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The photon-number distribution for the gray-body radiation given by Bekenstein and Schiffer [Phys.
Rev. Lett. 72, 2512 (1994)] is used to study its nonclassical effects. It is shown that as the absorptivity
varies from O to 1, the gray-body state changes from an extremely nonclassical state to an extremely clas-
sical one. The critical point of this transition is located. It is discovered that the negative binomial state
is a special case of the gray-body radiation at the transition point; hence, it is an example of borderline
states such as the coherent state. The explicit expressions for the factorial moments, the Q parameter,
the P function, and the nonclassical depth of the gray-body state as functions of absorptivity and temper-

ature are derived.

PACS number(s): 42.50.Dv, 42.50.Ar

I. INTRODUCTION

The blackbody is an idealized object with absorptivity
a =1. The importance of the blackbody radiation is due
to its universality. The discovery of its phonon-number
distribution by Planck [1] to be

pr)=(1—e Xe ™ (1.1)

with x =#w /kT marks the beginning of quantum theory.
Surprisingly, not much attention has been paid to the
more realistic case when a < 1, which has been referred to
as the gray body. This is perhaps because of the
widespread feeling that the gray-body radiation is not of
universal form. The universality of gray-body radiation
has been established very recently by Bekenstein and
Schiffer [2]. The conditional photon-number distribution
for the gray-body radiation when the incident photon
number is known to be m has also been established by
these authors to be

(ex_l)emxam+n
(ex_1+a)m+n+l

min(m,n) (—l)i(m +n —i)
im —i(n —i)

Po(nlm)=
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9 sinh¥(x /2) | ,
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X 1—41

(1.2)

which is identical to the distribution derived by Beken-
stein and Meisels [3] for a Schwarzschild black hole. In
the limit @ — 1, the square bracket in Eq. (1.2) is unity;
then the authors of Ref. [2] have demonstrated by numer-
ical method that the summation yields unity and Eq. (1.2)
reduces to Eq. (1.1). Since these authors indicated that
they were unable to do this analytically, we shall close the
gap in the following.

Because the summand is symmetric in m and n, we can
arbitrarily assume that m = n without losing any generali-
ty. Then the summation can be rewritten as
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n||m-+n-—i

s=3 (—1)"[l. , (1.3)
i=0

m—i

which can be identified with the coefficient of x™ in the
series expansion of the product

(1—x)(1—x)"""1=(1—x)"1= 3 x*; (1.4)
k=0
therefore we have
S=1. (1.5)

We shall refer to the quantum state of a single-mode
radiation with photon-number distribution represented
by Eq. (1.2) as the gray-body state. We are interested in
the nonclassical effects in the gray-body state. Nonclassi-
cal effects are those that can never exist or occur if the
system is not described quantum mechanically. To be
more precise mathematically, whenever the P function
(introduced independently by Glauber [4] and by Su-
darshan [5]) is not positive definite, the quantum state it
represents is defined to be nonclassical.

It will be shown that the gray-body state is the mixture
of the thermal (blackbody) state and the number (Fock)
state in the proportion of a to 1 —a. It is well known [6]
that the number state is as nonclassical as a radiation
state can be. On the other hand, we are not aware of any
other state that is more classical than the thermal state.
Therefore, by varying the value of @ from O to 1, we can
observe the transition of the gray-body state from an ex-
tremely nonclassical state to an extremely classical state.
This is why we are so interested in studying the gray-
body state.

II. FACTORIAL MOMENTS

Factorial moments of photon-number distribution can
play a key role in the evaluation of photon statistics of a
radiation field. In this section we shall derive the expres-
sion for the factorial moments of the gray-body state.

First of all, it will be more convenient to replace the
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upper limit, min(m,n), of the summation in Eq. (1.2) by
just a fixed m; this is all right because, if m > n, then the
summand vanishes for m =i > n since the factorial of a
negative integer is infinity. It will also be more con-
venient to rewrite the expression inside the square brack-
ets of Eq. (1.2) as

(e*—1)e™ g™ *n i (m +n—i)
(e*—1+a)" tnT1 & il(m —il(n —i)!

Po(nlm)= [(e*—

The factorial moments are defined as

o

(n*)y=3

n!
20 _k)!pa(nlm) .

1—41

Then Eq. (1.2) can be rewritten as

1+a)l—a—e *)/a?]) .

Using Eq. (2.2) in Eq. (2.3) and changing the order of summations, we obtain

i
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Using the following identity
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in Eq. (2.5) and changing the order of summations, we have
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Using Eq. (2.7) in Eq. (2.4) and changing the order of summations, we obtain
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But we can put the last expression in a more convenient form by using the following binomial expansion:
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Substitution of Eq. (2.9) into Eq. (2.8) followed by a change in
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the order of summations gives
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Using the identity
k—i
j—i

in Eq. (2.10), we finally obtain a better expression for the
factorial moments as

m

i

We are now in the position to evaluate the nonclassical
effects of the gray-body state by using Mandel’s parame-
ter [7]

o=((nP)—(n))/{n).

Whenever Q <0, we have a sub-Poissonian photon-
number distribution, which is possible only for a nonclas-
sical state.

From Eq. (2.12) we can obtain the explicit expressions
for the first two factorial moments to be
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k

k . i m
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(2.13)

<n>=(1—a)m+e)j;_1 2.14)
and
(n@y=m (m —1)(1—q)2+ Hmal=a)
e*—1
2q?
(e*—1)2 ° 2.15)

Substitution of Egs. (2.14) and (2.15) into Eq. (2.13) gives

—m(1—a)*(e*—1)*+2ma(1—a)(e*—1)+a?
(e*—1)[m(e*—1)1—a)+a] '

Q:

(2.16)

Examination of Eq. (2.16) indicates that when the ab-
sorptivity a —0, or when the temperature T'—0 (x — o),
we have Q— —1, and we definitely have a nonclassical
state. On the other hand, when n — o, we will have a
nonclassical state if

a <tanh(x/2) .
III. P FUNCTION

(2.17)

To determine the probability distribution function
from the knowledge of its moments is generally referred
to as the problem of moments [8]. Historically, only nor-
malizable positive distribution functions are considered
in such a problem. However, in 1963 Glauber [4] and Su-
darshan [5] independently introduced the so-called P rep-
resentation of quantum states as quasi distributions in the
complex domain which are known as P functions. The P
functions not only can assume negative values, but also
are typically highly singular in the sense that it consists
of high-order derivatives of Dirac’s delta function in the
complex domain. Therefore, the moment problem
presents new difficulties.
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The moment problem of P functions was recently
solved in practical sense by Lee [9], who derived an ex-
pression for the P function in terms of Dirac’s delta func-
tion in the complex domain and its derivatives as follows:

_ - B, -
P(zZ) =3 3 (_1)k+17u78(k’1)‘z’2) , (3.1
k=01=0
where Z is the complex conjugate of z and
ak +1
8'%0(z,2)= ——8(z,7) 3.2)
9z"3z

are the derivatives of the delta function in the complex
domain. The moments u, ;, appearing as the coefficients
in this expression, can be expressed as

e = (@@ =Tr((@"(@)4p)

=1 [ d%z*2'P(z,7) 3.3)
T
where @ and @' are the annihilation and creation opera-
tors, respectively, g is the density operator for the quan-
tum state, and d’z/7 is the measure of the complex
domain.
The density matrix for the gray-body state can be writ-
ten as

pla,m)= i Pa(nlm)|n){(n| .

n=0

(3.4)

Its moments can be calculated as follows:

Ber= 3 po(nlm)nl@"@)*n)

n=0

g n!
._"gopa(n|m)—‘—‘(n Ry

=<n(k))8k’1 .

81

(3.5)

So the moments of the P function are identical to the fac-
torial moments of the photon-number distribution, which
have been calculated in the preceding section.
Substitution of Eq. (2.12) into Eq. (3.1) yields
e o L sk, =
P(z,7) k§0 k!S (z,Z)

min(k,m) |k | |m
X 2 i
i=0

k—i
(1—a)t.

a
e*—1
(3.6)

Unfortunately, it is not easy to make much sense out of
this expression. Sometimes it is possible to convert an
apparently singular expression into a regular expression.
One way to achieve such a goal, as suggested in Ref. [9],
is through a Fourier transformation. We adopt the
definition of Cahill and Glauber [10] to calculate the
Fourier transform of a function ¢(z,Z) in the complex
domain according to the formula

B )= L - 172
Plw, )= - fexp(wz wz)p(z,z)d*z . (3.7)
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Such a definition is in conformity with the displacement
operator, which generates the coherent states from the
vacuum, and with the definition of the characteristic
functions in P representation. It is referred to as sym-
metric Fourier transformation because the inverse trans-
form is calculated according to exactly the same formula

as the direct transform, so we have $=¢. According to
this definition, it can be shown that [9]

5% Nw,w)=(w)—w), k,1=0,1,2,.... (3.8)

Using Eq. (3.8) in Eq. (3.6) and changing the order of
summations, we obtain the Fourier transform of the
P(z,Z) function as

~ © 1 |m
Pw,w)=3, — ;

(1—a)
i=0 i!
© 1 k—i
a _ 2\k
Xk2=i &= |5 (—lwl?)
=exp —[ x"l lw|? |L,,(1—a)|lw]?), (3.9)
eX—
where
| JRY
Lm(x)—igolf!- i (—x) (3.10)

is the Laguerre polynomial.
It is well known that the P function for the thermal

e* e*—1

_lex
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P,(2,2) ﬂ_fd v{
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m (l—a)k
5

1597
(blackbody) state is
Pu(z,Z)=(e*—1)exp[ —(e*—1)|z|?] (3.11)
with Fourier transform
P (z,z)=exp[—|z]?/(e*—1)] . (3.12)

It is also established in Ref. [9] that the P function for the
number (Fock) state of definite photon number m is

m
S(k’k’(z,f)

w1
P, (z,Z2)=3 0 (3.13)
k=0
with Fourier transform
P, (w,w)=L,,(lw|* . (3.14)

On the other hand, it is well known that the product of
the Fourier transforms of two functions is the Fourier
transform of the convolution product of the two func-
tions. It is also well known that the convolution product
of the P functions of two quantum states is the P function
of the mixture of the two quantum states. With these
facts in mind and comparing Eqgs. (3.12) and (3.14) with
Eq. (3.9), we can see that the Fourier transform of the P
function for the gray-body state clearly reflects the fact
that it is the mixture of the thermal state and the number
state in the proportion of @ to 1—a.

Using Egs. (3.11) and (3.13) and the convolution
theorem of Fourier transforms, we can obtain another ex-
pression for the P function of the gray-body state as a
convolution integral

(3.15)

m
X ]5”"%,3) )
k=0

By repeated integrations by parts, we can convert the last expression in terms of distributions into a regular function.
But it is easier to obtain the regular function by the symmetric Fourier transformation of Eq. (3.9) directly.

Since our Fourier transform is symmetric, we can use the result of the Appendix on Eq. (3.9) to obtain the (inverse)
Fourier transform of P(w,®). Substitution of @ /(e*—1) for ¥ and 1—a for B in Eq. (A6) gives

m
—1 | e*—ae*—1

a

X
P(z,7)="% exp

This is the P function for the gray-body state expressed as
an ordinary function.

IV. NONCLASSICAL DEPTH

A continuous parameter 7 was recently introduced [6]
into the convolution transformation of the P function to
define a general distribution function as
P(w,w)d*w . (4.1)

_ 1 1 )
R \Z, i —_— —_
(z,Z,7) - fexp . |lz—w]|

We shall call R(z,z,7) the R function. The original P

_ |e"—-l ]|z|2
a

(1—a)(e*—1)%z|?

ale*—ae*—1)

L, (3.16)

and Q functions are two limiting cases of the R function
with 7=0 and 1, respectively.

It should be pointed out that similar continuous pa-
rameters have been introduced before: the € parameter
by Graham et al. in 1968 [11] and the s parameter by
Cahill and Glauber in 1969 [10]. Our 7 parameter is re-
lated to these two previously introduced parameters as
7=1—¢ and 7=(1—s)/2. Our motivation for introduc-
ing this 7 parameter is to define a measure of how non-
classical a quantum state is. For this purpose, the 7 pa-
rameter seems to be more natural than the other two.

It is well known that the origin of the nonclassical
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effects is that the P function of a quantum state is not
positive definite; hence it is called quasidistribution func-
tion. On the other hand, the Q function is always a posi-
tive definite regular function. The reason that the Q
function behaves better than the P function is because a
convolution transformation can be viewed as a moving
average; so it has the effect of making the transformed
function smoother. The smoothing effect of the convolu-
tion transformation of Eq. (4.1) is enhanced as 7 in-
creases. If 7 is large enough so that the R function be-
comes acceptable as a classical distribution function, i.e.,
it is a positive definite regular function and normalizable,
then we say that the smoothing operation is complete.
Let Q denote the set of all the 7 that will complete the
smoothing of the P function of a quantum state and let
the greatest lower bound, or infimum, of all the 7in Q be
denoted by

T, = inf (7). (4.2)

TEQ
We have proposed recently [6] to define 7,, as the non-
classical depth of the quantum state.
According to this definition, we have 7,, =0 for the
coherent state |a) because its P function is a delta func-
tion; this is very reasonable since the coherent state is
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known to be on the borderline between classical and non-
classical states. On the other hand, for 7=1 we have
R(z,Z,1)=Q(z,Z), which is always acceptable as a classi-
cal distribution function for any quantum state; hence, 1
is an upper bound for 7,,. Therefore, we can specify the
range of 7, to be

0<r,<1. 4.3)

Applying the convolution theorem of Fourier trans-
forms to Eq. (4.1), we can express the Fourier transform
of the R function as

R(w,w,r)=exp(—rwit )P(w,D) . (4.4)
Substitution of Eq. (3.9) into Eq. (4.4) gives

R(w,w,7)=exp

[wl? | L, (1=a)w[?),

e*—

— a+7
1

4.5)

which is still the product of an exponential function and a
Laguerre polynomial with arguments proportional to
|w|?% so we can again use the formula derived in the Ap-
pendix to obtain the R function is

_ et
a

z|?

_ e*—1 (e*—1)—ae*—71(e*—1)
R(z,Z,7)= — exp
m(e*—1)+a (e*—1)+a
XL, (1—ale*—1)?|z|?

[r(e*—1)+a]l[(e*—1)—ae*—T(e*—1)]

The Laguerre polynomial can be positive definite only
if its argument is always negative, and the only way for
the latter to be negative is

(e*—1)—ae*—71(e*—1)<0 . 4.7)
When this condition is satisfied, the R function of Eq.
(4.6) is a positive definite regular function. Therefore, the
nonclassical depth of the gray-body state is

Tm=1—a— (4.8)

e*—1
Examination of this expression indicates that, as a varies
from O to 1, 7,, varies from 1 to —1/(e*—1); and the
transition from a positive value to a negative one occurs
at

a=1—e™%, 4.9)

which means that the gray-body state is a nonclassical
state when @ <1—e ™ * and becomes a classical state when
a>1—e ™" The negative value for 7,, mentioned above
is out of the range given in Eq. (4.3), so we should be cau-
tious about its meaning.

] . (4.6)

V. NEGATIVE BINOMIAL STATE

We now focus our attention on the critical situation
when the condition of Eq. (4.9) is satisfied.
First of all, we have

i

i (m+n—i) (e*—14+a)l—a—e ™™
2o ilm =i n —i) a?

1

:—"—(”rlntﬁ)" (5.1)

because the summand vanishes except when i =0. The
condition of Eq. (4.9) can also be written as

e*=1/(1—a) . (5.2)

Substitution of Egs. (5.1) and (5.2) into Eq. (2.2) yields a
much simpler photon-number distribution

(m +n)! (1—a)”
min! (2_a)m+n+l 4

pi(nlm)= (5.3)
which represents a special case of the negative binomial
state discussed recently by Matsuo [12] and by Gray,
Srinivasan, and Lee [13].
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Using Eq. (5.2) in Eqgs. (2.12) and (2.13), we obtain the
factorial moments and the Q parameter as

(n®)e=(1—a)(m +k)/m! (5.4)
and

Q‘=1—a, (5.5
respectively.

Using Eq. (5.2) in Eq. (3.16), we obtain the P function
for the negative binomial state as

A P

|2
ml (1—q)nt1oP

_z
1—a

P(z,z)= , (5.6)

which is in agreement with the expression given in Refs.
[12] and [13] for the special case when the continuous pa-
rameter is an integer (A=m +1).

It is well known that the coherent state is right on the
borderline between classical and nonclassical states be-
cause its nonclassical depth 7,, =0 [9] and its Q parame-
ter also vanishes. We were under the impression that the
coherent state is unique in being ‘“‘the” borderline state.
We now recognize another borderline state.

We can see more clearly why the negative binomial
state is a borderline state by focusing our attention on the
following factor of the P function given in Eq. (3.16):

(1—a)(e*—1)?|z]|?

a(e*—ae*—1)

2 e*—ae*—1 "
F(|z|))= |——— | L

m

(5.7

Fora<1—e % F,(|z|?) is a polynomial in |z|? with al-
ternative signs in its coefficients; and it is well known that
the Laguerre polynomial L, (x) has m real positive roots;
therefore, F,,(|z|?) cannot be positive definite. On the
other hand, for a >1—e %, F, (|z|?) is a polynomial in
|z|? with all positive coefficients, hence, it is positive
definite. However, at a =1—e ™%, all the coefficients of
F,,(|z|?) vanish except for the highest-order one.

Unfortunately, the Q parameter given in Eq. (5.5) does
not reflect the borderline-state nature of the negative bi-
nomial state. It should be very interesting if we can find
some more practical ways to demonstrate the nonclassi-
cal effects in quantum states in the neighborhood, but on
the nonclassical side, of the negative binomial state.

VI. SUMMARY

Using the photon-number distribution given by Beken-
stein and Schiffer, we have studied the nonclassical effects
in the gray-body radiation. We have derived explicit ex-
pressions for the factorial moments of the photon-
number distribution and for the P function as a regular,
not necessarily positive definite, function. The nonclassi-
cal effects have been examined according to Mandel’s Q
parameter and Lee’s nonclassical depth. The Q parame-
ter depends on the number of the incident photons, but
the nonclassical depth is independent of it. This
discrepancy can be understood in the following sense:
While the nonclassical depth is an overall measure of the
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nonclassicality of a nonclassical state, the sub-Poissonian
photon-number distribution as indicated by the negative
value of the Q parameter is just one of many possible
manifestations of the nonclassical nature of the radiation
state; it is quite possible for a nonclassical state to have
super-Poissonian photon-number distribution.

The interesting thing about the gray-body radiation is
that, as the absorptivity a varies from O to 1, it changes
from an extremely nonclassical state to an extremely clas-
sical one, covering the whole spectrum. The most in-
teresting discovery of this study is that the negative bino-
mial state is a special case of the gray-body radiation at
the critical point of the transition from nonclassical to
classical states and that the negative binomial state is an
example of a borderline state, in addition to the coherent
state; the latter had been assumed to be unique in this
respect.
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APPENDIX

In this appendix we shall show that the symmetric
Fourier transform of the product of an exponential func-
tion and a Laguerre polynomial with arguments propor-
tional to |z|? is of the same form except for a constant
factor and different proportional constants in the argu-
ments.

Cahill and Glauber [10] have derived a very useful in-
tegral identity in the complex domain

Q,

1 = 2,52, 1
fexp(az—i-ﬁz vlz|*)d?*z exp (A1)

We are particularly interested in a special case of the
identity when B= —@&, which gives the Fourier transform
of a Gaussian function f(z,z)=exp(—v|z|?) as

f(a,c'i)=ifexp(af—&z—ylzlz)dzz
T
= ;l/—exp( —ad/y) . (A2)

Using the above relation, we can easily obtain the
Fourier transform of the function

filz,2)=|z|*exp(—7|z[*) (A3)
as . a k X B
F)=— |2 -9 - ea
fk(a,a)——y 3 Py exp » ]
k+1 _ _

=kt |=| exp|—2%|L, 9‘;’5’ (A4)

Using Eq. (A4), we can further derive the Fourier trans-

form of the function
gn(z,2)=exp(—v|z|*)L,(Blz|?) (A5)

as
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ad | & (7 B ko1 |k ad
g,(a,&d)=—exp |——— — = — | . _—
" Y ,Z’o k Y EOJ! J Y
lgpl-e@|s LM |_a@ s |"TT_B
¥ =Y IRY v )i ki oy
J —J
_1 ad | & 1 |"||aaB B
=—exp | -2 |3 —|. > 1
14 v St Uy 14
n -—
=1 l—ﬁ exp -z L, aap (A6)
14 14 14 v(B—v)
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