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The theory of photodetection and quantum-optical coherence is formulated in the Heisenberg picture
and in such a way that the causal propagation of fields at the velocity of light is manifest. Objections to
the standard theory, based on a putative violation of causality, are shown to be unfounded, as is the no-
tion that normal ordering is essential for the elimination of an infinite contribution from the vacuum
field. In a similar vein we revisit the Fermi two-atom problem and explicitly demonstrate the causal na-
ture of the interaction without invoking simplifying approximations that have recently been called into

question.

PACS number(s): 42.50.Dv, 12.20.—m

I. INTRODUCTION

The quantum theory of photodetection and optical
coherence as originally formulated by Glauber [1] is cen-
tral to all of quantum optics, and the many applications
of the theory have required essentially no modifications
of the original formulation. However, in the past few
years it has been argued that the theory is inconsistent, in
principle, with causality in the sense that signals should
propagate no faster than the speed of light [2]. This no-
tion of causality, which is the one assumed throughout
this paper, is closely related to Fermi’s model for the
propagation of light in quantum electrodynamics [3].
This model consists of two atoms separated by a distance
r, in an initial state at time ¢ =0 such that atom A4 is ex-
cited, atom B is in its ground state, and there are no pho-
tons in the field. Fermi, under certain approximations,
showed that the probability for atom B to be excited
remains zero until the time ¢ =r/c required for light to
propagate from A to B. In more recent years many au-
thors have reexamined Fermi’s model [4]. It has been
shown, for instance, how a modification of Fermi’s origi-
nal approach leads not only to a properly continuous
solution, but also to the appearance of all multiples of the
retardation time r/c [5]. Based on the approximate na-
ture of the solutions obtained for Fermi’s model, it has
recently been argued that no rigorous proof of causal
propagation in quantum electrodynamics has been given
and that in fact the theory may even admit the possibility
of noncausal propagation [6].

In this paper we show that these objections to general
photodetection theory and the specific Fermi model are
closely related and more importantly that only slight
variations on the theory in either case are sufficient to eli-
cit causality. In neither case is conventional theory
flawed in any fundamental way. After formulating the
Hamiltonian and the relevant Heisenberg equations of
motion in the following section, we consider the Fermi
model in Sec. III and show that causality is an exact and
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rigorous consequence of the Heisenberg equations of
motion. Although the recent objections to previous, ap-
proximate demonstrations of causality are not unreason-
able, they are shown to be unfounded with regard to the
fundamentally causal nature of interactions in quantum
electrodynamics. In particular, we show that the earlier
results for excitation probabilities [3,5] are correct up to
a rotating-wave approximation and that they are
rigorously correct with respect to causality. In Sec. IV we
take up the objections to and proposed modifications of
the standard theory of photodetection and show that they
are related to the criticisms of causality proofs in the Fer-
mi model. As in the case of the Fermi model, a closer ex-
amination of the conventional theory of photodetection
and optical coherence shows that there are no violations
of causality. Section V summarizes our conclusions.

II. HAMILTONIAN
AND HEISENBERG EQUATIONS

In the Fermi two-atom problem it is convenient to
focus attention on the model of two two-level atoms in-
teracting with the electromagnetic field via electric-dipole
transitions. The Hamiltonian for this system is [7]

H:%ﬁwo[azl+0‘22]+HF_djEj(xl)le_djEj(XZ)UXZ ’
(1)

where we assume that the atoms at x; and x, are identi-
cal, having transition frequency w, and electric dipole
moment d. The summation convention for repeated in-
dices (j) is employed together with the conventional Pau-
li two-state operators for each atom. The first two terms
give the form of the Hamiltonian for the unperturbed
atoms and the field, respectively, and the last two terms
account for the interaction of the atoms with the quan-
tized electric field E(x) [8].

The Heisenberg equation of motion for the population
difference operator o ,, for atom 2, for instance, is found
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from (1) to be

6,,=— %djEj(xz,t )o ,,(2)

2i

=—ﬁidj[a;f(t)Ej(xz,n—Ej(xz,t)az(t)] , (2)
where o, and 0; are the lowering and raising operators
for the two-state atom 2 ([02,01]2 —0,,). In the third
line of Eq. (2) we have made use of the commutativity of
equal-time atom and field operators. Similarly

dz(t)=—ico00'2(t)—i

4B (%) (1) . 3)

The use of the formal solution of Eq. (3) in Eq. (2) gives
4
(6,,(t))=— —7ddi Re fotdt’(Ej(xz,t )E, (Xyt")

iog(t'—t)

Xo,(t'))e (4)

Here the expectation value is over an initial state |4, )
with atom 2 in the lower state, so that
o509, ) =(¢,;|01(0)=0, and this has been assumed in
writing Eq. (4).

III. CAUSALITY
IN FERMI'S TWO-ATOM PROBLEM

The solution of the Heisenberg equation of motion for
the electric field operator E(x,¢) in Eq. (4) will give us an
equation for the expectation value (o ,,(¢)) of the popu-
lation difference of atom 2 and therefore the excitation
probability

Py(t)=(al(t)ay)) =1[1+(0,,(t))], (5)

in terms of the field produced by atom 1. The solution
for the Heisenberg operator E(x,t) is straightforward
and proceeds exactly along classical lines [7]:

E(X2,t)‘_‘E0(xZ,t)+ERR(Xz,t)+E1(Xz,t) . (6)

Ey(x,,¢) is the vacuum field at x,, i.e., the source-free
field corresponding to the homogeneous solution of the
Maxwell equations for the Heisenberg operators.
Exr(X,,t) is the radiation reaction field of atom 2 on it-
self and E(x,,?) is the Heisenberg operator for the field
from atom 1 at the position x, of atom 2 at time ¢. The
field operator E (x,,?) has the same form as the classical
field from a point electric dipole. For simplicity, but
with no loss of generality for our purposes, we consider
only the far-field part of E(x,,?) and write [7]

r
t——
c

E1<x2,t>=—-§-[a—<a-?maxl t—L |o
cr C

(7

A
Here d is the unit vector pointing in the direction of the
transition dipole matrix element and T is the unit vector
in the direction of x,—x;, i.e., X,—Xx;=Tr. 0 is the unit

step function.

Equations (6) and (7) follow directly from the Hamil-
tonian (1) and the Heisenberg equations of motion for the
field operators and are formally the same as their classical
counterparts [7]. Thus the form (6) is essentially just a
statement of the superposition principle for the electric
field. Similarly the expression (7) for the field at x, due to
atom 1 is formally the same regardless of whether an
atom 2 is actually present at x,. In the limit t —0, when
the atom-field interaction is presumed for the sake of cal-
culation to be “turned on,” the field operators act only on
the field part of the initial (direct-product) atom-field
state. At ¢t >0 these operators act in the full atom-field
Hilbert space and thus take on a more general character
in that the second and third terms on the right-hand side
of (6) involve atom operators, or rather what were atom
operators at ¢ =0, because for ¢ >0 they too act on states
in the full atom-field Hilbert space. To obtain expecta-
tion values over some initial state in the Heisenberg pic-
ture, one typically employs short-time expansions, con-
servation laws, or some other means to relate operators at
t > 0 to operators at t =0 whose effects on the initial state
are unambiguous.

Formally, Egs. (4)—(7) exhibit the main point of this
section: the effect of atom 1 on atom 2 is retarded by the
propagation time r /c. Therefore atom 2 cannot become
excited, due to the influence of atom 1, until at least a
time r /c after atom 1 is excited. It is important to note
that this result is exact. No approximations have been
made in the 6(¢—r/c)-dependent term accounting for
the effect of atom 1 on the excitation probability of atom
2 in Eq. (7).

We have made the common but, of course, artificial as-
sumption that the atom-field interaction is switched on at
t =0; this is implicit in Eq. (4) in the fact that the lower
limit of integration is £ =0 [9]. In a more realistic formu-
lation of the problem the interaction is switched on adia-
batically from ¢ = — o0 and we suppose that atom 1 is ex-
cited at, say, t =0, long after the interaction is fully “on.”
In this case the two (ground-state) atoms can interact via
the van der Waals interaction for ¢ >0, with both atoms
remaining in their ground states. That is, the atoms will
generally be ‘“coupled” while they are both in their
ground states. After t=0, when one of the atoms is
presumed to be excited, the information about its excita-
tion cannot be transmitted to the second atom until
=r/c, as is clear from Eq. (7), which is independent of
any artificial turn-on of the atom-field interaction.
Therefore atom 2 cannot become excited until at least a
time r /c after the first atom is excited.

Shirokov [4] and Hegerfeldt [6] have observed that an
approximation made in Fermi’s original calculation (3]
and in various subsequent papers [4,5] was crucial to the
proof of causality. Hegerfeldt [6] states that “‘there seems
to be agreement that Fermi’s local result is not correct,
but that this nonlocality cannot be used for superluminal
signal transmission since measurements on 4 and B as
well as on photons are involved.” However, we have just
shown that the excitation of the initially unexcited atom
does in fact involve the finite signal velocity c¢. No ap-
proximations are required [10]. Before commenting fur-
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ther on specific objections to previous “causal results,”
we now show how the latter follow from certain approxi-
mations. In particular, we show how the results of
Milonni and Knight [5], and consequently those of Fermi

the part associated with the photon creation operators
aj\(1). Since E{*)(x,t) separately commute with equal-
time atomic operators, we can write Eq. (3) equivalently
as

[3], follow under the very mild approximation that the
transition frequency is large compared with the Rabi fre-
quency corresponding to the electric field of one atom
acting on the other.

G(1)=—iwe0 (1)~ d;[E} Ny t)0 (1)

+022(t)E}+)(x2,t)] 9)

A. Relation to previous results and Eq. (2) equivalently as

The electric-field operator can be written

E;(x,t)=E/"(x,t)+E| " (x,t), 8)

g ,(t)= d[a E(+)x2,t)
+E{7(x,1)0}(2)]+H.c. (10)
where by E‘“(x t) we mean here the part of E;(x,?) as-
sociated w1th the (Heisenberg-picture) photon annlhlla-
tion operators ay, () and likewise E{ " (x,1)=E}"(x,1)!

|

Then, assuming as in Eq. (4) an initial state with atom 2
in its lower state, we have

(G(1))=— %djdk Re fotd”<azZ(t')El(c+)(Xz,t')E}“(xz,t 1y "ot 0
+ fotdt'<E’(‘h)(XZ”')Uzz(")E}+)(X2,t )ye ‘T
+ [t (B g, 0 (B (xgy 1) e T
—iwg(r'—1)

+ fo’dz'<E;—>(x2,t)E,L—’(xz,t')azz(t'»e (11)

This expression is exact and equivalent to Eq. (4). To lowest order in the Rabi frequency d;E; /% we replace 0,,(t’) in
the integrand of Eq. (11) by its unperturbed ¢ =0 value ¢ ,,(0). Then

—iag(t'—

(022(t))-— ddkRefdt {0 H0)ELH (x,, 1" JE | (x5,8)) + (E{T(x5,8")0 ,5(0)E{ F(xp,2) )

+(E; 7 A(x5,1)0 p(0)E{ T (%,,8") )+ Ef 7 A(xp, ) E{ T (%,,8")0 ,5(0)) ] . (12)

In the absence of any source, E }H(xz,t) and E }"’(xz,t) are, respectively, the positive- and negative-frequency parts
of the field at x,, whereas in the presence of sources they are only approximately the positive- and negative-frequency
parts. (This is discussed further in Sec. IV.) In this approximation the first, third, and fourth field correlation functions
in the integrand of Eq. (12) give rapidly oscillating and ignorable contributions compared with the second correlation
function. This is in fact the rotatmg wave approximation (RWA), which can be made at the outset, in the Hamiltonian,

by dropping terms E{ "o and o E( . In the RWA
(G0 = 2 4.4, Re [ 'dr'e T T B T xy, )0y OE ) (xy0) ) (13)
From Eq. (6),
E[ " %y, t)=E§5(%5,8)+ ERR) (x0,8) +E{(x5,1) (14)
j 2 RR.j (X2 2
and, for an initial atom-field state ;) with no photons in the field, E(;(x,,2)|9; ) = (4, |E{;(x,,£)=0. Thus
((r,z)_ 244, Ref dt' ([EXR (X' )F E{ (x5, 1) 10 p( O ERR) (x50 1) HEH ) xp, )] e 07
d dk Ref dt’ <ERRk x2’t’)022( )ERRj Xz, )+<ERR k(Xz, 22(0)E(l:']—')x2’t))
—iwg(t'—1t)

H(E(J(%0,8)0 5(0ERR (%0,8) ) + { E{ (%5, )0 ,(0)E{F)(x,,2) ) Je (15)
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Using o, =0 +0', we write the field (7) from atom 1 as

E,(x,1)=——-[d—(@2R]6 —<
c’r
x (&, [t—=L |+5&] t—L”. (16)
c
Then, in the RWA [11],
(+) —_ d - TA .e r
E{"(xy,t)=———[d—(d-T)T]0 |t —— |0, t—-—]
c’r c
dmz A A
= 2°[d—(d-’f)’r‘]0 t—— |o, t—L‘ 17
c‘r c
and
(+) _ d%ag A2 r r
djEl,j (Xz,t)_ czr [l_(d‘r) ]9 t—‘: (28] t_z
(18)

The RWA is the most important approximation made
here: it is only within the RWA that a rigorous proof of
causality is impossible and the approximation of extend-
ing a frequency integration to— oo is required to obtain
results consistent with properly causal results in Fermi’s
original formulation of the problem. This is discussed in
Sec. III B.

J
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It is important to emphasize that we have obtained (16)
from the Hamiltonian (1) and that the RWA is made not
in the Hamiltonian or the Heisenberg equations but rath-
er in the step from (16) to (17). That is, by the “RWA”
we mean here the identification of the annihilation
(positive-frequency) part of the field operator with the
lowering operator for the source atom as in (17); counter-
rotating terms are dropped. Had we made the RWA in
the original Hamiltonian by dropping those terms in the
interaction that lead to these counterrotating terms, we
would obtain again (17) but without the 6 function. This
is consistent with the conclusions of Compagno, Pas-
sante, and Persico [4], for instance, who find that the 6
function is not obtained when the RWA is made in the
Hamiltonian. We comment further on this point in Sec.
V.

Similarly [7]

. 2&)8

3¢3

dEQR (%,,1)= o,(t)=i#Bo, (1), (19)

where B=2d’w}/3%c? is half the Einstein A4 coefficient
for spontaneous emission. We have ignored a term in
E (R}f ; that gives rise to a single-atom frequency shift
(“Lamb shift”), since it has no effect on the transition
rate of interest here [7]. Within these approximations the
expression (15) reduces to

(.20 =—4ap"Re [ 'dr'e” """ {<a§(t'>a,2(0)az(t)>

_i_ — A/\Z Fogr _L ) _L
2gr L1 (dD) ]<az(t )0 2(0)oy |t =~ l 6 ‘t ; ]
3i (A2 tl,,_ T > ,_r
+ 2k0r[1 (d-T) ]<01 o= 0,,(0)0,(¢))6 |t . ]
3 ) , .
(a2 Tl T _r
+ kg [1—(dT)] <01 t 7.2(0)o |t =~ l>
1 ) t’—f 6 t—fl , 201

where kqg=w,/c.

We now make the further approximation, consistent with that made in deriving (12), of replacing o () and o,(¢) in
(20) by o (0)exp( —iwgt ) and o,(0)exp( —iwgt ), respectively,

<d'22(t)>g”'4,32

3

zkor

7

2
=4p’ ] [1—(dF7P [r——f‘e t——

where we have used [0,(0),0,,(0)]=0, a,(0)¢;)
=0, 0,,(0)|¢;)=—|¢,), and o {(0)o (0)|y,; ) =¥, ), i.e.,
the initial state with atom 1 excited and atom 2 in its
ground state. The approximation made here and in (12)
is tantamount to the restriction to times ¢ <<~ !, before
spontaneous emission is significant. The probability (5)

2
3 e SYAV I WY |
Teor ‘ [1—(d%)] fodt (al(0)o,,

:.

r
t——

(0)o,(0))6 [z'—l ]9
C c

|

21)

[
that atom 2 is excited at times ¢ such that 0<¢ <<B ! is

then given by
2
3 ] [t— Lz ]9
c

22
2k0r ( )

Pz(t)EZBZ[
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for the case of Am ==1 transitions, where dt=0 [5].

The solution satisfying the initial condition P,(0)=0 is

2
6

r
t——
c

r
t——
(4

P,(t)=p* (23)

2kor

Under the approximation 3t << 1 made here, this is exact-
ly the first term of Milonni and Knight [5] for the excita-
tion probability of the initially unexcited atom 2.

Thus we have shown that causality is exact in Fermi’s
two-atom model, but that a rotating-wave approximation
is required to obtain explicit and simple expressions for
probability amplitudes. These approximate expressions
are identical to the amplitudes obtained by Milonni and
Knight [5] for 0<t <2r/c and, when the two atoms are
not identical, the results of Fermi [3,5].

B. Relation to previous approximations

The quantized field E(x,z)=E'")(x,t)+E'"(x,t),
where [12]

2o, 172

%

ay (t)e™%e,, (24)

E(x,1)=i3
kA

and E'7)(x,1)=E")(x,t ). In the rotating-wave approx-
imation the Hamiltonian (1) is replaced by

Hywa = 3fiwg[0,1+0,]+Hp

172
X 2 27Tﬁ(l)k
1 2 2 vV d.ekl
n=1k,A
ik-x —ik-x
X[otage "—alyo,e "1,

(25)
|

i

E{"(x,,t)= 3
we’r

=—La—@anip|i—L |5, [
cr (4 C

In other words, within the RWA an additional
approximation—the extension of an integration over w
to include all negative as well as all positive
frequencies—is required in order to obtain causal proba-
bility amplitudes, as noted recently by Hegerfeldt [6].

In the Schrodinger or interaction pictures the use of
the RWA implies a restriction on the ‘“essential states”
and the approximation of including all negative frequen-
cies is made in an integral involving familiar energy
denominators [5]. Without some essential-state trunca-
tion of the Hilbert space, the solution of the two-atom
problem in the Schrodinger (or interaction) picture is
somewhat unwieldy for the purpose of proving causality.
The Hamiltonian that enforces such a truncation involves
the unretarded fields E'*) in an essential way and conse-
quently an approximation that effectively avoids a spuri-
ous nonretarded contribution, namely, the extension of
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corresponding to the neglect of “energy-nonconserving”
processes in which an atom makes a downward transition
and a photon is annihilated or an atom makes an upward
transition and a photon is created. In this approximation
the Heisenberg operator E't )(xm »t),m=1,2, is given by

E'*(x,,,t)=E{"(x,,,t)

. TWy
+i 2 (d'ek;‘)
k,A v
% i ezk-(xm—xn)
n=1

i, (t'—1)

X fo‘dt'a,,(t')e
(26)

Replacing the mode summation by a continuous integra-
tion over modes [3,,—(V /87) f d*k] and restricting
ourselves to the far field by simplicity, we obtain straight-
forwardly

i

E{"(x,,t)= [d—(d?)%]

welr
t © . Qr ; —
X [ dt'o, (¢’ do w?sin—-e@*' "1
oo ], .
27)

This field is not retarded. (The full field E=E' " +E(™)
is, of course, retarded.) However, since o(¢') can be as-

sumed to vary as e “''ina rotating-wave approximation
and only photon frequencies near @, play a role in transi-
tion probabilities, it is reasonable to approximate (27) by

extending the integration over  to — «:

[d—-(d.’r‘)’f]fotdtlal(tl)_é%f_w dwwZ[eia)(t’—t+r/c)_eiw(r’~t—r/c)]

(28)

frequency integrals to — oo, must be made in order to eli-
cit causality. By working in the Heisenberg picture with
the full field E and without any RWA, on the other hand,
one can easily show that the interaction is perfectly
causal, as we have done. The one drawback of the
Heisenberg picture is that it does not allow excitation
probabilities to be calculated quite as directly as in the
Schrodinger picture.

As noted, the approximation made in the Schrédinger
picture in order to exhibit causality evolves an extension
of a frequency integral with energy denominators to all
negative energies (or frequencies). To establish the con-
nection with the form of the approximation made in the
Schrédinger picture, we approximate o,(z’') in (27) by
o(t)exp[ —iwg(t'—t)], the <“Markovian approxima-
tion,” which is part of the Weisskopf-Wigner approxima-
tion in the theory of spontaneous emission [7]:
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.d2
d (+)(X2, =~ 5
mer

Jo(2)

lo—wg)t'—1)

Xf do o? sm——f dt'e

(29)

For wyt >>1 the integral over time can be replaced by its
well-known approximation involving the 8 function and
Cauchy principal part [13]

t (lotwy)(t’'—t)
f dt'e 0
0

—mdwtwy)—iP (30)

ot

or, equivalently,

1

_ 0™). (@31
otw,—ie (e—~07) (31)

=78(wtwy)—iP

(l)iwo

Thus

272

dngj’(xz,z);—"ZTr[ 1—(322]0 (1)

xfd

When the integral over w is now extended to — «, one
obtains causal, outgoing waves; this is precisely the ap-
proximation made by Milonni and Knight [S] and essen-
tially the same approximation made by Fermi [3].
Regarding Hegerfeldt’s theorem that the initially unex-
cited atom B “‘starts to move out of the ground state im-
mediately and is thus influenced by atom A instantane-
ously,” [6] we note that the theorem as proved applies re-
gardless of whether atom A is present and therefore, in
our opinion, should not be used as an argument against
causality in the two-atom interaction. Such “immediate
influences” are associated with the fact that the assumed
initial state is not an eigenstate of the interacting atom-
field system: a true eigenstate of the system involves an
admixture of “bare” states such as the state with atom A4

2 sin(wr/c)

. (32)
0—wy—i€

|

i(o+og)t

)
)ye T T

(6,(t))=

—(sT)S(1)ye TR

We have assumed an initial state such that the field is in
its vacuum state, but no approximations have been made.

The terms involving w+®, do not arise when one
makes the RWA. Even without the RWA such terms do
not contribute to ‘“real” transitions over times long com-
pared with a few periods of oscillation. For short times,
however, we have

Nt'—1t)

(o, (t)>~ (S(O)ST(O )fd' Hotole=t) | o o

_ 4C2 sin(w + wg)t
# (o+ayp)

, (39)

+(s)sT(t"))e

' (S(t")S(1))e
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excited, atom B unexcited, and the field in its unper-
turbed ground (vacuum) field, the state with 4 unexcited,
B excited, and the field in its ground state, etc. Such ad-
mixtures involving excited, unperturbed atomic (and
field) states occur even in the case of a single atom cou-
pled to the field and are associated with phenomena, such
as the Lamb shift, involving virtual transitions. In the
two-atom case, however, there are no interatomic im-
mediate influences before the time 7 /c after the system is
presumed to be prepared in an eigenstate of the unper-
turbed atom-field system. This is the content of the
operator equation (7), which makes no reference to any
specific states, bare or dressed [14].

To illustrate the nature of the immediate influences
when a system is supposed to be in an unperturbed state
at t =0, consider the problem of a single two-level atom
interacting with a single field mode. (The single-mode as-
sumption here is made only for simplicity and is certainly
not essential for the present discussion.) The Hamiltonian
for this system — without making the RW A —is

Hzéﬁwoaz-i-ﬁma*a—iC(a—aT)(a-f—aT) (33)

and the Heisenberg equations of motion for o, o,, and a
are

o=—iow+la—ao, (34)

&z=§(aa—a%)+ﬂ.c., (35)
and

a=—iwa+%(a+a*). (36)
It is convenient to define the slowly varying operator

S(t)=a(t)e'™, (37)

in terms of which we obtain the following formal equa-
tion for the expectation value of the population difference
operator o,:

lotwg)t'—1t)

w+m0)tel 0=t ]+C c. (38)
—
where we have used the operator 1dent1ty S%(0) O and
also the expectation values (S(0)ST(0))=1 and

($1(0)S(0)) =0 appropriate to the case of the atom ini-
tially in its lower state. Thus

2(;2 sin(w +wg)t

L)) = ooy (40)

: 1
P(t)y=—
(6)=- (o
and the probability of the atom being excited over short
times is

2C?
#

1

P(t)=
) o+ wy

2
l [1—cos(w+wy)t] . (41)
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For o=w, and wyt << 1, for instance,
C2

2 2

#i (25

2
€ g , 42)

P(t)= 7

w%tz‘—‘
i.e., there is a nonvanishing probability for ¢ <<, ! that
the atom, initially in its lower state with no photons in
the field, is excited. This is consistent with the energy-
time uncertainty relation: for short enough times
‘“‘energy-nonconserving” transitions are possible. Over
times long in the sense of the energy-time uncertainty re-
lation, of course, only energy-conserving processes con-
tribute to real transition rates and the non-RWA terms
manifest themselves only through virtual transitions con-
tributing to energy-level shifts [15].

These results are entirely consistent with Hegerfeldt’s
theorem based on continuity requirements. The point we
wish to make is that immediate influences of the type sug-
gested by Hegerfeldt are present even in the absence of a
second atom and that they pose no difficulty for the proof
of causality in the Fermi problem, where we have shown
without any approximations that there is no excitation of
atom 2 due specifically to the initially excited atom 1.

IV. CAUSALITY IN PHOTODETECTION

The quantum theory of photodetection [1] leads to nor-
mally ordered field correlation functions such as

G (X, 13%5,0)=(E{ T (x,1 E[ T (x,,15)) , (43)
Gi(j%c)l(xv’1§X2’12;x3yt3§x4,’4)
=(E{7(x1,¢;)E} T (xp,1;)
XELV U (X3,13)Ef P Ax40ty)) - (44)

As noted, the annihilation and creation parts of the field
correspond precisely to the positive- and negative-
frequency parts only in the absence of sources.

The positive-frequency part of the field E(x,7) may be
defined formally as

1 e dt'E(x,t—t')

E')A(x,¢)= lim - 2 (45)
et 2T Y —w t'—ie
Thus if E(x,?) has a Fourier expansion involving e*/?,

the replacement of (45) by a contour integral along the
real axis and over a semicircle in the upper half plane
picks out the e ~'' components, whereas closure of the
contour in the lower half plane ensures that there are no
negative-frequency components e’®, » > 0.

In the absence of sources the quantized field is given by

(24) with ay, (£)=a, (0)e %"

2mhw k
V

172

—iw,t ;1.
akk(O)e k e’k xekk .

(46)

With sources, however, ay,(t)7ay;(0)e Ot [cf. Eq.
(36)] and Eq. (24) does not in fact correspond exactly to
the positive-frequency part of the field defined by (45).
That is, Eqgs. (24) and (45) in general define two different
fields. Neither definition gives a “‘causal” (retarded) field,
although of course the full electric-field operator

E{T(x,0)=i3
k,A

E'"'+E7) is retarded and is the same regardless of
whether (24) or (45) is used to define E'*). The nonre-
tarded character of E'*)(x,7) has raised objections about
the general validity of the standard theory of photodetec-
tion based on normally ordered field correlation functions
[2]. We now address these objections.

Consider first the simplest case, the measurement of
the intensity of an optical field. For the detector we as-
sume at first a two-level atom for which, under the as-
sumption that the atom is initially in its lower state [Eq.

@),
(o,(6))=— —ﬁ“;djdk Refotdt’(Ej(x,t)Ek(x,t’)

ioy(t'—1)

Xo,(t'))e 47)

We are interested of course in the more practical situa-
tion in which the detector is not a two-level system but in
fact has a continuum of possible final states, such that
stimulated emission from an excited state is negligible
compared with absorption from the ground state and the
detector is taken to be unsaturable. In the context of our
idealized two-level system, this means we can take
o,(t")=0,(0) in (47) and wuse the assumption
0,(0)|¢;)=—11;) that the detector atom is initially in
its ground state:

iog(t'—1t)

(dz(t))g%djdk Re [['dt'(E,(x, 0B, (x,1))e

(48)
Here the field may be written

Ej(x,t)ZEO’]-(X,I‘)+ERR’j(X,t)+ES’j(x,t) N (49)

where E_ j(x,t) is the “external” source field due, for in-
stance, to a thermal source or a laser. Since the “full”
source field consisting of both positive- and negative-
frequency parts is of course retarded [cf. Eq. (7)], we can
write Es,j(x,t )=Fj(x,t )0(t —r /c) and therefore

r
t——

E;(x,t)=E ;(x,)+Egg ;(x,t)+F;(x,1)0 p

(50)

We are simply indicating explicitly here the retarded na-
ture of the field from the source at a distance » from the
detector atom at x.

We can now proceed as in the example of two atoms,
writing out all the interference terms that appear when
(50) is used in (48). We first write

E,;(x,t)=E{H(x,t)+E{;(x,1) , (51)
Egg,;j(x,1)=ERR;(x,t)+ER;(x,1) , (52)
Fy(x,0)=F{"(x,0)+F; (x,1) (53)

where the positive-frequency parts of the fields Ej, Egg,
and F are defined formally by (45) and the negative-
frequency parts by Hermitian conjugation. The positive-
and negative-frequency parts, therefore, have Fourier
components e ‘' and e'®, respectively, where all fre-
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quencies @ are of course positive definite. From (30) it
then follows that only the normally ordered combination
(E\7(x,t)E{*)(x,1')) will contribute to (48) for times
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4

(m(r))zﬁz

djdi Re [ dt'(E[(x,)E{P(x,1")

t>>wp 1" je., only this combination of positive- and xeiwo(t’_t), (54)
negative-frequency parts of the field produces energy-
conserving transitions: From (51)-(53), therefore,
|
(6,(0)=—dd, R [lar (ER;(x,0)ERR (1))
o, =ﬁ2 j@r € 0 RR,; X, RR,j (X,
+0 |t/ =~ (ERR (mDF V(x,1)) 40 [t = 2 | (Fy (0, OERR (x,6)
+o (=20 |r—" (F}"(x,t)F}“(x,t'))le“’""""”, (55)

where we have used E{"(x,8)|¢;) = (4, |E{ ) (x,£)=0.
From (19) we have, furthermore,

d;d, (ERR) (%, )ERR) i (x,1))
=(#) ol (t)a(t"))
=(#B)%(c(0)0(0))e

-—imo(t'—t)=0 (56)
and in similar fashion (E(Rizj(x,t)F}H(x,t’) ) =0,
(F{7(x,t ) EQR)x(x,t')) =0 under the perturbation-
theoretic assumption, already made in the step from (47)
to (48), that the detector atom is only weakly perturbed
by the external field. Thus

,
t——}
c

xRe [ dt'CFf7(x,OF(x,1)

iwy(t'—1t)

(,())=—2d;d,6

Xe (57)

There are three points we wish to stress about the sim-
ple result (57). The first is that the appearance of the step
function 6(¢t —r/c) is exact, i.e., the influence of the
external field on the atom is properly causal independent-
ly of the approximations made in going from the exact
expression (47) to the approximation (57). This is obvious
from (50), and in fact the proof of causality in the Fermi
model is seen to be a special case where the “external”
field is just the field from a second atom. Second, the ap-
pearance of a normally ordered field correlation function
is an approximation—the consequence of considering
energy-conserving transitions at times t>>wy ! long
enough for the transition frequency to be resolvable in
the sense of the energy-time uncertainty relation. Final-
ly, we note that it is important, for the purpose of exhib-
iting causality, to include the step function 6(t —r /c) ex-
plicitly in Eq. (50) before making the approximation lead-
ing to the normally ordered field correlation function:
without the step function the result (57) for the excitation
rate in second-order perturbation theory is not manifestly
causal, for the positive- and negative-frequency parts of
the field are themselves not retarded, as already noted.

[
These points carry over to the case of a more realistic
model for a photodetector, which we now consider.

For a system with a ground-state energy E, and a man-
ifold of excited state {E,}, (57) generalizes to the follow-
ing expression for the rate P(¢) at which electrons make
transitions out of the ground state:
(—L

P(t)zézdag,jdga,m (@)0
a

g (p(o) (+)(x 47
XRefr/cdt (F{(x,0)F{(x,1"))

xetwng(t —t) , (58)
where w,, =(E,—E,)/# and R(a) gives the probability,
which will depend on the physical characteristics of the
detector, of actually counting a photoelectron of energy
E,. Following Glauber [1], we define a sensitivity func-
tion

(@) =27 3 R(@ )My g B0 —0g) (59
a

in terms of which

> ~ _r|2 t g(—) (+) ’
B(t)=6 |t—— |-=Re [ dt'(F|7(x,0)F{"(x,¢"))

% J-—wwdwsjk(a))eiw(t'—t) X
(60)

Two approximations have been made in the derivation
of (60): (i) the replacement of {o,(¢')) by its initial value
(0,(0)), amounting to conventional second-order per-
turbation theory for the calculation of absorption rates,
and (ii) the restriction to energy-conserving transitions
implicit in the assumption ¢ >>w, ! made in the two-level
formulation. Except for the appearance of the step func-
tion 6(¢t —r /c) and the time r/c appearing as the lower
limit of integration in (60), our result is essentially identi-
cal to that of Glauber [1]. Glauber defines an ideal
broadband detector such that s, (w)=const=s; for all
frequencies w (or actually for all frequencies within the
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bandwidth of the external field [1]), so that
J7 dosyl@ei N =2ms; 8(6'—1) (61)
and

P(1)=0

t—f ]sjk<F;*’<x,t)F,§+>(x,t>> . (62)

A. Causality

As already noted, the appearance of the step function
O(t—r/c) in (57)-(60) is exact. Moreover, this causal
feature is implicit in the original formulation by Glauber
[1] since he begins with the full electric-field operator and
proceeds to normally ordered field correlation functions
involving E'*) under the condition of energy-conserving
transitions. In other words, properly retarded effects of
the external field on the detector responding to it are im-
plicit in the Glauber theory, although as a practical
matter one simply writes expressions such as

P(2)=s, (F} 7 (x,0)F T (x,1)) (63)

instead of (62) and similarly for higher-order correlation
functions.

This contradicts the claim by Bykov and Tatarskii [2]
that the Glauber theory violates “causality.” Their claim
is based on the presumption that the photon-counting
rate, for instance, fundamentally involves (63) rather than
(62) and therefore that causality is violated owing to the
nonretarded character of F(i)(x,t). As we have shown,
causality in the sense meant in this context is trivially im-
plicit in the Glauber theory, beginning as it does with the
full, properly retarded electric field. Normally ordered
field correlation functions appear at a later stage in the
theory and follow from a long-time, energy-conservation
approximation much the same as in the derivation of
Fermi’s golden rule.

The putative violation of causality, according to Bykov
and Tatarskii (BT) [1], “requires changing the determina-
tion of the correlation functions and in particular the ve-
locity of photocounting.” They suggest the replacement
of (63), for instance, by

Pyr(t)=s; CE, j(x,0)E, ; (x,1):) , (64)

where the colons as usual denote normal ordering. The
full external field operator E (x,?) is employed in order
to guarantee causality, which, as we have shown, is in

P(1)= % S dyg jdgaxR(@)Re [ di'(Ej(x,E(x,'))e

fact already implicit in the conventional theory. The nor-
mal ordering of the field product in (64) is employed “‘to
avoid an infinite contribution of vacuum fluctuations”
[2]. Normal ordering is discussed in the following sub-
section.

The replacement of (4) by (54) involves a rotating-wave
approximation, which of course is not an essential part of
the standard theory. Retention of non-RWA terms leads
to expressions such as :

P(t)=s; (E, ;(x,1)E ;(x,1)) , (65)

which differs from (64) in that it includes an antinormally
ordered term (Es‘;r (x,t )Es(,; X(x,t)). As discussed below,
this term does not arise in a formulation of photodetec-
tion theory that accounts for dissipation as well as fluc-
tuations in the response of the detector. In other words,
the modification of standard photon-counting theory sug-
gested by Bykov and Tatarskii, stemming from the er-
roneous notion that the standard theory violates causali-
ty, amounts only to dropping the rotating-wave approxi-
mation and does not lead to anything essentially new.
Aside from this it is not clear, as a practical matter, what
is gained in this context by going beyond the RWA: opti-
cal pulses so short as to necessitate non-RWA terms are
also short compared with resolving times of even the
fastest photoconductive detectors [16].

The fact that an ab initio use of the RWA in the Ham-
iltonian leads to an apparent violation of causality is thus
seen to be the basis not only of Hegerfeldt’s criticism of
previous work on the Fermi model, but also the criticism
of the Glauber theory of photodetection by Bykov and
Tatarskii. In either context there are no violations of
causality when one works from the start with a complete
Hamiltonian including the possibility of virtual (non-
RWA) transitions.

B. Normal ordering

We have noted that Bykov and Tatarskii [2] introduce
normal ordering as in (64) to eliminate the infinite quanti-
ty (E}’L)(x,t)Ek_)(x,t)), the infinity arising from the
vacuum field E j(x,t). We will now show that such a
term appears in a more fundamental formulation of
photon-counting theory even when normal ordering is em-
ployed. However, as we shall see, such a term is unphysi-
cal in this context and does not appear at all in the way
claimed by Bykov and Tatarskii.

Our derivation of P(t¢) has led to normal ordering as a
consequence of the RWA. If we proceed directly from
the two-level result (47) to its multilevel generalization
without any RWA, we obtain instead of (58)

iwag(t —t)

=52; Refrt/cdt’(Ej(x,t)Ek(x,t'))f_:dwsjk(w)e"“’“'””

_>Sjk<Ej(x’t)Ek(x’t)> ’

(66)
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where in the last step we have gone to the limit of ideal
broadband detection. Bykov and Tatarskii propose to
eliminate the divergence by normal ordering, replacing
(66) by (64).

Care must be exercised in applying the non-RWA ex-
pression (66). For one thing, the vacuum field has an
infinite bandwidth and therefore the limit of idealized
broadband detection is inapplicable. Just as important is
the fact that in dealing with vacuum field contributions
we cannot in general ignore radiation reaction, i.e., we
cannot completely separate the vacuum fluctuations driv-
ing the detector from its own internal dissipation [7].
Indeed the result (66) as it stands does not distinguish
among the vacuum, radiation reaction, or external field
due to the sources causing the photoabsorption. We will
now proceed more carefully to an expression for the ab-
sorption rate without any RWA. By accounting for radi-
ation reaction, we will show that the infinite term that
Bykov and Tatarskii propose to eliminate by normal or-
dering is present even with normal ordering and more-
over is present regardless of what ordering is employed.

J

It has the form given by Bykov and Tatarskii only in the
limit of perfect broadband detection, which is not appli-
cable to this term. More importantly, the term in ques-
tion will be shown to be without physical significance for
photodetection.

It is convenient for the present discussion to write the
field operator at point x as

E;(x,1)=Egg ;(x,t)+E, (x,1) (67)

where the external field E,(x,¢) accounts for the vacuum
field as well as the fields from all sources except the atom
at x. Since equal-time matter and field operators com-
mute, we can write [cf. Eq. (2)]

a'z(t)=—gﬁidj[E}_)(x,t)o(t)-Fo(t)E}H(x,t)]-i-H.c. ,

(68)

where E‘*)(x, 1) are defined as in (24) and we have chosen
a normal ordering of these field operators. Thus

(dz(t))‘——d [(E(_)(x t)cr(t))+(0(t)E(+ (x,¢))]+c.c.

=2y [(E 7 (x,0)a(t)) +{o(DE (x,1)) ] +c.c.

# J

Ay [{ERRj(x,0)a (1)) +{(a(ERR);(x,2)) ]+c.c.

% J
E(d’ (l)) +{o (t))RR’

(69)
(+)

where (J,(1)), and (6 ,(¢))gg correspond to the terms involving E_}(x,¢) and ERR);(x,1), respectively. We now cal-
culate these two contributions to {J,(¢)) up to second order in the matter-ﬁeld coupling.

To evaluate (G,(2)), we solve the equation [cf. Eq. (3)]

(70

to lowest order in the Rabi frequency dyE;(x,t)/# and use the result in the expression for {J,(t)), given by (69).

d(t):—ia)oa(t)—%dkEk(x,t)gz(t)
Thus
U(I)go_(o)e—iwot__;;dk fotdt,Ek(x,t,)Uz(o)eiwo(t’—t)

and consequently

<d,<t)>e%—%d [(E(x,0)0(0))e

ﬁ21

ﬁll

w°t+(0(O)Ee‘,}“)(x,t))e_
dydy [ dt (B (x,DE(x,1)0,(0))e

dkf dt'{ By (x,1")0 (0E{ P(x,1))e

(71)
m"t]+c.c.
xwo(t'*t)+c‘c.
ol 4 e (72)

Since the detector atom at =0 may be assumed to be uncorrelated from the external field at =0 and (o (0)) =0 for

the atom initially in its ground state,

(E{7(x,0)0(0))=(E{;(x,)){c(0))=

(73)

and likewise (a(O)Eéj )(x,¢))=0. To remain to second order in the transition matrix elements, furthermore, we ap-
proximate E;(x,t’) in (72) by the external field E, ;(x,t’). Thus, assuming the detector atom is initially in its ground
state, so that o,(0) may effectively be replaced by — 1,
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fwg(t'—1t)

. 4 , _
(az(t))ez;z—djdk Refo'dz ((E{(%,0)E, 1 (x,6")) +{E, 1 (x,t )E{ T(x,1)) ]e (74)
or, equivalently,
Pe(t)g%djdk Re [t GE, (5,00 (x,1):)e lt=0)
2 Re [ldt'(:E, j(x,0)E,  (x,1):) [ * dosyl@er ) 75)
_)27‘)’ (S o Ly j X, ek X, : W a)sjka)e
when we proceed as in (57)-(60).
To evaluate the contribution Pgg (#)=1(5,(¢) )gg from radiation reaction, we begin with the exact expression [7]
dER (x,0)= 2’d3 [doo® [ dt'a, (et 0. (76)

This result follows from the » —0 limit of the non-RWA form of (27), i.e., (27) with o replaced by o +0’T=0'x. We now
make the approximation, based as usual on the assumption of weak matter-field coupling, that

o (th=a(t)e T pat(p)e (77)
Then
—%dng{{j(x,tw o0 [t [ Tdo @eiet =0 T
t)f dt’ f do e it =1)g 1001 (78)
and therefore
[ © PSP iwg(t'—1t)
-2alo t)ERR](xt))'*' [ dowteret =g (79)
and
2i _
— 5 4 ERg);(x,t)o (1)) =0 (80)

when we use 0X(#)=0 and {o(t)o(¢)) ={o(0)o'(0)) =1 under the assumption that the detector atom is initially in its

ground state.
Now from (46) and the usual free-space mode continuum limit it follows that

3me?

[ dowteior == 3”22d,dk<E‘+>(x,t>E XY =22 dd (Eg (5, Do (x,0) 81)
Therefore we can write Py (2) as defined by (69) in terms of the vacuum field correlation function:

> fwg(t'—1t)

. 1 . 2 LS ’
PRR(t)-_—;(az(t))RRE—h_zdjdk Refodt (Eo’j(X,I)EO,k(X,t ) e

2 Lo ’ *® io(t'—1t)
-—»;Refodt (Eq;(x,8)Eq (x,t ))f_wdwsjk(co)e' i (82)

The complete expression for the rate at which the detector is excited is then
P(t)=P,(t)+Pgg(t)

T ef dr'(:E, j(x,1)E, ;(x,t'): )f dwsjk(co) iolt'—1)

+ -5 Re [ 'dt'{Eq(x,0Eqx(x,00) [ 7 dasy(@le’™ ™0 (83)
w —
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and for a broadband detector
P(t)=s; CE;(x,)E;(%,1):)
+5jx (Eq j(x,0)Eq 1 (x,2)) . (84)

Thus the complete excitation rate, including the contri-
bution from radiation reaction, leads in the limit of an
idealized broadband detector to an infinite vacuum field
contribution that Bykov and Tatarskii [2] propose to
eliminate by normal ordering. We see from (75) that the
external field contribution does lead naturally to a nor-
mally ordered correlation function and therefore has no
vacuum field contribution. However, the reaction field,
which of course must also be included, gives a contribu-
tion that is equivalent, owing to the fluctuation-
dissipation relation between radiation reaction and vacu-
um field fluctuations [7], to a vacuum field term.

We have obtained this result using normal ordering in
order to show that normal ordering does not eliminate
the infinite contribution as claimed by Bykov and Tatar-
skii. In fact, the result (84) is independent of the ordering
of equal-time matter-field operators since these operators
commute.

It must be noted, however, that the infinite contribu-
tion to (84) is only an artifice of the broadband limit. The
latter rests on the approximation that the detector
response is relatively flat within the bandwidth of the
field. This approximation cannot be made for the vacu-
um field, which has infinite bandwidth. We now consider
more carefully the effect of the vacuum field without tak-
ing the broadband limit as in (84).

Returning to (79), but without taking the broadband
detector limit, and using (30),

—%djw(rm;{;{j(x,t))

4d2 @® 3 . 1
= +wg)—iP
P fo do o’ |T8(0+wy)—i P H
172 w 3
__  4id g doo ' (85)
3wtic 0 wtwog

Therefore, for a ground-state atom,

(0.00)gr=—2Re | Zd (o (OERR),(x,1) |=0. (36)

The second term in large square brackets in (85) corre-
sponds to the ground-state level shift [17] and does not,
as (86) shows, contribute to the transition rate. More-
over, being related to the Lamb shift, it is independent of
the field due to sources other than the detector itself and
therefore is not physically relevant to photodetection.
The interplay of vacuum field fluctuations and radia-
tion reaction as exemplified by Eq. (86) is well known [7].
The fact that there is no vacuum field contribution to an
absorption rate, for instance, is actually a consequence of
the cancellation of such a contribution by the effect of ra-
diation reaction. There is therefore no “spontaneous ab-
sorption” associated with the vacuum field. Depending
on the choice of operator orderings [7], one can ascribe

radiation level shifts to the vacuum field, but, as shown
by (86), for instance, such shifts are quite distinct from
energy-conserving transitions that would be registered by
a photodetector. It is straightforward to generalize the
preceding results for photon-counting theory to higher-
order field correlation functions. For the rate at which
photons are counted jointly at two identical broadband
detectors at (x;,¢,) and (x,,¢, ), for instance, we obtain

R(x,,t,;Xp,15) =S, 5,0 0

j L——

PRNA
1 c

X{E; 7 (x},t)E{ 7 (%,,15)
XE{ T (x,t)EST (x0,8,)) (87)

where 7, and r, are the distances from the (point) source
to x; and x,. Once again causality is manifested explicitly
in the appearance of the step functions 6(¢;,—r;/c). The
RWA has been employed in writing this result and again
it is the RWA that leads naturally to a normally ordered
field correlation function.

V. RELATIONS TO PREVIOUS WORK
AND SUMMARY

The rotating-wave approximation can lead to apparent
violations of causality, i.e., retardation, in theoretical
analyses involving the propagation of light. Such viola-
tions, of course, are artificial and are eliminated by work-
ing from the start with a Hamiltonian that accounts for
non-RWA terms associated primarily with virtual transi-
tions and level shifts.

The Heisenberg picture allows one to include non-
RWA terms very easily, at least formally, and therefore
to explicitly account for the finite propagation of light
and causality. Using the Heisenberg picture, we have
considered the two-atom model of light propagation
treated by Fermi and others and have shown explicitly
that standard QED theory contains the expected causali-
ty. We have shown how the results of Milonni and
Knight, which reduce to those of Fermi under certain
simplifying approximations [5], may be derived in the
Heisenberg picture.

We have also shown that causality is implicit in the
standard photodetection theory as originally formulated
by Glauber. The non-RWA contributions obtained by
Bykov and Tatarskii [2], based on an erroneous claim
that the Glauber theory violates causality, are in princi-
ple already contained in the standard theory but are
negligible in the vast majority of photon-counting experi-
ments of any practical interest. The proposed
modifications of the standard theory [2] do not therefore
amount to anything new, although we have argued on
theoretical grounds that the normal ordering in the
“modified” theory is also based on erroneous presump-
tions and, in particular, the neglect of the reaction fields
of the detector electrons.

Our results concerning the RWA are not inconsistent
with those of De Haan or Compagno, Passante, and Per-
sico [4]. The latter authors, for instance, show that if
non-RWA, energy-nonconserving terms are dropped at
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the outset from the Hamiltonian, then the field operators
calculated from the approximate Hamiltonian are not re-
tarded. Our use of the term RWA here is somewhat
different, as noted following Eq. (18), in that it refers to
the omission of counterrotating terms only after calculat-
ing the field based on the full Hamiltonian including
energy-nonconserving terms. In other words, the neglect
of counterrotating terms is simply made at a later point
in the calculation. Regardless of the point in the calcula-
tions where counterrotating terms are dropped, such
terms are fundamentally necessary to our approach, as in
the work of De Haan and Compagno, Passante, and Per-
sico for the formal demonstration of causality.

Our approach is motivated primarily by the considera-
tions in Sec. IV, where the fully retarded, non-RWA
electric-field operator is used in writing (47) and a nor-
mally ordered field product appear only after approxima-
tions akin to those used in the derivation of Fermi’s gold-
en rule. The causal form of this product, that is, the ap-

pearance of the 6 function in (62), for instance, follows
from our use of the non-RWA electric-field operator. Its
normally ordered form follows from energy conservation
or, in other words, a “long-time” approximation. Had
we made the RWA straightaway in the Hamiltonian, the
positive- and negative-frequency parts of the field, and
therefore their normally ordered product, would not be
causal. In other words, we have followed an approach
that, in our opinion, shows most clearly how a trivial
modification of standard photodetection theory exhibits
its correctly causal character.
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