
PHYSICAL REVIEW A VOLUME 52, NUMBER 2 AUGUST 1995

EfFect of a squeezed vacuum input on optical bistability
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We discuss the optical bistable behavior of a system of X two-level atoms pumped by a coherent input
field and coupled to a squeezed vacuum field by treating the optical bistability of such a system as an
input-output problem. We consider the equation of motion for atomic dipole moments, coupled to the
cavity field and the squeezed vacuum, and the boundary condition connecting the input and output fields

with the atomic lowering operator. A simple analytical expression for the inhuence of the squeezed vac-
uum input on the bistable behavior of the output field is derived by this method. The results indicate a
strong influence of the squeezed vacuum input on optical bistability. The squeezed (stretched) vacuum

input field tends to increase {decrease) the range of optical bistability.

PACS number(s): 42.65.Pc

I. INTRODUCTION

Squeezed states are nonclassical states of light. Their
significance is discussed extensively in the existing litera-
ture along with their generation, detection, and physical
properties [1—5]. As indicated by Gardiner [6], the
squeezed vacuum leads to two dipole decay constants: a
small T2 for the dipole component in the squeezed quad-
rature and a correspondingly larger T2 for the dipole
component in the stretched quadrature [7]. Because the
squeezed vacuum also affects the decay rate of the atomic
population, the output field from a cavity that contains a
system of such two-level atoms will be affected by the
squeezed vacuum.

Optical bistability with squeezed vacuum input has its
own distinctive features. The tunneling time, for exam-
ple, with squeezed vacuum input can be as long as about
2 s instead of 0.1 s in ordinary vacuum [8]. The reso-
nance fluorescence spectrum under the inAuence of the
squeezed vacuum is given by Carmichael, Lane, and
Walls [9]. Intrinsic optical bistability under squeezed
vacuum input is discussed by Singh et al. [10]. There is
also bistable behavior in the system of an optical para-
metric oscillator coupled with two-level atoms where the
squeezed field is not injected but produced by the system
itself [11].

Galatola et al. discuss the possibility of inducing
switching of an optical bistable system by varying the
phase of the squeezed vacuum input [12]. They give the
input-output relationship and focus on the variation of
the output as a function of the relative phase between the
squeezed vacuum and the coherent input.

In this paper we discuss the optical bistable behavior of
the output field from the system of two-level atoms that is
pumped simultaneously by a coherent input field and a
squeezed vacuum field lsee Fig. 1). Our system is similar
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to the one discussed by Galatola et al. [12]. In our
traveling-wave cavity system the coherent driving field
and the squeezed vacuum field are injected via different
ports, rendering the scheme more feasible experimentally
than that of Ref. [12]. We consider the equation of
motion for the atomic variables and obtain the input-
output relationship by boundary conditions. In so doing
we can neglect the coupling between the coherent pump-
ing field and the squeezed vacuum because it does not
contribute to the equation of motion for the atomic vari-
ables. We stress the importance of the input-output rela-
tionship for such a system and, with its help discuss the
effect of the squeezed vacuum on the range of optical bi-
stability. We also discuss its effect on the bistable states.
Our results indicate that the atomic system exhibits
phase-sensitive properties in its optical bistable behavior
with squeezed vacuum input. Relative to the coherent in-
put field, as shown in Fig. 2, the squeezed quadrature of
the squeezed vacuum input field corresponds to ampli-
tude squeezing and the stretching quadrature to phase
squeezing. The output behavior depends strongly on the
squeezing or the stretching quadrature fed in. The reason
is that the existence of the squeezed vacuum enlarges the
decay constant of atomic population and the transverse
relaxation rate for the dipole component in the squeezing
quadrature but reduces the transverse relaxation rate for

'Also at Central Research Institute for Physics, P.O. Box 49,
H-1525 Budapest, Hungary.

FICi. 1. Schematic representation of the system of the cavity
containing X two-level atoms with coherent pumping and
squeezed vacuum input and the boundary condition for the
traveling-wave cavity.
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the dipole component in the stretching quadrature.
Therefore, it needs higher pump Geld to saturate the sys-
tem of two-level atoms when the dipole component S„ is
in the squeezing quadrature and the system will lose opti-
cal bistability when the dipole component S is in
stretching quadrature. This effect provides a method to
detect the squeezing of the Geld as well as a possible
broad use of optical bistability in optical information pro-
cessing.

The paper is organized as follows. In Sec. II the model
of a system of X two-level atoms pumped by a coherent
input field and coupled to a squeezed vacuum field is dis-
cussed and the Hamiltonian and the master equation are
given. In Sec. III the appropriate boundary condition for
the case of traveling-wave cavity is presented. In Sec. IV

we discuss the atomic dipole moments for such a sytem in
steady state. In Sec. V the output field is derived by using
the appropriate boundary condition and the results are
given. In Sec. VI we carry out a linear stability analysis
of the input-output relationship. In Sec. VII the optical
bistable behavior of Auorescent light is also discussed. In
Sec. VIII we brieAy discuss and summarize the main re-
sults of the paper.

H=H0+H', (2.1)

II. MODEL

Consider the system of X two-level atoms coupled to a
laser field and a squeezed vacuum input. The Hamiltoni-
an is
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FICi. 2. Comparison of normal and squeezed vacuum Gelds: (a) normal vacuum field exhibiting circular variance; (b) squeezed vac-
uum field, corresponding to y=~, with the major axis of the variance ellipse perpendicular to the direction of amplitude; (c)
stretched vacuum field, corresponding to y= 0 with the minor axis of the variance ellipse along the direction of amplitude.
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where
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where b and b are annihilation and creation operators of
the squeezed vacuum field, o, and o,+ are atomic lower-
ing and raising operators for the ith atom, k, is the mag-
nitude of the wave vector, z, is the position of the ith
atom, and Q is the Rabi frequency characterizing the
coupling between the atom and the cavity field. Micro-
scopically Q=2G(a„„), where G is the coupling be-
tween the atom and the quantized cavity Geld. Macros-
copically A=pE„„/fi, where E„, is the classical cavity
field and p is the classical dipole moment. Furthermore,
g is the coupling between the squeezed vacuum and
atoms and 5 is the detuning 5=co, —coo between the tran-
sition frequency co, of the atom and the frequency of the
coherent field coo. The properties of the squeezed vacuum
field are described by the expressions

(2.4)

(2.5)

where m = ~m ~e'+ is a complex number and q&/2 is the
phase angle of the amplitude quadrature with respect to
classical pumping field. The physical meaning of n and I
are given in Fig. 2. Figure 2(a) shows the circular vari-
ance of a normal vacuum input field (m =0). In Fig. 2(b)
we show a vacuum field squeezed in the amplitude quad-
rature corresponding to y =a (squeezing quadrature) and
the variance ellipse in the direction of amplitude is illus-
trated. In Fig. 2(c) we show a vacuum field squeezed in
phase quadrature corresponding to p =0 (stretching
quadrature) and the variance ellipse perpendicular to the
direction of the amplitude is illustrated.

We discuss the problem from the viewpoint of input-
output by considering the equation of motion for atomic
variables and connecting the input and output by bound-
ary conditions. The master equation for zero detuning is

N N

S = go, exp( ik,—z;), S,= go.,', S+=(S )* .

III. BOUNDARY CONDITION

The boundary condition to connect the pump field and
the atomic lowering operator is discussed by Gardiner
and co-workers [6,14,15] in input-output problems for the
case of a standing-wave cavity. Here we consider a
traveling-wave cavity as an example. In Fig. 1 a
traveling-wave cavity with a classical input field and
squeezed vacuum is shown. The classical pumping field

a;„ is injected at mirror M, and the squeezed vacuum
field is injected at mirror M2. The output field a,„, is at
mirror M2. The bistable absorber consisting of a collec-
tion of two-level atoms is placed between M, and M2.
We have the following relations at various locations in
the cavity:

a 1
= ta;„+ra4

at mirror M1,

iGL
a2 —ai

(3.1)

(3.2)

from mirror M1 to mirror M2, where G is the coupling
between the atom and the field and L is the cavity length,
so that L /c is the interaction tiine,

a,„,= t02+ rb (3.3)

(2.9)

Here S, S+, and S, are collective dipole operators, yII
and y~ are longitudinal and transverse relaxation rates,
respectively, y =y~~ =2mg (coo), and n and m characterize
the squeezed vacuum fluctuations as specified by Eqs.
(2.4) and (2.5).

dt 2
(pS —S p)+ (pS+ —S p)+A, p+Lp,

2

(2.6)

where

for the output at M2,

o3 =ra&+ tb

for the cavity field at mirror M2, and

(3.4)

N

&, =(yJ —
y~~) y 4([o',",ptr;']+ [o';p, cr';]) (2.7)

describes the collisional decay of the atoms. The last
term in Eq. (2.6) describes radiative decay in the presence
of a squeezed vacuum. Its explicit form is given by

l Poa4=a, e (3.5)

from M2 through M3 and M4 to M„where yo is the
phase shift from M2 to M1. It should be noted that yo
depends on the cavity detuning.

For perfect resonance and steady state, we have the
boundary condition for our present case
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a,„,=a;„+ S +2rb .iGL
tc

(3.6)

Note that when (b ) =0 and (a,„,) =t(a„,) for steady
state, then we reobtain the relationship between the input
field and the intracavity field first given by Lugiato
[16,17],

«s+ &
y—,(2nP+1)&S+& y—

,

m~(S )-

iQ*(s ) (4.3)

iG
(3.7)

where G represents the coupling between the cavity field
and the atom. ao=(V/8mhcoo)' (E;/&T ) is the scaled
injected coherent field, E; being its classical amplitude,
and (a ) =(V!8nhcoo)'~ E„„=(V/8nhcoo)' (E,„,/
&T ). T= t is the transmissivity of the cavity, k is the
cavity damping constant, and V is the volume of the cavi-
ty.

IV. ATOMIC DIPOLE MOMENT

The source term in Eqs. (3.6) and (3.7) is the atomic di-
pole S . Next we will derive an expression for its
steady-state value.

From the master equation (2.6) we can derive the rela-
tions

d(s, )
y~~(2n+ )&S, &

—
y~~N

—in&S+)

(s, &+N'+ip, (s+) ip—*, &s-) =o, (4.4)

(s-) —a(s+) — ' (s, ) =o, (4.5)

(s+& —a*&s-&+ '
&s, &=o. (4.6)

In the above expressions a= 2m—P/(2nP+1) is a mea-
sure of the squeezing and N'=N/(2n+ 1). Furthermore,
we introduced

A

(2n+1)y
(4.7)

and

where we let y =y ~~, ye =1/T2 is the atomic dipole decay
constant [13],N is the number of atoms in the cavity, and
P= y~~/2yi. In the steady state we obtain from (4.1)—(4.3)

+in'(s-), (4.1)

d(s )
yi(2n—P+ 1)(S ) —

y~)m (S+ ) + (S,),iQ

(4.2)
I

Q
(2nP+ 1)yi

Equations (4.4)—(4.6) yield

(4.8)

and

~cc~ )+(plp2 +pip2)+(cc plp2+ccp1 p'2 )]

2(1—~~~')N

[2(1—~~l')+(pip2 +p i p»)+(~*pip2+~p i p2 )l
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(4.10)

If we consider the simple case that both cx and p are real, then we can write

&s-
& =&s+ &'= ip2X'

2(1 —a+p, p2)

and

( )
(1—a)N'

(1—a+p, p )

These equations give the influence of squeezed vacuum on the atomic polarization (S ) and inversion ($, ).

(4.11)

(4.12)

V. OUTPUT FIELD

From the boundary condition (3.7) we can get an input-output relationship. Substituting Eq. (4.9) into Eq. (3.7) and
normalizing the fields by letting ( a ) =QN, x and ao =QN, y, where N, is the saturation photon number

(N, =yiy~~/46 ), yield an input-output relationship to describe the effect of squeezed vacuum input on the intracavity
field

p =x+ 2C ) ( 1+2nP)x —2mPx *
I

[(2n+1)[(2nP+1) —4[m )P ]+(2nP+1)(x[ —2P(m x +mx )I
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where C=G X/2ky~ is the atomic cooperative parame-
ter. This expression was first given by Galatola et al.
[12] from a different method. It is easy to see that
without squeezed vacuum input (n =m =0), we recover
the expression first given by Lugiato [17]:

2Cy=x 1+
1+x (5.2)

In the simple case where both the field x and the squeez-
ing parameter m are real we have

y=x 1+ 2C
(I+a)(2n+l)(2ng+I)+ x

(5.3)
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FIG. 3. Phase sensitivity of the input-output relationship
with squeezed vacuum. (a) n =0.1; 4,

'b) n =0.5, 0 y 2m.

Figure 3 shows the bistability curves of the output field
versus the coherent input field with squeezed vacuum in-
put for C=20 and y~~=2y~. We exhibit the results for
two cases: n =0 lin F.ig. 3(a) (moderately squeezed vacu-
um) and n =0.5 in Fig. 3(b) (strongly squeezed vacuum).

In Fig. 3(a) we see that the input-output relationship at
each phase angle y is changing. At y=m we have a large
bi- stable region and at y=0 we have a small bistable re-
gion. The bistable region increases as y increases from 0
to m. In Fig. 3(b) we find a difFerent behavior, viz. , as y
increases from 0 to m., there is an additional local max-
imum between 0 and m. The figure is symmetric about
y=~ and at y=m. the bistable region reaches its absolute
maximum. In Fig. 4 we consider the case of Eq. (5.3) and
plot the input-output relationship. The case when n =0
corresponds to classical input without squeezed vacuum
and in each case with squeezed vacu. um there are two di-
ferent choices for the value of m. The positive and the
negative values of I correspond to the squeezed (y=m )

and the stretched (y=O) vacuum field, respectively. For
a given value of n, we always consider the two cases of
perfect squeezing [I=&n(n +1), y=m] and stretching
[m=V n(n+I), y=O]. In Fig. 4(a) we compare the
input-output curves for n =0. 1 to the curve for n =0.
We see that for the squeezed case the output has a large
change only near the first turning point and a minor
change near the second turning point. The turning field
value for the first turning point y~ is larger than that
without squeezing and the range of the bistable region is
increased. For the stretching case, both turning points
are shifted towards smaller input field values, and the bi-
stable region is much smaller than that without squeez-
ing. Figure 4(b) shows similar results for the case of
n =0.5. We see that for negative m the bistable behavior
is lost, but for positive m the system is strongly bistable.
Figure 4(c) shows the input-output for n =0, 0. 1(m =0),
0.5(m =0). We see that there is a tendency to decrease
the optical bistability with the increase of n. Since the
squeezed vacuum field enlarges the atomic inversion de-
cay rate [6], the system tends to behave like a linear one
(saturation is negligible). As we see in Figs. 4(a) and 4(b),
there are different tendencies for squeezed and stretched
vacuum input. The squeezed vacuum makes the system
exhibit a more pronounced optical bistable behavior.
This is because the atomic system is phase sensitive and,
for the perfectly squeezed or stretched vacuum input,
there is a phase transition only between two components
(between S„and S, for squeezing or between S and S,
for stretching) of the atomic spin vector; the third com-
ponent (S» or S„) is kept unchanged, as shown by Gar-
diner [6]. Then S =S iS varies—only as a function of
S (or S ). So the output field is affected by the squeezed
vacuum field. Without the input field the spin vector has
spherical symmetry. With the coherent input field the
spin vector has circular symmetry. We see that the sym-
metry of the spin vector is broken with the squeezed vac-
uum input field.

Figure 5 shows the input-output curves with and
without the squeezed vacuum input field for the case of
y~~=yi [7]. In Fig. 5(a) we compare the input-output
curves for n =0. 1 to the curve for n =0. We see that
with the squeezed vacuum the bistable region is slightly
larger than in ordinary vacuum. On the other hand, the
stretched vacuum decreases the bistable region, as shown
in Fig. 4. Figure 5(b) gives the comparison of input-
output curves for n =0.5 with that for n =0. We see
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that the optical bistability is decreased for both squeezed
and stretched vacuum cases. The reason is that the col-
lision is a random process that helps restore the original
symmetry of the spin vector. It also enlarges the phase
transition rate and averages the phase transitions among
the three components of spin dipole moment S,S, and
S,. Thus collisions suppress the e6'ect of the squeezed
vacuum field by decreasing phase sensitivity in the spin
system.

The turning points can be derived from the relation
dy/dx =0. From Eq. (5.3) we have the results

xM ~ =
I C —(1—a)(2n+1)(2nP+ I )

6 [C —4C(1 —a)(2n + 1)(2nP+ 1)]'~
J
'~

(5 4)

where x~ and x are the output fields for the first and
the second turning points, respectively (so we have
x~(x ). Bistable behavior can only occur under the
condition that C ~ 4(1—a)(2n +1)(2nP+1). Without
the squeezed vacuum field the critical value for bistability
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FIG. 4. Input-output relationship with (n &0) and without (n =0) squeezed vacuum input for C=20 and y~~ =2yj. (a) n =0,0. 1;
(b) n =0,0.5; (c) n =0,0. 1,0.5, m =0. With given n, a squeezed (stretched) vacuum increases (reduces) the range of optical
bistability.
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is C=4 butut with the squeezed vacuum field (n =0.5,
y=vr) the critical value is C=3. Th

'
h

vacuum field, one can get optical bistability with fewer
atoms than in the presence of normal vacuum.

Figure 6(a) shows the change of y and ve
. , an .5 with perfect squeezing (y=rr),

where y~ and y are scaled amplitudes of the in ut field
for the first an

npu

For lar er n we h
an t e second turning points res

arger n, we have a larger range of optical bist b'1'

for a given value of C. Figure 6(b) shows the correspond-
ing curves for stretching (p=0) d
needs anee s a larger value of C to have bistability in this case.

Figure 7 shows the ratio of ty~ o y versus C for

n =0, 0.1 and or given n the ratio increases (de-
creases) with increasing (decreasing) the phase y from 0
to vr and for the stretched vacuum input the optical bista-

i ity decreases with increasing average photon number
in the vacuum field.

VI. STABILITY OF THE STEADY STATE

The stability of the output field is discussed starting
from the input-output relationship by emp oymg a stan-
dard method of mapping analysis. In Fig. 1 we consider
t at the expectation value of the atomic 1mic owersng opera-
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FIG. 5. Input-output relationship for C =20 and
n =0,0. 1; (b) n =0 0.5.

an yI~
=y~. (a)

. The effect of the collision tends tn s osym-
an „components of the spin vector and then to

counter the effect of the squeezed vacuum input.

FICx. 6. Values of t et"e first and second turning points vs C for
n=0, 0. 1,0.5 and (a) y=~ and (b) y=O. Th e curve shows that
or t e strong, squeezed vacuum field (large value of n and

For
y=m. there is a large range of optical b' t b'1' fis a i ity or the system.

or stretched vacuum input (y=O) done needs large C to
achieve optical bistability.
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4.0

3.0—

2.0 (-

regions may also become unstable. The physical mecha-
nisms for the instabilities predicted from Eqs. (6.5) and
(6.6) are different. In the negative slope region the de-
crease of the input field leads to an output increase; there-
fore the system is unstable. In Fig. 8 the stable and un-
stable regions of the output field with squeezed vacuum
are shown for (a) n =0,0. 1 (p=n, 0) and (b) n =0,0.5
(y=w, 0). We see that the upper branch and a small por-
tion on the lower branch, near the first turning point, are
stable and the negative slope part between the first and
the second turning points and most of the lower branch
are unstable.

1.0—

0.5-
30

0.0
0 20

I

40

C
60 80 100

FIG. 7. Ratio of yl to y versus C. (a) n =0; (b) n =0.1,
p=m,' (c) n =0.1, tp=0; (d) n =0.5, y=m, ' (e) n =0.5, =0. A
higher ratio means a larger range of optical bistability.

tor (S ) during the time period of nth round trip t„ is
related to the expectation value of the cavity field

(az(t„,)) during the previous time period of the
(n —1)th round-trip t„,. From Eq. (3.6) we have

20

15

j.D

n=O. 1

(6.1)

Now we perform a linear stability analysis by expanding
the output field about its steady-state value; assuming
that the deviation is real, we can represent the field as

(6.2)

The substitution of Eq. (6.2) into Eq. (6.1) yields the map-
ping relationship for the deviations

0
0

30—

10 15 20

n=O. 1, P =7T

30

(6.3)
20—

A stable steady state requires the following convergence
condition to hold [7j:

(6.4)

which gives two separate conditions

a~&0
Bx

(6.5)
n =0.5
y=0

&2.Bp (6.6)

0
0 10 15 20 25 30

Equation (6.5) gives the usual result, which predicts that
the negative slope region is unconditionally unstable. In
addition, Eq. (6.6) predicts that parts of the positive slope

FIG. 8. Stability of the input-output relation. (a) n =0,0. 1

(y=O, m); (b) n =0,0.5 (y=O, m and m &0). The bold part of
the curve is stable and the thin part of the curve is unstable.
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When we consider the time dependence of the field in
more detail following the method of Sec. III, the follow-
ing relationship can be obtained from the boundary con-
ditions:

which implies that

(6.9)

(a„„(t„))=t(a;„(t„)}+r'(a„„(t„,)) From here one can immediately get the unstable region

+ ' (S [(a„„(t„,)&]) .
C

(6.7) Bp &1—t&0.
Bx

(6.10)

5(t„)= t +t 1— 5(t„ i), (6.8}

If a linear stability analysis is performed by using Eq.
(6.2} we obtain

The difference between Eqs. (6.10) and (6.5) predicts addi-
tional unstable regions on both the upper and the lower
branches near the turning points. The ranges of those re-
gions depend on the feedback of the cavity. When F=O
(t =1), one can recover Eq. (6.5). Our conclusion is that
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FICx. 9. Hysteresis cycle of fluorescent intensity IF. (a) n=0; (b) n =0.1, y=m', (c) n =0.1, y=0; (d) n =0.5, y=m", (e) n =0.5,
y=O. The influence of the squeezed vacuum on the fluorescent light is shown to be similar to that on the transmitted output field.
Note that when there is no pump field (y =0) there is still fluorescent light.
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FIG. 9. (Continued).

the stability of the optical bistability depends on the pa-
rameters of the cavity and therefore the feedback is re-
stricted to a certain range for stable self-consistent solu-
tions.

VII. FLUORESCENT LIGHT

I(co) ~ Re J d—t exp[ i(co coo)t]F—(t) . —1

The integrated spectrum IF= JdmI(co) is given by

N

y &a,+a;&„=X+&S,&„

(7.1)

(2n+1)(1 —a)(2n +1—P)+x
(2n + 1)(1—a)(2n/3+ 1)+x

(7.2)

In Fig. 9 we show the hysteresis cycle of the total Auores-
cent intensity IF, which is proportional to the population
of the upper level, for n =0, 0.1, and 0.5. When there is
squeezed vacuum input but no pump field (y =0), there is
still Auorescent light. The reason is that the squeezed
vacuum input changes the population of the upper level.
The stronger the squeezing, the stronger the fluorescent
light. The effect of squeezed vacuum input on the
fluorescent light is similar to that on transmitted light.
We also notice that for a given value of n, negative I can
make the bistability disappear.

VIII. DISCUSSION AND SUMMARY

The optical bistable behavior of a system of X two-level
atoms in a resonator with squeezed vacuum input is dis-

The spectrum of Auorescent light I(co) is proportional
to the Fourier transform of the time correlation function
F(t)=g; = i & a,+(t)a, (0) )„,

cussed. We start from the equation of motion for the
atomic dipole moment, which is coupled to the cavity
field and to the squeezed vacuum field, and derive the ex-
pectation value of the atomic lowering operator S in
steady state. Then we connect the coherent input field
with the intracavity field and the atomic lowering opera-
tor by an appropriate boundary condition. A simple ex-
pression that exhibits the effect of squeezed vacuum on
the optical bistability of the output field is given. Our re-
sults show that, since the squeezed vacuum input des-
troys the symmetry of the S„and S components of
Bloch vector, a squeezed vacuum input will increase the
optical bistable range for a given system that is described
by the cooperative parameter C and a stretched vacuum
input will decrease the optical bistability of the system.
Compared with the case of ordinary vacuum field
(n =m =0), the optical bistability of the system with the
squeezed vacuum input now depends on both n and m. A
squeezed vacuum field (large value of n and positive m)
will enhance the range of optical bistability. The value of
the input field for the first turning point increases
significantly and the value of the input field for the
second turning point almost does not change. We also
see that the stretched vacuum input reduces the range of
optical bistability significantly since our results give the
two extreme cases of a perfectly squeezed input
[m =&n(n +1), y=m. ] and a perfectly stretched input
field [I=v'n (n + 1), y =0]. The x-quadrature stretched
field (y=0) can even make the optical bistability disap-
pear and make the system linear. This effect provides us
with the possibility to use the squeezed vacuum input to
change the behavior of the two-level atom system as we
need.

The stability of the input-output curve is discussed by
using the standard method of linear stability analysis.
Our results show that the stability of the steady state de-
pends on the structure of the cavity and the slope of the
input-output curve. For the squeezed vacuum input the
region of bistability is increased and the stability of the
output field is also affected via the inAuence of the
squeezed vacuum field on the input-output relationship.
When r = 1 the entire upper branch of the input-output
curve is stable and there is a small stable reigon near the
first turning point on the lower branch. When r &1 a
small portion near the second turning point on the upper
branch and a small portion near the first turning point on
the lower branch become unstable.

Optical bistable behavior of the fluorescent light is also
discussed. The hysteresis cycle of the total Auorescent in-
tensity vs input exhibits a behavior similar to bistable
behavior of the output field. The inAuence of squeezed
vacuum is similar for both transmitted and Auorescent
light. Our result shows that when there is no coherent
input field, there is still Auorescent light with squeezed
vacuum input. This effect is due to the fact that the
squeezed vacuum input changes the expectation value of
&~, ).

The effect of imperfectly squeezed vacuum input
(n&0, I=0) is that it reduces the range of optical bista-
bility since the squeezed vacuum field changes the atomic
transition rate [y'=(2n+1)y] [6]. Hence the time that
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the atom spends in the upper level is shorter compared
with the case with ordinary vacuum input field (n =0)
and the optical bistability of the system decreases [as
shown in Fig. 4(c)]. But any amount of squeezing
(~m )0, sr/2(y(3m. /2) has the tendency to increase
the range of optical bistability. The total effect of a per-
fectly squeezed vacuum input [m =&n (n +1), y=m] is
to increase the bistable range of the system.

Our results show that the optical bistability with a
stretched vacuum input strongly depends on the coopera-
tive parameter C, which is proportional to the number of
atoms. With a stretched vacuum input, a larger value of

C is required for the system to have the optical bistable
behavior. With squeezed vacuum, one can get optical bi-
stability for C & 4, i.e., with fewer atoms in the system.
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