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We prove a theorem linking the phase associated with the ballistic evolution of a coherent state
of a harmonic oscillator about a jumping vertex to that associated with its adiabatic migration
along straight lines connecting the initial and the final points of each ballistic arc to the vertex on
which the arc is centered. This equivalence allows one to determine the ballistic phase by Berry s
prescription. The method facilitates both the visualization and the calculation of modulation eKects
(quantum beats) in photon-echo experiments.

PACS number(s): 42.50.Md, 03.65.—w

I. INTRODUCTION

Photon-echo experiments are potentially sensitive de-
tectors of Berry phase [1] effects. In the stimulated echo
configuration, where three excitation pulses are applied
at ti, t2 ——tg + w, and t3 ——tg + T, an echo is observed
at t4 ——tq + v + T, which is the result of an interference
&om contributions associated with two distinct pairs of
atomic state trajectories [2,3]. Associated with each pair
is a phase, and since there is an interference, any difFer-
ence in the phases can be detected. For simple two-level
atoms this difference vanishes, but in more complicated
molecules it may receive nonzero contributions &om the
degrees of freedom (vibronic) associated with nuclear mo-
tion. An example is the typical organic dye molecule.
Although basically a two-level (electronic) system, it is
subject to a multitude of vibronic excitations that com-
plicate the formation of the echo [4—9].

The distinct pairs of trajectories we referred to are dis-
tinguished by their electronic state histories following the
second excitation pulse. In one pair it is the excited elec-
tronic state superposition states that evolve to produce
a coherent dipole moment; in the other it is the ground
state superposition states.

Each of these contributions is inQuenced by vibronic
evolution. Fortunately the analysis of the vibronic evo-
lution is considerably simplified by using coherent states
parametrized by a complex number n and defined as

of the vibronic mode to the magnitude and phase of the
stimulated echo [11]. For the stimulated echo there are
two diagrams whose results must be combined. They
yield identical magnitudes but differ in phase. This phase
difference thus contributes to the echo modulation.

In a previous paper we have called this phase a Berry
phase [11].The aim of the present paper is to justify this
usage by a theorem that states that this phase is identical
to the Berry phase associated with a related adiabatic
process. The phase is therefore given by an area rule. We
shall use the term radial adiabatic simulation (RAS) for
the replacement of a ballistic trajectory in n space by the
appropriate adiabatic trajectory, as the latter trajectory
consists of the radii bounding the angles subtended by
the ballistic arcs.

In Sec. II we shall review the theory of a harmonic
oscillator with a variable equilibrium point and shall ob-
tain an expression whose integral over time determines
the phase of the wave function. In Sec. III we shall
present and prove our theorem linking our problem to
that of the Berry phase. In Sec. IV we shall use Berry's
formula to obtain an area rule for the relative phase of
two trajectories. In Sec. V we shall derive the same area
rule directly from our formula of Sec. II. In Sec. VI we
illustrate the application of our theorem to the stimu-
lated echo problem. The application of the area rule to
the trilevel echo problem is also brie8y considered.

II. DISPLACED HARMONIC OSCILLATOR

an =nn (1.2)

1 ' t
where D (cr) = e = e 2i i e e is the dis-
placement operator, a, at = 1, and i0) is the lowest
vibronic state [10]. These states satisfy

Let a be the standard lowering operator, with

(2.1)

and let b = h (t) be some time-dependent c-number "dis-
placement. " We are interested in the evolution of a sys-
tem under the Hamiltonian

For each vibronic mode there is a simple trajectory in
n space that describes the coherent state evolution. We
have found that the diagrams showing these trajectories,
which we call n diagrams, directly give the contribution

H = H (t) = h ~ [a —h' (t)]t [a —8 (t)] . (2.2)

If 8 is real, this Hamiltonian represents an oscillator with
its equilibrium point displaced in position space. The
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spectrum of H is taken to be time independent. The
solution of Schrodinger's equation

' —It) = ~(a' —Ib(t)]*) Ia-h(t)] It)
dt

(2 3)

is readily seen, by substitution of Eq. (l.l), to be

lt) ="' ln) (2.4)

where P (real) and n (complex) depend on time according
to

Olp

~ 26

$t n()

in = ur [n —b(t)] (2.5)
%(n, u')

and

—P —-' (n n* + n n*) = —(u [h (t)*] [n —b (t)] . (2.6) Ol2

By repeated application of Eq. (2.5), we may transform
Eq. (2.6) into

P = Im (n*h). (2.7)

b,P = Im(An*h) (2.8)

Now, if b remains constant over an interval of time, the
increment of P over that time is

FIG. 1. Pair of ballistic trajectories corresponding to
Hamiltonians Kg and Kgi (case N = 2 of the text) where
b (t) = 8i during the first (shorter) time interval and b (t) = b2

during the second (longer) interval. During these same inter-
vals b'(t) = 8i and b~. The corresponding trajectories follow
the arcs o;0 ~ nq ~ n2 and o.o —+ o.z ~ ex&. Note that
o.o ~ o.I is centered on bq, etc.

which is twice the area of a triangle in the complex plane
two of whose sides are An and h. The appearance of
such an area brings the Berry phase to mind. We there-
fore leave Eq. (2.7) for the moment and turn to a general
theorem relating ballistic to adiabatic changes of a har-
monic oscillator.

h'(~) = b„' (3.4)

in the interval t„q ( t ( t, where tp & tq ( . ( t~ ——

t.
It is clear from Eqs. (2.4) and (2.5) that

III. EQUIVALENCE THEOREM Up (t, to) Ino) = e*~' In~) (3.5)

Suppose that an oscillator is prepared in the state lnp)
at the time tp and evolves &om tp to t under the Hamilto-
nian Eq. (2.2). Then at time t the state is Ub (t, tp) lnp),
where

t

Ub (t, tp)—:7 exp iu) ' a —h'* (7 ) [a ——b (T)] dT
Cp

and 7 denotes time ordered.
The system might, however, have been prepared in a

difFerent state !no) at to and evolved under a Hamiltonian
determined by a difFerent function h' (7). Then its final
state at time t would be Ub (t, tp) lno).

Our interest is in the eKect of these parallel evolutions
on the relative phase of the two wave functions. That is,
we want to find

C':—arg(nol b (, o) b (t to) I o) —»g(no I o).
(3 2)

Our theorem applies most conveniently to the case
where h (r) and b' (z) are multiple step functions chang-
ing only at discrete times. That is, we suppose that

b (~) = h„,

for some phase Pb, where n~ is a complex number ob-
tained from o;p by executing a series of circular arcs
op ~ oq ~ . . —+ n~. The arc Rom o~ q to o.„
has center b and runs clockwise through an angle of
w (t —t i) radians (see Fig. I). A similar formula
holds for the primed trajectory. Obviously

~ = &s —&~ +»g(nk In~) —»g(no I no) (3.6)

Let us now consider an oscillator prepared in the state
lnp) and subjected to the Hamiltonian

II~ = h(u (a —p)" (a —p),

where the complex parameter p changes adiabatically by
migrating along the closed polygon in the complex plane
whose vertices are successively o.'p, bq, o.'~, ...

/ I I 0

—1 &
' "

& o'i ~ ~i, o'p, o'p. T11at ls
each arc n ~ ~ o; is replaced by a pair of straight
lines o. ~ ~ b ~ o. ; the primed evolution is treated
similarly and run backward and the polygon is closed
by straight lines n~ ~ n~ and no ~ np (see Fig. 2).
This polygonal trajectory is the RAS path (see Sec. I)
corresponding to the given pair of ballistic trajectories
represented by Us (t, tp) and Upi (t, to).

The equivalence theorem then states that the RAS
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5(o;,o,") IF). . .:,..Uo( ) IF). (3.11)

In view of (2.5) we have n —b„= e ' ('" '"-'&(n
b ); therefore, setting I' = o. i —b, we have

in„ i —b„): Uo (t„—t„ i) in„ i —b„) .

(3.12)

%(a,o,")
We now observe that any adiabatic process can be

subjected to a unitary transformation and therefore any
statement of the form ii); i f) can be transformedr;~rf
to D (b) ii): D (b) i f) . Applying this transfor-

r;+bmr f+6
mation to (3.12) we find

D (b-) I~--i —b )

FIG. 2. Same as Fig. 1 with the addition of dotted lines
showing the RAS or equivalent Berry trajectory. Each pair of
radii (oo ~ bi -+ o.i, etc. ) adiabatically simulates the corre-
sponding arc (no —+ cxi, etc. ) and the whole closed (dotted)
polygon produces a Berry phase (equal to twice the shaded
area) identical to the phase difFerence introduced between the
unprimed and the primed states by their simultaneous evolu-
tion under Hg and H~.

an —1 ~~n ~an
D (b„) Up (t„—t„ i) in„ i —b„)

U„D(b„)io.„ i —b„). (3.13)

Finally, since D(b)ici —b) is the same as in) apart from
a phase factor, we have

l~--i) : U- l~--i)
an —1 ~~n ~an

(3.14)

Qi + Qf
(3.8)

evolution under Eq. (3.7) will carry the state imp) to
e' @

i no), where 4 is the same phase as given by Eq. (3.2).
Therefore Berry's theorem for adiabatic closed paths (see
Sec. IV) can be used to evaluate Eq. (3.2).

To prove the theorem we introduce some simple no-
tation. Under the Hamiltonian (2.2), with p migrating
adiabatically along a straight line from p, to pf, an initial
state ii) will evolve to some final state if); it is under-
stood that the kets ii), i f) include the right phase factors.
We express such a fact by writing

the same phase factor has been dropped &om both sides
of the arrow.

Equation (3.13) shows that the ballistic evolution from
in„ i) to U„in„ i) is correctly simulated, including
the right phase factor, by the RAS adiabatic evolution
from a i to 8„ to n . Since, moreover, io.„ i) is the
same, apart from a phase factor, as Us(t —i, to)icio)
can again drop this factor &om both sides and obtain
Us (t. i, to) i~o): Us (t., to) i~o)

ara —1 ~~n ~an
In this form it is clear that the n intervals can be con-

catenated so as to yield

inp): U$ (trav, to) inp) = e'~' iniv) . (3.15)

Under this notation it can be shown (see Appendix A)
that for any complex I', i0); iF) ioith no phase faco~r
tor missing. Likewise iI'): i0) . Putting these resultsr~o
together, for any complex I' and real 7, we can write

Likewise

e A~ ' 0!O
N 8N "'

P

(3.16)

iI') : I' e *"
)r—+0—+r e

(3.9)

where the adiabatic process consists of two straight-line
migrations, &om p = I' to p = 0 to p = I'e

Now consider the nth interval in our ballistic process,
characterized by an evolution operator iF,): *"&'~~' & iF,).ri~rf (3.17)

We now consider the connecting links &om o.N to o,~
and &om o.z to o;o. It is shown in Appendix 8 that the
adiabatic path straight from I'; to I'f takes iI';) to e'&il t)
where P is just the phase of (FyiF;); that is,

U„= Us(t„, t„ i) = D(b„)Uo(t„—t„ i)D (b„),
(3.10)

where Uo(w) = e ' ( &. It is evident from Eqs. (2.4),
(2.5), and (2.7) with b = 0 that Up (r) iI') = I'e '

)
for arbitrary complex I'. Applying (3.9) we then have

With I'; = ao, I'f ——no, we obtainI, xarg ap ap

ap ~ap
(3.18)

With I; = n~, Ft = o.~, and using (3.15) and (3.16),
we obtain
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l~o) (i +g i ++ —) i arg(a~ la~)
AP Wh1 M WA Wh W MCX

(3.19)

Combining this with (3.18) we have the equivalence the-
orem.

I

This gives Berry's phase as

dxdy (—2), (4.6)

IV. AREA LAW FROM BERRY'S THEOREM

To apply Berry's theorem to our RAS path in the n
plane, we start from Eq. (7b) of [1],which gives the phase
4 [there called p„(C)] as

which is twice the area on the complex plane enclosed
by the path. Since Berry's formula was derived from
Stokes's law, which assumes that the area is enclosed
counterclockwise, the negative sign tells us to assign a
positive phase to area encircled clockwise.

p„(C) = -Irn dS {V'nl x IV'n), (4.1) V. DIRECT DERIVATION OP THE AREA LAW

which we shall write as

dxdy {al V' x V' lo.). (4.2)

, . (~ 8 ~ 8&
(4.3)

by the chain rule. The integral ranges over the portion
of the x-y plane enclosed by the adiabatic path.

Now, ln) = e 2 ~ ~ e IO) and therefore

Here n = x+i y, V' = x +y —acting on the ket to the

right, and V' is the same operator acting on the bra to the
left. The symbol x denotes the (scalar) cross product in
two dimensions; thus (using arrows also to indicate the
action of —and —)Bx 8'jj

0 —+ np —+ bg m ng m 0 —+ ng m b2 —+

wbN mn~-+0 (5 1)

or, more shortly, by

0 —+np-+by —+ng -+b2 wn2 —+

Here we shall derive the area law directly from Eq.
(2.7), for the case in which b (t) is a multiple step func-
tion as described by Eqs. (3.3) and (3.4). Integrat-
ing Eq. (2.7), with constant 8 = b„, we find that
the ballistic evolution of n(t) from o.„ i to n„pro-
duces a phase Im (n„' —o.„' i) b„. Now Im (o.* b ) is
twice the area enclosed (all areas will be counted as
positive when encircled clockwise) by a triangular path
from 0 to 8„ to n to 0. Likewise —Im (n„* i b„) cor-
responds to the triangle 0 ~ n ~ ~ b ~ 0. There-
fore Im (n —a i)* h is twice the area enclosed by
0 ~ n„q —+ b„—+ 0 —+ b —+ n„—+ 0, which can be
shortened to 0 —+ n„g —+ b„m n„m 0.

Now, by adding together N steps, we find that Pg,
defined by Eq. (3.5), is twice the area enclosed by

8
ln) = (—-' n*+ at) la) (4.4a) —+ n~ g -+ b~ m n~ m 0 . (5.2)

z . I~) = ——,
' ~ l~) = (+-,' ~ —a) l~)

see Eq. (1.2). It follows that

(4.4b)

Likewise Pgi is twice th—e area enclosed by

0-+n' ~b' ~ . . ~b' —+np~0. (5 3)

The inner product {n'
I n) = e 2 I I e 2 (

carries a phase —Im (n' n*), which is twice the area en-
closed by

0-+ n-+ n'-+0. (5 4)

(4 5)
Now the net phase 4 defined by Eq. (3.2) is, by Eqs.
(5.2)—(5.4), just twice the area enclosed by

0 ~ np ~ b& —+ - ~ bN -+ n& ~ 0 ~ n& ~ n~ ~ 0 ~ n~ ~ b~ -+ . - - ~ b -+ n -+ 0 -+ n ~ np ~ 0.
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But again by canceling out the retraced paths, we elim-
inate the point 0 and obtain

&P ~ ~y ~ ~ ~N ~ &N ~ +N ~ ~N +I I

b~ m np

This is the same polygon whose area appeared in Berry's
theorem in Sec. IV.

Inasmuch as we have derived the area law here without
referring to RAS paths or Berry's theorem, the whole
equivalence theorem may be deemed superfluous. We
remind the reader, though, that the argument traced in
Secs. III and IV bypasses the algebraic manipulations
that lie behind the general solution Eqs. (2.5)—(2.7) of
the ballistic problem. 0ur chief motive for introducing
Berry 's theorem, however, is not to make the area law
easier to derive, but rather to understand it in the light
of the deeper insights associated with the Berry phase.

VI. APPLICATION OF THE AREA LAW

r
2

/rr/r

3

E2 = t~ + 7

//rr
/r r// r// /

rrr /rr /r

r 4
//

r

I'3 ——t~ + T

FIG. 3. Familiar recoil or excitation diagram describing a
stimulated echo with copropagating beams. The echo ampli-

tudee

at time T+7. is the sum of two terms associated with the
path crossings 1-2 and 3-4. Normally each term can be read
off from the diagram by rules given elsewhere [2j. In the pres-
ence of vibronic excitation each term receives an additional
factor whose phase is the subject of this paper.

As an example we calculate the amplitude of the stim-
ulated echo in a two-level (transition frequency 0) elec-
tronic system with one vibronic mode (vibronic &equency
u) . The Hamiltonian, including the interaction with the
radiation field, is

applied at t q, t2 ——t ~ + w, and t3 ——t q + T. These pulses
put each atom's wave function into a linear superposition
of states so that overall

(6 5)

where

H = H~ + H + H;„~,

IIri = ——,
' 50 lg) (gl + —', 50 le) (el,

(6.1)

(6 2)

2 P

where j runs over the atoms and p the states (or paths).
The atoms are taken to be identical so we drop the index
j. The vibronic and electronic states factor, and we write

II = h(u (at a+ -', ) lg) (gl + hu) (bt b+ -', ) le) (el, (6.3)

and

II'-t = -«@(t) e'"" "' (&.a le) (gl + &a. Ig) (el)

(6.4)

whereb=a —b, a at = b bt = I, P~ = (il P e Ij),
and the wave function follows @ = —

&
H 4 . Here b is a

fixed number that measures the strength of the Franck-
Condon effect. The radiation field amplitude E (t) con-
sists of a series of short pulses of area Oq, 02, and 03

'4 = I&.;b, @.i..)p
. (6.6)

(iI'IP lc) = N) (@„IP @„'),
ptp

(6.7)

therefore reduces to

The electronic evolution is best visualized by using a re-
coil diagram (in the case of a gas) or an excitation di-
agram (for a solid) (see Fig. 3) . For sensibly collinear
excitation pulses the two kinds of diagrams are similar.
Only the trajectory pairs labeled 1,2 and 3,4 cross at
t = T + v to form the stimulated echo. The dipole mo-
ment, which in general is given by

(@I P
I @) ~ (2(g vib I 4vib) ] 2(@elect P I@elec)i + 4(4vib I 4vib)s 4(4'elect P I/elec)s)

(P) f (t) 2(&-b I &-b)

X cos ~~ i sin ~~ cos ' e ' + ~ e ' k —ki).~ i sin ~' cos ~6t i sin s e ~ & T e~ (kx —ks) ~ + c.c.
2 2 2 2 2 2

+~ (P) f (t) 4(@-b I @-b)

X cos ~8 cos e~ i sin e~ e
—i 0 (t—7 e ~ik —ks).~ i sin i i sin ~ cos —3 e ~ ei (kg — &).r

2 2 2 2 2 2

(P) f (t) (2(@vib I @vib) i +4 (@vib I
@vib)s)»n &i »n 02»n Os e ' " ' e ' I" "' "'+"' ' (6.8)
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The complex function f (t) peaks in magnitude at T+7
and has a phase that is dependent on the phases of the
excitation pulses. The electronic contributions construc-
tively interfere. We have used 0~ and k~ to denote the
areas and k vectors, respectively, of the first, second,
and third excitation pulses. In the previous sections the
labeling of the vibronic n was associated with the (n
—1) th excitation pulse.

It now remains to evaluate the vibronic matrix ele-
ments. Each state ~g;b), p = 1, ..., 4, is arrived at by
an evolution under a Hamiltonian of the form Eq. (2.2),
where in accordance with Eq. (6.3) the value of b(t) is

bg —0 or b, = b, depending on whether the path p
puts the molecule in the electronic state g or e at time
t. For ease of notation, in discussing the matrix element

Vzz = „(@v;b
~
g„;b)„we shall let nt and pt describe re-

spectively the ket and the bra at time t. Then the mag-
nitude of the matrix element is

1
[v

[

=.-2l- -i'*l

which at t = T + ~, the time of the echo, reduces to

—8 lbl sin (~ ~/2) sin (~ T/2) (6.11)

no ~ bg ~ n. ~ b. ~ nt ~ A ~ bg ~ Pv ~ b. ~ /So

M o.'p )

which is just

0 -+ 6 m nt m Pt -+ 0 m Pz -+ b m 0.

The phase 4&2 is twice the area enclosed clockwise by the
RAS trajectory [see Fig. 4(a)]

[V .
[
= e-2l-*-/' l' (6.9) At the time of the echo we have a fortuitous degeneracy

nt z+~ ——P~, so that the RAS path can be written as

and its argument is given by the area rule; therefore the
matrix element can be found entirely from the o.-diagram
of the two trajectories p and p'.

Consider first the matrix element Vi 2
——

~
Vi 2

~

e'
The evolution of ~@„;b)i can be described in a modifica-
tion of the schematic notation of Sec. III as

ballistic ~ ballistic c ~, s~(t ~)
)o.o ——0

b~ 8,

and that of ~g;b)2 as

0 m b -+ nz+ -+ Pz+ —+ 0 m nz+ m b -+ 0,

which is just

Omnia+

-+Pz+ mO.

Therefore

C'i2 ——Im(nz+, Pzg )
= ~b~' Im (e ' ~ —1) (e' ~ —1) e'

= argi(0 'b I 0 'b)2
= 8

~

b
~

sin (w T/2) sin (w w/2) cos (w 7 /2) . (6.12)

ball1S~txC n n —iCu(t —T)
/9g = p+c

bg

For the matrix element Vs4 the excitation diagram [Fig.
4(b)] shows that we should simply interchange the times
T and ~ obtaining

where t is any time later than all the pulses. Thus from
Eq. (6.9) we have

1
[V

[

=e-2l- -~'

(b) (6.13)

'%(a, p)
&v+~ =Pr

es4 ——Im (n~+„P~+ )
= ~b~' Im [(e ' —1) (e* —1) e* ~]
= 8 ~b~ sin (id 7/2) sin (w T/2) cos (cu T/2) . (6.14)

FIG. 4. n trajectories associated with (a) paths 1 and 2 and
(b) paths 3 and 4 are shown along with the RAS path (dotted
lines) in the manner of Fig. 2. The RAS polygons in (a)
no=n -+b —+ v+ nmPr+ ~OmPv ~b-+go=no
and (b) np = nz —+ 8 m nz+ —+ Pz+ -+ 0 —+ P m b'

~ Pp = np have a common edge ~nz + —Pr+ ~. The enclosed
(shaded) areas represent half the Berry phase. The areas in
(a) and (b) are clearly different.

Thus the vibronic elements are the same except for the
phase. The phase difference is given by

(g;b ~ 0 b) &C' = 4'i2 —@s4

= 8
~

b
~

sin (~ T/2)
x sin ((uw/2) sin [(u (T —7) /2]

(6.15)

This is a major contribution to the echo modulation.
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Q23

--)---- (2)

/
/

/
/

/

1

t1 f2 t3

detection, then the effect of the Berry phase should be
apparent.
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Q12 APPENDIX A

&r =Pi =Pi =~i =0
1 I 3

FIG. 5. Application of Berry's theorem to a trilevel echo in
a vibronic molecule with two Franck-Condon displacements:
(a) level scheme, (b) recoil diagram showing manner of exci-
tation and time of echo, and (c) n diagram showing n and P
trajectories and the RAS polygon. The shaded area is now
the sum of two triangles and cannot be found simply from the
inner product (Prs in~a), which has no imaginary part since

——0.

It) = e' l~ (t)) + le) (A1)

where lp) = D(p) l0) and le) is a ket of small magrutude,
proportional to j. Then Schrodinger's equation gives

H (t) le), = hge* —lp) +i he' —lp) +i 5 —ls),

Consider an adiabatic process in which p migrates on
a straight line from 0 to I'. If the initial state is l0), the
final state will be lI').

Proof Let th. e state at any time be

The example given above, while chosen because it re-
lates to a commonly performed experiment, does not fully
illustrate the power of the area method because the ma-
trix elements in this case are identical to

(p l
n ) e

—21~~ —Al e
—

2 (~~P —~ &~) (6 16)

The phase is simplified here by the fact that the RAS
trajectories for n and P are identical until the last step
(nT+ = pT ~ b, ~ pz+ or ng+. = p. ~ hg ~ pT+. )
so that the Berry area consists only of the triangle formed
by nT+~, PT+~, and bg ——0.

As a less trivial illustration we may consider a trilevel
echo in a gas of molecules subject to Franck-Condon dis-
placements of b2 and b3 for the second and the third
level, respectively [12]. The first pulse at ti consists
of two counterpropagating parts: one traveling "for-
ward" at &equency O&2, the other backward" at &e-
quency 023. Since 023 ) Oq2 the wave packet associ-
ated with level (3) recoils backward with a momentum
lnkl = ln (ki2+ k23) l

= 5 (n]2 —n23) jc. The secolld
pulse, at t2, at &equency 023 travels backward and stim-
ulates emission to generate the wave packet associated
with level (2). This wave packet recoils forward with
momentum lgkl —

lQ (ki2 + k23 —k23) l

= fp, Qi2/c.
wave packet associated with level (1) remains fixed in
position throughout. A trilevel echo is formed when the
recoil trajectories associated with levels (1) and (2) cross.
This echo carries a vibronic factor whose phase, according
to Sec. III is twice the area enclosed by 0 = o, o = o«, ~
83 ~ ni ~ 82 + ng + pg + Si + pg: po —0, or
more simply 0 ~ b3 —+ o.q, —+ b2 —+ o.q, —+ 0. This is
a pair of triangles as shown in Fig. 5 (c). Since there
is only a single crossing, this phase does not modify the
echo amplitude. If, however, one uses phase sensitive

(A3)

since (pl H = 0.
Now it is given that p(t) = I'((t), where ( is real.

Therefore

(A4)

lp) = j (I'at —I'*a) lp),dt
(A5)

(A6)

since a ~p) = p lp) and (pl at = (pl p'. Therefore P = 0;
since P = 0 at the beginning of the migration, it remains
zero at the end. A similar argument applies with 0 and
I interchanged.

APPENDIX B

Here we show that ll;): e'~ lI'f), where P
1 i —+I y

arg(1 tlI', ). Let D stand for D(I', ) and A for I't —I';.
Then we have

since H (t) lp) = 0 by Eq. (3.7). In the adiabatic limit we

can drop z, le'), and have P lp) =i z lp) —
&

e '&H ls)
or, on multiplying by (pl,
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DIO) = II'*) (»)
and DIE) is the same as II'y) apart from a phase. The
latter statement can be rendered neatly as

But from Eq. (1.1), since (Ole = (Ol, we have (BIO) =
e ~, which is real. Hence if we take P = arg(I'tll';),
then we have

(B4)
DI&)(&ID' = ll'f)(1'fl.

Consequently, we have the identity

ll'f) (I'f ll'*) = DI&) (&ID'DIO)

(B2) On the other hand, Appendix A shows that IO) O~A
IA), and by a unitary transformation this becomes

(B5)

= Dl&)(alo) (B3) Applying (Bl) and (B4), we have the desired result.
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