonical variables are
implemented by unitary operators U(S). However, these
operators are determined only up to S-dependent phase
factors by this requirement. The question arises whether
this keedom can be used to make the composition law
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for these unitary operators as simple as possible. It turns
out that the maximum simplification [20] that can be
achieved leads to the composition law

Si S2 C Sp(4, IR): Q(Si) Q(S2) = +U(Si S2). (6.1)

Thus these unitary operators provide a double-valued
representation of the symplectic group. It is, however,
more proper to recognize that bl(S) is really not entirely
determined by S alone; one is in fact dealing with a
faithful unitary representat. ua of the metaplectic group,
which is a twofold cover or" the symplectic group.

For two-mode systems based on Sp(4, R) we gain
geometrical insight by recognizing that this group has
the same l, ie algebra as the group SO(3,2) [21]. Thus
the commutation relations (2.7) can be presented in the
alternate form

M{P) = bl(S(X, Y)) bl (a, b) bl(S(X, Y)) (6.6)

for suitable X —iY C U(2). Therefore we have

p = bl(S(X, Y')) bl~'I(a, b) U(S(X, Y)) po

xbl(S(X, Y)) U~ I(a, b)
' &(S(X,Y)) (6.7)

This leads by Eq. (2.12) to the relation

V(p) = S(X,Y') S~ I(a, b) S(X,Y) V(pp)
x S(X,Y) S~ I (a, b) S(X,Y) (6 8)

between the two variance matrices. Now the first and
last factors on the right-hand side here have no influence
on the spectrum, and so on the least eigenvalue, of V(p).
Therefore the squeezed or nonsqueezed nature of p is ac-
tually determined by the least eigenvalue of the matrix

[MAB~ MCD] —i(gACMBD gBCMAD

+gADMCB gBDMCA) ~

gAB = diag (+1,+1,+1,—1, —1),
M~a = —Ma~) (6.2)

S(X,Y) V(p) S(X,Y)

= S~ I( ab) S(X,Y) V(pp) S(X,Y) S (a, b) (6.9).

where the Sp(4, R) generators are given in terms of MAB
by

Q=M4s,

K„=M„4,

1J„= —~„,gM, g,
2

I„=M 5. (6.3)

In this form the photon-number-conserving transforma-
tions correspond to rotations in the compact subgroup
SO(3) xSO(2) while the photon-nonconserving transfor-
mations generated by K„,L„correspond to pure noncom-
pact boosts in (r, 4), (r, 5) hyperplanes, respectively.

The squeezing transformations studied in Sec. III,
U(P), P C II C Sp(4, R), do not form a subgroup of
Sp(4, R). The breakup of these transformations into
equivalence classes, based on the effect of conjugation
by elements of U{2), is the only natural available classifi-
cation procedure. This is because the definition of equiv-
alence classes for any set of objects has to be based on an
equivalence relation de6ned on that set. Thus we have
treated two elements P,P' p II as intrinsically equivalent
if

P' = S(X,Y) P S(X,Y') for some X —iY C U(2).

(6 4)

It should, however, be realized that the detailed effects of
action by U(P) and bl(P') on a general initial two-mode
state pp as seen in the changes caused in the variance
matrix V(pp), need not be identical. Since this is a sub-
tle and important point we spell it out in detail. Starting
&om a general state pp, action by a squeezing transfor-
mation leads to a new state

But now the right-hand side is in general dependent not
only on the invariant parameters a, 6 but also on X, Y.
In the examples studied in Sec. IV, namely, where pp
is a coherent state or an isotropic thermal state, V(pp)
happens to be a multiple of the identity matrix. , so that on
the right-hand side of Eq. (6.9) the dependence on X, Y
cancels. But this need not happen in general. Thus, for
instance, if we take for pp an anisotropic thermal state
with unequal temperatures for the two modes, we have
only U(1) x U(1), rather than U(2), invariance for this
pp, so the least eigenvalue E(V(p)) of V(p) will depend on
a, b and on two out of the four U(2) parameters present
in X —i Y. One can easily convince oneself that the
only situation where S(X', Y) V(pp) S(X,Y) = V(pp)
independent of X and Y is when V(pp) is a multiple of the
unit matrix; the isotropic thermal states do reproduce all
such cases. Therefore a more detailed study of the effect
of a general squeezing transformation on initial states pp
with nontrivial V(pp) is of considerable interest.

A related important point is the following: let us take
two squeezing transformations Pz, P2 E II belonging to
equivalence classes (ai, bi), (a2, b2), respectively, which
could coincide. The product P~P2 will in general be of
the form S(X,Y)P with S(X,Y') C U(2) and P C II.
If P belongs to the equivalence class (a, b) we wish to
determine this class in terms of Pq and P2. Using that
Tr(P ) = Tr((P, P2)(PiP2) ) and Eq. (3.11) we arrive
at the relations

2[cosh (a —b)+ cosh (a+ b)] = Tr((PiP2)(PiP2) ),
2[cosh 2(a —b)+ cosh 2(a + b)]

= Tr(((PiPg)(PiP2) ) ), (6.10)

p = Ll(P) pp U(P) (6.5)

As seen in Sec. III, any U(P) is expressible in terms of a
representative element l4'~pI (a, b) as

which can be solved to find (a, b) We note here . that
(a, b) depend not only upon (ai, bi) and (a2, b2) but also
on the actual elements chosen from each of these classes.
So we do not have a notion of class multiplication among
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these equivalence classes.
Finally, we call attention to our considerations in

Sec. V and to the need for being able to experimentally
implement or realize general passive elements of the sub-
group U(2) of Sp(4, IR) for each given choice of the in-
dependent modes in a two-mode system. Once this is
achieved, for any given state we can bring out in an ex-
plicit or manifest fashion its squeezing nature (provided
it is squeezed) by altering its variance matrix and rnak-
ing the least eigenvalue appear in the leading position

on the diagonal. This also means that we would be able
to experimentally measure the Huctuation in the quadra-
ture variable isolating the least eigenvalue. As exten-
sively discussed elsewhere, these considerations, which
exploit the richness of the geometry underlying the sym-
plectic group, do not require complete diagonalization of
the variance matrix at all [10]. We shall elsewhere exam-
ine U(2)-invariant properties of two mode squeezed states
that go beyond the level of second-order moments of the
quadrature operators.
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