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Quantum nondemolition measurements using a crossed Kerr effect
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We analyze the coupling between the fluctuations of an atomic beam incident on an evanescent wave
mirror and the fluctuations of the laser beam producing the evanescent potential barrier. We show that
this coupling is equivalent to a crossed Kerr efFect between an atomic field and a light field, and that the
consistency of the theory requires that both fields be subject to symmetrical commutation relations and
quantum fluctuations. We show in particular that the phase shift undergone by the light field during the
atomic reflection process permits a quantum nondemolition measurement of the incident atomic intensi-
ty.

PACS number(s): 42.50.—p, 03.70.+k

INTRODUCTION

Early experiments [I] have demonstrated that atoms
can be rejected off an evanescent wave created by total
internal reAection of a laser beam in a dielectric prism.
The progress of laser trapping and cooling of atoms has
led to recent experiments where multiple bounces of
atoms released from a magneto-optical trap have been
observed [2]. One difficulty of such experiments is the
detection of the atoms after reAection. To date, Auores-
cence techniques consisting of collecting the photons
spontaneously emitted by the atoms after absorption
from a probe laser have been used. Such detection
methods are destructive: recoils during absorption-
Auorescence cycles induce such a large momentum
spread that most atoms do not fall onto the laser spot at
the following bounce. Recently, nondestructive tech-
niques have been suggested for circumventing this incon-
venience, which are based on refraction index variations
in the presence of atoms [3,4]. A conceptually simple
method consists in monitoring the phase of the very laser
producing the evanescent wave [3]: because the phase
shift associated with total internal reAection depends on
the refractive index of the boundary media [S], one ex-
pects the laser phase to exhibit variations correlated with
the presence of atoms in the evanescent wave.

This detection technique raises several intriguing ques-
tions. Can it be considered a quantum nondemolition
measurement? What is the atomic obyqrvable involved in
the measurement? How do the laser phase-shift Auctua-
tions correlate with those of the atomic Aux? One ex-
pects intuitively that the sensitivity of the measurement
will eventually be limited by the quantum fluctuations of
the laser phase (shot noise). However, it is well known
that such a limit is not absolute and can be overcome,
provided one allows simultaneously larger fluctuations of
the laser intensity. Because an infinitely precise measure-
ment of the laser phase shift would provide "which-path"
information in an atomic interferometer using evanescent

wave mirrors, one expects laser intensity fluctuations to
translate into phase fluctuations for the atoms. This puts
forth some additional appealing questions. How do laser
intensity Auctuations correlate with atomic phase Auctua-
tions? What are the consequences of this correlation on
atomic interferometers using evanescent wave mirrors'?
What is the quantum limit in the sensitivity of such de-
vices? In particular, is there an atomic equivalent to the
phase intensity commutation relation well known in
quantum optics?

The aim of this paper is to present a detailed theoreti-
cal description of this measurement technique and give
precise answers to the above questions. It is organized as
follows. In Sec. I, we derive the laser phase shift induced
by the presence of atoms in the evanescent wave. This
phase shift is expressed as a function of the incident
atomic numerical fiux I,'"(t). Symmetrically, the atomic
phase shift is calculated as a function of the incident laser
photon fiux I'"(t). Section II is devoted to the analysis of
the measurement process of an atomic intensity using an
interferometric detection of the laser phase shift. We
quantitatively evaluate the sensitivity of this measure-
ment in two cases: one of a stationary atomic beam and
another of a single atom bouncing at the evanescent wave
mirror. The inhuence of the atomic intensity measure-
ment process on the atomic phase shift is also considered.
We show that the contrast of an atomic interferometer
using an evanescent wave mirror decreases exponentially
with the signal-to-noise ratio associated with the one-
atom bounce detection. In Sec. III, we present an ele-
mentary description of the evanescent wave mirror in
terms of input-output relations for the Auctuations of the
laser and atomic phases and intensities. These relations
are formally identical to those of the crossed Kerr cou-
pling between two laser fields [6], with the important
difference that an atomic beam is here substituted for one
laser beam. We deduce from these relations that the
measurement of the laser phase constitutes a quantum
nondemolition measurement of the incident atomic fIux
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I,'"(t) F. urthermore, we show that the consistency of the
theory demands the consideration of the atomic beam as
a quantumPeld subject to the same commutation relation
and quantum fluctuations as the laser field.

cidence angle of the laser on the z =0 plane (see Fig. 1).
In particular, Eq. (1) shows that the maximum velocity
U „that can be rejected by the optical potential is given
by

I. CALCULATION OF THK LASER
AND ATOMIC PHASE SHIFTS

Because in this paper we are only interested in funda
menta/ limits of quantum measurements, we will restrict
ourselves to the regime of coherent atom optics (the limit
of small saturation of the atomic transition) where spon-
taneous emission is negligible. As shown in the Appen-
dix, spontaneous emission is not a fundamental limita-
tion: its inAuence can be reduced arbitrarily by increas-
ing the frequency detuning between the laser and the
atomic resonance while simultaneously increasing the
laser intensity.

A. Atom-induced laser phase shift

This section is devoted to the derivation of the phase
shift experienced by the laser due to total internal
reAection in the presence of atoms in the evanescent
wave.

I Present. ation of the model

We consider the simple case of a quasimonoenergetic
ensemble of two-level atoms normally incident on the sur-
face (z =0) of an evanescent wave mirror [1,7]. The
evanescent field experienced by the atoms results from to-
tal internal reAection of a laser beam at the interface be-
tween the vacuum and a dielectric prism. The incident
laser wave has amplitude 6"" and is perpendicularly po-
larized with respect to the incident plane (Fig. 1). We
also assume that the detuning h=coI —co~ between the
laser (coL ) and the atomic (to„) frequencies is positive
(atomic refiection occurring on the blue side of the reso-
nance) and chosen so that the atoms can be considered to
follow adiabatically the optical potential associated with
the light-shifted ground-state level. In this regime, the
atoms dynamics can be accounted for by means of the
Hamiltonian [1]

AQ„
H = + exp( —2xz),

2M 4h

which contains the atomic kinetic energy (first term) and
the reactive part of the atom-field coupling (second term).
In Eq. (1),p and z ~ 0 are the momentum and the position
of the atomic center of mass, M is the atomic mass, 1/sc is
the characteristic decay length of the evanescent wave,
and 0,„=—d

~ 6,„~ /fi is the resonant Rabi frequency that
characterizes the coupling between the atomic dipole d
and the evanescent field whose amplitude at z =0, @„,is
related to the incident amplitude 6'" by [5]

2n cosO
~&n' —1

n being the refraction index of the dielectric medium at
the laser frequency (assumed to be real) and 8 the in-

zo=a. 'ln(u, „/u'"), (5)

where U,„ is the value of U,„corresponding to the aver-
age laser intensity and

zo denotes the position of the turning point of the trajec-
tory (reached at t =0) and r„s is the time scale for the
reAection process, which corresponds to the time taken
for crossing the thickness 1/v of the optical potential at
the incident velocity U'".

2. Derivation of the laser phase shift

The laser phase shift induced by the presence of atoms
in the evanescent wave can be derived from reAection
spectroscopy theory [10]. Its calculation proceeds in
three steps: derivation of the laser-induced atomic polar-
ization, calculation of the radiation emitted by this polar-
ization in the direction of the rejected laser wave, and,

Atoms

FICx. 1. Experimental configuration. A quasimonoenergetic
ensemble of atoms comes at normal incidence onto the surface
(z =0) of an evanescent wave mirror. The evanescent wave,
with an amplitude 8, in the plane z =0, results from total
internal reflection of a TE-polarized laser wave of incident am-
plitude @'" at the interface between the vacuum (z &0) and a
dielectric prism (z & 0) of real refractive index n.

AQ„
mBx 4g

In the limit where the relative amplitude of the laser
intensity variations can be treated as a small perturba-
tion, the classical trajectory of the quasimonoenergetic
atoms having an average incident velocity—v'"(0 (u'" (u,„) is given in a good approximation by
[g 9]

z,&(t)=zo+~ 'ln cosh(t/r„s)

with
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finally, derivation of the subsequent modification of the
reAection coefticient at the interface, which gives access
to the laser phase shift. Following Ref. [10],it is straight-
forward to show that the atom-induced laser phase shift
takes the form

by (t)=—
2

S max

2

fd~
2t —V—T

cosh
+reA

with

3 n cosI9

~ n —12

by (t)=- r A,
2

p, z, t exp —2~z z (7) In the following, we will be interested only in the varia-
tions 5y of the laser phase shift resulting from the devia-

tions 5I,'" of the atomic intensity from its average value

I,'". Moreover, it will prove convenient to work in the
frequency rather than in the time domain. Using the
Fourier transform

where p, (z, t) is the instantaneous [11]atomic density dis-
tribution at time t, A, is the vacuum laser wavelength, and
S is the surface characterizing the transverse dimension
of the atomic wave packets, as well as the dimension of
the laser spot on the vacuum-dielectric interface. Note
that when deriving Eq. (7) one has assumed that both
transverse profiles were square [12] and time indepen-
dent.

Equation (7) shows that in order to derive the laser
phase shift b;y (t), one needs to evaluate only the density
distribution of the atoms in the immediate vicinity of the
z =0 plane (typical spatial scale I /~) because of the cutoff
introduced in the integral by the exponential term. For
values of z ranging from zero to a few I /x and by treating
the atoms dynamics semiclassically, one has

p, (z, t) = f 5(z —z,&(t
—r —T))I,'"(r)dw, (9)

z,)(w)=Z, z,((~+T)=zo . (10)

Substituting Eqs. (4) and (9) into Eq. (7), one readily ob-
tains

where 5 is the Dirac delta function, z,&
is the classical tra-

jectory given by Eq. (4), I,'"(~) is the incident numerical
atomic fiux (or atomic intensity) at time ~ and reference
position Z » I/a, and T)&r„„is the time taken by the
atoms to travel from z=Z to the turning point of their
trajectory (see Fig. 2)

f[co]=f f(t)exp(icot)dt (12)

and considering nonzero frequencies, Eq. (11) thus yields
[13]

5y [co]=K [co]5I,'"[co] (13)

K [co]=KOP[co],

where

(14)

IKo= —g

—in
U

U max
+reA

and

7tco1 ~es /2
P[~]= .

sinh( m cur„„/2 )

Equation (13) shows that the relationship between atomic
intensity and laser phase-shift variations takes a very sim-
ple form in the frequency domain. Each Fourier com-
ponent of the incident atomic intensity spectrum leads to
a proportional Fourier component in the laser phase-shift
spectrum. As a consequence, the knowledge of the
transfer function K[co] describing this proportionality re-
lation allows one to characterize the atomic intensity
fluctuations from the measurement of the laser phase-
shift spectrum. Note that the transfer function K [co] ex-
hibits a cutoff at the frequency I /~„s associated with the
reQection time of the atoms, which thus determines the
frequency bandwidth of the measurement.

Z B. I.aser-induced atomic phase shift

ZQ

FIG. 2. Classical atomic trajectory z,&(t) for an atom incident
on the evanescent wave mirror, located at position z =Z at time
t. After a time interval T, the atom reaches the turning point of
its trajectory z =zo. It then comes back to position z=Z at
time t +2T.

In this section we analyze the inhuence of the laser in-
tensity variations on the phase shift undergone by the
atoms during reAection on the evanescent wave mirror.
We consider the case where the incident laser beam creat-
ing the evanescent wave is derived from an appropriately
frequency and intensity stabilized source, so that its rela-
tive intensity variations are very small. In that case, the
calculation of the atomic phase shift at reAection can be
achieved using perturbation theory. In the framework of
a semiclassical treatment of the atomic center-of-mass
motion, this is accomplished by expanding the Hamil-
tonian (1) up to first order in the small parameter
5~6'"(t)~ /~h""~ . This expansion allows one to separate
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the efFect of the average laser intensity, described by the
Hamiltonian

the same transfer function K[co] when the light and
atomic intensities are measured as numerical Auxes.

1H = + —MV, „exp( —2~z ) (17) II. MKASUREMKNT OF AN ATOMIC INTENSITY
USING LIGHT INTERFEROMETRY

from those related to the intensity variations, accounted
for by the perturbation Hamiltonian

$
~

@1ll(r )
~

2

oH = . —Mu, „exp( —2sz) . (18)
2

Expression (18) arises from the proportionality between
U,„and the intensity of the evanescent wave [Eq. (3)]
and from the fact that the relative intensity variations of
the evanescent field are equal to those of the incident
laser beam [Eq. (2)].

The principle of the semiclassical perturbative calcula-
tion of the atomic phase shift follows from Ref. [9]. Be-
sides the constant phase shift associated with the average
optical potential [8], the intensity variations of the laser
lead to an additional phase shift 5y, (t), which is obtained
by integration of the perturbation potential (18) along the
unperturbed atomic trajectory (4) corresponding to atoms
reaching position z =Z at time r after reflection on the
evanescent wave mirror (see Fig. 2):

n~ r'"(r) ~'

X exp[ 2~z,&(r+ —T t )]d—
In order to treat the atomic and the laser phase shifts

in as symmetric a fashion as possible, it is convenient to
express the laser intensity as a numerical photon Aux I'".
These quantities are connected via the Aux of the Poynt-
ing vector through the laser transverse section according
to

As shown in the preceding section, the variations of
the phase shift undergone by the laser beam at reAection
on the evanescent wave mirror directly reAect those of
the incident atomic intensity [Eq. (13)]. It is therefore
possible to measure the atomic intensity by monitoring
the laser phase shift. In this section we study the sensi-
tivity of such a measurement in the case where the laser
phase shift is detected using light interferometry and we
evaluate its inAuence on the atomic phase shift at
reflection. Because of the symmetry between Eqs. (13)
and (22), the measurement of a light intensity by atomic
interferometry would proceed in a perfectly analogous
way.

A. Sensitivity of the atomic intensity measurement

In this section we analyze the sensitivity of the mea-
surement of an atomic intensity using a light inter-
ferometric detection of the laser phase shift. More pre-
cisely, we consider a Mach-Zehnder interferometer with
50%%uo-50% beam splitters and an incident intensity I;.
The measured quantity is the di6'erence J; between the
two output intensities of the interferometer (see Fig. 3).
This quantity takes the general form

I/7 gg g
(nj/f

CI Cl

,'conc
~

D—m(t)
~
S cos8=ficoI'"(t), (20)

A,
2

S

where eo is the vacuum dielectric permittivity and c is the
speed of light. Using Eqs. (2)—(4) and (20) and the rela-
tion I =d co /3~cobe, Eq. (19) yields

r —in 2

5q), (t) = —~
2

5I'"(r)
X dw

2t —
W
—Tcosh2

+refl

whose Fourier transform takes the simple form [13]

(21)

5y, [co]=K [co]5I'"[co], (22)

where K[co] is given by Eq. (14). The comparison be-
tween Eqs. (13) and (22) reveals several interesting
features of the atom-evanescent wave interaction. First,
the phase shift undergone by the laser beam due to the
atoms is accompanied by a reciprocal phase shift of the
atoms induced by light. Second, the variations of the
atomic (light) intensity lead to variations of the laser
(atomic) phase shift. Third, both efFects are described by

FIG. 3. Light interferometric measurement of an atomic in-
tensity. A laser beam of intensity I~; is sent into a Mach-
Zehnder interferometer with 50%-50% beam splitters. It is
split into two beams, one of which is used for realizing an
evanescent wave mirror. This beam (intensity I~") experiences a
phase shift at refiection on the mirror, due to its interaction
with the atoms. This phase shift, which gives access to the in-
cident atomic intensity I'", is monitored by measuring the
difference J~; between the two output intensities of the inter-
ferometer.
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(23)

J„(t)=I,(t)sin[kg~(t)] =I~;Ay~(t), (24)

where I; denotes the average value of I;. In Eq. (23), J„
is an additional noise term associated with the random
distribution of the incoming photons between the two
outputs. Because we are interested in the fundamental
limits of the sensitivities, we restrict ourselves to the situ-
ation where this noise term only results from quantum
fluctuations. In this case, J„ is a white noise (shot noise),
with a noise power equal to the main intensity of the in-
coming beam [14,15]

(25)

The definition of the sensitivity of the atomic intensity
measurement depends on the time characteristics of the
signal J„. In the following, we evaluate the signal-to-
noise ratio in the two cases where the atomic signal arises
from a stationary atomic beam or a single pointlike atom.

where J„. is a function of the phase difference Ay; be-
tween the two arms of the interferometer, which includes
the phase shift due to the interaction with atoms and the
difference of propagation length between the two arms of
the light interferometer. Assuming for simplicity that
this difference is adjusted for balancing the interferome-
ter, the signal J 'g is proportional to the atom-induced
laser phase shift b,p~(t),

case, the expected signal J„s deduced from Eqs. (13) and
(24) takes the form

(29)

In order to extract the maximum information from the
measurement, it is necessary to use a matched filter [15].
It corresponds to a linear-response function proportional
to the expected signal reversed in time and leads to the
filtered signal J,

J~(t)= fdrP( r)J—p, (t —r) . (30)

This filter is characterized by a bandwidth B, which is
directly related to the reAection time of the atom on the
evanescent wave mirror

(31)

Because the signal J„associated with the bouncing of a
single atom is nonstationary, the sensitivity of the mea-
surement is characterized by a time-dependent signal-to-
noise ratio, which takes its optimum value R, , at time
t =to, where the filtered signal J„ is maximum. Assum-
ing a noise spectrum as given by Eq. (25), a straightfor-
ward calculation yields

R,=K(PI, .

Consequently, the condition for detecting a single atom
reads

I hfeasure. ment of the intensity

of a stationary atomic beam

In the situation of a stationary atomic beam incident
on the evanescent wave mirror, we deduce from Eqs. (13),
(14), and (24) that the power spectrum of the signal J„
rejects the spectrum of the incoming atomic intensity

(33)

It is interesting to note that this relation is identical to
condition (28) where the average atomic intensity I,'" is
substituted for the bandwidth B. This corresponds to an
intensity of the order of one atom per reAection time ~„z.

[co]=I,KOP [co]SI"[co] . (26)
B. Inhuence of the laser phase shift measurement

on the contrast of atomic interference fringes

The sensitivity of the atomic intensity measurement is

then characterized by a frequency-dependent signal-to-
noise ratio R [co],

SJ [co]
R [co]= =I,KOP [co]SI"[co] .

S~ [co]
(27)

2. Detection ofa one atom bounce-

We now study the possibility of detecting a single atom
bouncing at the evanescent wave mirror. More precisely,
we consider a pointlike atom reaching the turning point
of its trajectory at time t = to, hence corresponding to the
atomic intensity I,'"=5(t —to+ T ) (see Sec. I A 2). In this

The fluctuations of the atomic intensity are detectable
provided R [co]) 1. In the particular case where the in-

tensity fluctuations of the atomic beam correspond to the
shot-noise level and for detection frequencies smaller
than the cutoff frequency I /r„s, this condition reads [16]

(28)

J„=I„sinks„. , (34)

The possibility of detecting the bounce of a single atom
by light interferometric measurement of the laser phase
shift provides a way of getting which-path information in
an atomic interferometer using an evanescent wave mir-
ror. One can therefore infer that the measurement pro-
cess necessarily affects the atomic phase shift in such a
way that the contrast of atomic interference fringes de-
creases while the signal-to-noise ratio (32) increases. It is
the aim of this section to present a quantitative descrip-
tion of this phenomenon.

We consider an atomic interferometer consisting of an
atomic beam of intensity I„. sent into a Mach-Zehnder
interferometer using 50%-50% atomic beam splitters and
an evanescent wave mirror (the other mirror is assumed
to be perfect such as, for example, a magnetic mirror). In
addition, the phase shift of the laser creating the evanes-
cent wave is measured using light interferometry (see Fig.
4). Similarly to the case of Sec. II A, the output signal of
the atomic interferometer J„., equal to the difference be-
tween the two output atomic intensities, is of the form
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wave. The intensity of this laser is half the intensity of
the light sent into the light interferometer and its intensi-
ty Quctuations are at the shot-noise level provided those
of the laser incident on the interferometer are also. Using
Eq. (22), it is then straightforward to show that

(38)

FIG. 4. Influence of the atomic intensity measurement on the
contrast of an atomic interferometer. An atomic beam of inten-
sity I„.is sent into a Mach-Zehnder atomic interferometer with
50/o-50% beam splitters. It is split into two beams, one of
which is reflected on an evanescent wave mirror. This beam (in-
tensity I,'") experiences a phase shift at reflection on the mirror
due to its interaction with the fluctuating intensity of the laser
beam creating the evanescent wave. This phase shift may result
in a loss of contrast of the atomic interference fringes detected
by measuring the difference J„.between the two output intensi-
ties of the atomic interferometer. The other parameters are the
same as (n Fig. 3.

where hy„ is the sum of the laser-induced atomic phase
shift given by Eq. (22) and of a constant phase factor b,N
associated with the difference between the propagation
length in the two arms of the interferometer, which can
be adjusted for detecting the atomic interference fringes.

Using the fact that the variations of the input laser and
atomic intensities are not correlated, the time average J„.
of the output signal J„can be readily shown to read

J„=CI„.sink@,

where

(35)

C=exp( —
—,'5qr, ) . (37)

The contrast C is thus directly related to the variance
5y, of the instantaneous atomic phase shift induced by
the intensity noise of the laser creating the evanescent

C =cos [5y, ( r) ]

is the contrast of the atomic interference fringes. Consid-
ering that 5y, is a Gaussian variable, one further obtains

The comparison between Eqs. (32), (37), and (38) shows
that the loss of contrast of the atomic interference fringes
is directly related to the optimum signal-to-noise ratio as-
sociated with the detection of a one-atom bounce

C=exp( —R,~, /4) .

It is interesting to note that whatever the characteristics
of the atomic intensity incident on the atomic interferom-
eter, the interference fringes contrast is related to the
ability of detecting a single atom bouncing on the evanes-
cent wave mirror or, equivalently, to the possibility of ob-
taining which-path information in the atomic interferom-
eter. Equation (39) indeed shows that when such infor-
mation is available [that is, when condition (33) is
fulfilled], the contrast of the atomic interferometer is re-
duced. Note, however, that a good contrast for the atom-
ic interference fringes is not exclusive of the measurement
of the atomic intensity fluctuations, provided these Auc-
tuations are suSciently large [compare Eqs. (28) and
(33)].

At a somewhat deeper level, Eq. (39) is related to the
fact that in quantum optics, the phase (used for measur-
ing the atomic intensity) and the intensity (resulting in
the atomic phase shift) of the electric laser field are non-
commuting quantum operators that are subject to a
Heisenberg uncertainty relation [17]. Hence the less the
laser phase Auctuations, the larger the laser intensity Auc-
tuations. Consequently, the better the sensitivity in the
atomic intensity measurement, the larger the atomic
phase-shift perturbation and hence the reduction of the
contrast of the atomic interference fringes. In order to
get a better understanding of this quantum property, we
will now present a more precise, quantum description of
the atom-evanescent wave coupled system.

III. QUANTUM FIELD DESCRIPTIGN
OF THK ATOM-LASER COUPI. ING

We have so far described light interferometric mea-
surements of atomic intensities and their inhuence on
atomic interferometers by considering the interferometers
as.a whole. The aim of this section is to provide a more
general way of describing these systems by considering
their elementary building blocks. This approach will al-
low us to shed light on previously discussed properties
such as the reciprocity of the atom-light coupling and the
measurement-perturbation relations. It will also provide
a way of describing rigorously the quantum nondemoli-
tion properties of the atomic intensity measurement pro-
cess. We will first present an elementary phenomenologi-
cal description of the evanescent wave mirror in terms of
input-output relations for the quantum fluctuations of the
laser and atomic phases and intensities. We will then
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show how these relations can be derived rigorously in the
framework of quantum field theory.

A. Input-output relations for the laser
and atomic phase and intensity operators

In the previous sections, we have considered phase
shifts, which are the quantities of interest in inter-
ferometric measurements. However, a more powerful
description of the atom-evanescent wave interaction can
be obtained by considering laser and atomic phases rather
than phase shifts Mo.re precisely, we characterize the
evanescent wave mirror by input-output relations for the
fluctuations of laser and atomic phases and intensities.
Furthermore, we show that the consistency of the theory
demands the consideration of these quantities as quantum
operators subject to commutation relations.

Crossed optoatomic Kerr e+ect

In Sec. IA we derived the laser phase shift resulting
from the presence of atoms in the evanescent wave. This
phase shift has to be interpreted as a difference between
the phase of the laser after total internal refiection p'"'
and the phase of the laser before the reflection process

in
gp~

(40)

Symmetrically, it is natural to interpret the atomic phase
shift calculated in Sec. I B as a difference between output
and input atomic phases

—i(co cuL )t-Et= e ak,
2m

(43)

where ak is the annihilation operator associated with
photons of frequency oi and wave vector k =cole (c being
the speed of light). This operator satisfies the commuta-
tion relation

atomic observables were described in a classical manner.
However, it is well known from the semiclassical theory
in quantum optics that quantum fluctuations of phase
and intensity can be represented by classical random vari-
ables [14]. One can thus consider that Eqs. (42)
effectively take into account the quantum fluctuations of
light. Because the laser phase and intensity operators are
coupled to the atomic phase and intensity [see Eqs. (42)],
the consistency of the theory requires that the atomic
phase and intensity also have quantum fluctuations. The
aim of this section is to make precise the definition of the
corresponding operators and to derive their commutation
relations. We first consider the case of light field opera-
tors. We will then use the reciprocity between the laser
and atomic variables to obtain similar relations for atom-
ic fields.

In the framework of quantum optics theory, the laser
electric field is described by a time-dependent operator
that is a linear superposition of photon creation and an-
nihilation operators [19]. In the simple case of a one-
dimensional scalar laser field, the complex amplitude of
the electric field (normalized so that the intensity corre-
sponds to a numerical photon flux) in the rotating frame
associated with the laser frequency cot reads [14]

(41) [E(t),E (t')]=5(t t') . — (44)

We will give a more precise definition of those atomic
phases in the following.

It is then possible to characterize completely the
atom-laser coupled system in terms of the following
input-output relations for the phase and intensity Auctua-
tions:

Ei(t)=E(t)+E (t),
E,(t) =i [Et(t)—E(t)],

(45)

(46)

We define the two quadrature operators E, and E2 of the
electric field as

5y'"'[co] =5y'"[ ]o+iK[co]5I,'"[co],

5I'"'[co]=5I'"[co],

5y',"'[co]=5y',"[co]+K[co]5I'"[co],

(42a) wh~~h y~~ld

(42b)

(42c)

E,(t)+iE, (t)E(t)=
2

(47)

Let us first consider an electric-field quantum state cor-
responding to a nonzero average amplitude and small rel-
ative quantum Auctuations. The mean value of the field
amplitude is a complex number having a modulus equal
to the square root of the mean laser intensity I and a
well-defined phase y,

5I;"'[a)]=5I,'"[co] . (42d)

These relations have the same form as those describing
the coupling between two laser fields interacting with a
Kerr medium [6,18] (crossed Kerr effect). It is important
to note, however, that the present situation exhibits two
original features. First, the coupling constant K[co] is
frequency dependent, as a result of the finite bouncing
time of the atoms. Second, an atomic beam has been sub-
stituted here for one laser beam. One can thus consider
that the present coupling corresponds to a crossed optoa-
tomic Kerr eQect.

2. Definition ofphase and intensity operators

The transformation relations (42) have been obtained
from the results of Sec. I where the variations of laser and

(E)=+I„e'" (4&)

A linear expansion of E in the intensity and phase Auc-
tuations yields the deviations 5E(t) of the electric field
from its average value

5I, (t)
5E(t)= (E ) +i 5y„(t) (49)

2I

The intensity and phase fluctuations of the laser field thus
appear as being proportional to the fluctuations of the
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field quadratures. Assuming for simplicity y =0, the
comparison between Eqs. (47) and (49) shows that

5I, (t) =+I,5E,(t), (50)

1 5E,(t) . (51)
2+I,

5y (t) =

Note that these expressions hold in the general case
@~%0 with an appropriate redefinition of Ei and Ez. It
is then straightforward using Eqs. (50), (51), and (44) to
derive the commutation relation between the laser inten-
sity and phase operators:

[5I,(t),5q, (t ') ]=5(t t ')—,
which reads in the frequency domain

[5I [co],5p [co']]=i2m5(co+.cv') .

(52)

(53)

In the case where the quantum fluctuations of the elec-
tric field are comparable or larger than the average am-
plitude of the field (this is in particular the case of a zero
average amplitude), it is no longer possible to perform a
linear expansion of E around its average value. More
precisely, the intensity operator is still well defined, but it
becomes difficult to give a completely satisfactory
definition of a phase operator. Hence the commutator
(53) becomes inappropriate for characterizing the quan-
tum fluctuations of the field. It must then be substituted
for by the commutator between the electric field operator
itself and the light intensity operator

[E(t),I~(t')] =E(t)5(t —t')

or, equivalently,

[E (t),I,(t')]= —E (t)5(t t') . —

(54)

(55)

[5I,[co],5qr, [oi']]=i 2m5(co+co') . (56)

This commutator generalizes Eq. (53). It is well defined
whatever the characteristics of the electric fiel quantum
state and is equivalent to the commutator (53) in the situ-
ation where the linear expansion (49) is legitimate.

We now consider the case of atomic phase and intensi-
ty. As previously mentioned, one expects from the re-
ciprocity between the atomic and laser variables in the
atom-light coupling considered in this paper that com-
mutation relations similar to Eqs. (53) and (54) also apply
for the atomic variables. In a first step, we may assume
that beside the atomic intensity operator, it is possible to
define an atomic phase operator (for a general case, see
Sec. II 8). Equations (42) can thus be considered as
input-output relations for the laser and atomic phase and
intensity operators. A general property of such relations
is their unitarity. This implies that the commutation re-
lations between two given operators are the same for the
output as for the input quantities. Since atomic and laser
phase operators commute with each other at the input of
the evanescent wave mirror, it follows from input-output
relations (42) and from the laser field commutation rela-
tion (53) that the atomic intensity and phase are also non
commuting operators obeying the same commutation rela-
tion

We will show in Sec. III B that such a commutation rela-
tion may be justified using the general framework of
quantum field theory.

3. Quantum nondemolition properties
of the atomic intensity measurement

4. Atomic intensity measurement
and phase perturbation

We now return to the relation (39) between the sensi-
tivity to a one-atom bounce and the contrast of an atomic
interferometer. We show that the description of the
evanescent wave mirror in terms of input-output relations
for the laser and atomic phase and intensity operators
[Eqs. (42)] sheds light on its physical significance. In the
framework of this description, it indeed becomes un-
necessary to give a precise description of the apparatus
used for detecting the atom-induced laser phase shift. It
is sufficient to notice that when a one-atom bounce is
detected on the output phase of light, the noise superim-
posed on the signal of interest is the input phase noise of
the laser, characterized by its power spectrum S'" . Us-

ing an optimal filtering of the signal (see Sec. II A 2), the
corresponding signal-to-noise ratio may be written

oPt= Sln (57)

Consider now the perturbation of the atomic phase in
this measurement process. Fluctuations are added on the
atomic phase due to the noise of the light intensity com-
ing onto the evanescence wave mirror, characterized by
its power spectrum SI". The variance of this added fluc-

As previously mentioned, the equations (42) character-
izing the atom-light coupling at the evanescent wave mir-
ror have exactly the same form as those corresponding to
the optical crossed Kerr effect. It is well known that this
effect can be used for realizing quantum nondemolition
measurements of a light beam intensity [6,18]. Similarly,
the optoatomic crossed Kerr effect allows one to perform
quantum nondemolition measurements of an atomic in-
tensity: First, the laser phase-shift detection is an actual
measurement of the atomic intensity because the fluctua-
tions of the output laser phase reflect those of the incom-
ing atomic intensity [Eq. (42a)]. Second, this property
still holds at the level of quantum fluctuations, when in-
tensities and phases are treated as time-dependent opera-
tors written in the Heisenberg representation. Third, the
nondemolition character of the measurement is ensured
by the fact that the measured observable, that is, the
atomic intensity, is unchanged by the interaction with
light [Eq. (42d)].

Finally, it is interesting to note that in the case (con-
sidered throughout this paper) where the atom-light in-
teraction is considered as purely dispersive, the evanes-
cent wave mirror is analogous to a perfect Kerr medium.
In particular, because of the absence of any added noise,
it realizes an ideal quantum nondemolition situation [18]
and the only remaining criterion is the sensitivity of the
measurement defined as in Sec. II.
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tuations reads

2 —g +2gill (58)

6y, =R, ,SI"S'" (59)

As a consequence of the commutation relation (53), the
noise spectra associated with laser phase and intensity
obey a Heisenberg inequality [14]

SI"S'," )
41 (60)

Combining Eqs. (59) and (60), it is then possible to deduce
the following inequality between the variance of the
laser-induced atomic phase noise and the optimal one-
atom bounce signal-to-noise ratio:

The laser-induced atomic phase noise and the one-atom
bounce signal-to-noise ratio are thus related through

the atomic mode of wave vector k and frequency
cok =fik /2M (M being the atomic mass), the commuta-
tion relation between annihilation (bk ) and creation (bk )

operators being

[bk, bkt ]=2~5( k —k ') . (63)

When describing a nearly monoenergetic atomic beam
(the case of interest in this paper), the relevant atomic
quantum modes are those associated with a wave vector
nearly equal to k =MU /fi, the wave vector corresponding
to the average atomic velocity U. For these modes, the
dispersion relation may be approximated by

Ak Akk MU
k+k 2M M 2A

This allows us to define a slowly varying complex ampli-
tude 4'(t)

2 )5y, —,R, , (61) iIi( r )
—)/ U e ikvfbdk

277
(65)

We can now discuss more precisely the physical
significance of relation (39) that was derived in Sec. II B.
It clearly appears as the consequence of the Heisenberg
inequality between the noncommuting operators associat-
ed with the laser phase and intensity. Note, however,
that in relation (39), which was obtained for a specific in-
terferometer (50%-50%%uo beam splitters, detection of the
difference between the two output intensities in a bal-
anced configuration), the added atomic phase noise is
twice the minimum added noise imposed by the Heisen-
berg inequalities. This shows that this specific
configuration does not provide the optimal quantum non-
demolition technique for measuring the atomic intensity.
In contrast, a homodyne detection of the laser phase shift
would allow one to design such an optimal technique.

B. Quantum-field-theory description
of the atom-field coupling

1. Atomic quantum geld

For the sake of simplicity, we restrict ourselves to the
simple case of nonrelativistic, spin zero atoms in a one-
dimensional space. Using the formalism of second quant-
ization, we describe such particles by a scalar bosonic
field %(z, t), which can be represented in the form

@(z &) e
—i(hk /2M)&eikzbdk

k (62)

where bk is the annihilation operator corresponding to

In the present state of the art of experimental atom op-
tics, atomic coherent states or more generally atomic
states with a well-defined phase cannot yet be obtained.
Therefore, the description of the atom-laser coupling at
the evanescent wave mirror considered in Sec. IIIA is
not completely satisfactory since it makes use of atomic
phase and intensity operators. It would thus be worth
having a more general theoretical description that would
remain valid for any atomic state. We show now that
such a description can be obtained in the framework of
quantum field theory [20,21].

which is related to the field 4 through

qi( r) e
—i(Mu l2A)itei(Mvlh')

V U U

(66)

Using Eq. (63), one gets the commutation relation

(67)

or, equivalently,

[4'(t), C' (r')] =5(t i'), — (68)

which appears as the analog for the atomic quantum field
of Eq. (44). In quantum field theory, the commutation re-
lation of the fields is directly related to their propagation
and Eq. (67) shows that the approximation (64) of the
atomic dispersion relation is equivalent to the semiclassi-
cal treatment of atomic motion in quantum field theory.
This approximation also allows one to simplify the gen-
eral expression of the atomic intensity operator [22]

to the form

—q'(z, r)[a, q(z, r)]]

I.(i)=t (t)ql(t), (70)

[ P( t),I, ( t '
) ]= P( t)5( t —t' ) . (71)

As emphasized in Sec. III A 2 [Eq. (54)] for the analogous
case of the laser electric field, Eq. (71) generalizes the
commutation relation (56) between the atomic phase and
intensity operators for arbitrary atomic states. In partic-
ular, Eq. (71) yields Eq. (56) in the case of atomic states
associated with a well-defined phase.

Furthermore, it is important to note that Eq. (71) holds

which, using Eq. (68), leads to the commutation relation
between the atomic quantum field and the atomic intensi-
ty operator
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for fermions as well as for bosons. Following the same
approach (semiclassical treatment of the atomic motion)
one would obtain for a fermion field an ant&commutat&'on

relation of the form

(72)

However, one can readily check that the relation of in-
terest in our problem, i.e., the relation between the atom-
ic quantum field and the atomic intensity operator, is still
a commutation relation and is the same as for bosons. As
a consequence, the properties and relations that are con-
sidered in this paper are independent of the quantum sta
tistical nature of the atoms

2. Input outp-ut transformation relations
for the laser and atomic quantum ftelds

We are now able to generalize the relations (42) to the
case of arbitrary atomic quantum states. This is achieved
by writing input-output relations for the quantum elec-
tromagnetic and atomic fields involving only phase shifts

E'"'(t) =E'"(t)exp[id, yp(t)],
4'"'(t) =4'"(t)exp [iAy, (t) ] .

(73a)

(73b)

More explicitly, using the expressions of the phase shifts
in terms of the intensity operators, one obtains the ex-
pressions

that the consistency of the theory demands the considera-
tion of the atoms as a quantum field subject to the same
commutation relations as the light field. The framework
of quantum field theory indeed provides a unique way of
understanding some remarkable properties of the evanes-
cent wave mirror. Finally, we have emphasized that
these properties are the same for bosons and fermions
and must therefore be considered as general and basic
properties of intensity and phase for any quantum parti-
cles.

The semiclassical formalism used for our derivations
should prove interesting for describing various atom op-
tics experiments. For example, it would allow one to an-
alyze the situation where atomic bounces are detected via
the phase shift of an additional probe running wave [4].
Also, the presence of a cavity on the laser field can be
handled very simply since it merely results in a
modification of the coupling coefficient K[co], propor-
tional to the cavity finesse [23]. Among future develop-
ments, the presence of a cavity on the atomic field, the
inAuence of the gravity field, and atomic gyrometry seem
appealing.
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E'"'(t) =E'"(t)exp i fdr K(r)I,'"(t —r)
r

4'"'(t)=4'"(t)exp i fdrK(r)I'"(t —r)

(74a) APPENDIX: INFLUENCE
OF SPONTANEOUS EMISSION

ON THE ATOMIC INTENSITY MEASUREMENTS

These relations, associated with the commutation rela-
tions (54) and (71) between the fields and intensities, pro-
vide a complete and consistent quantum description of
the optoatomic crossed Kerr efFect, which can be summa-
rized by the following properties.

(i) The commutation relations for light and atomic
operators are identical.

(ii) The input-output relations are unitary. In particu-
lar, the commutation relations for the output fields are
the same as for the input fields.

(iii) There is a reciprocity relation between the eff'ect of
the atoms on light and of light on atoms. More precisely,
both effects are described by the same coupling coeKcient
K[co].

5''"'[co]=fip'"[co]+K[co]6I,'"[to]+5tp' [co] . (A 1)

First, one notes that the optoatomic crossed Kerr cou-
pling [Eqs. (14) and (15)]

K [co]=KOP[co],

A,
2

S
—111 2
V

+max
defi

(A2)

(A3)

Spontaneous emission has been neglected throughout
this paper. We discuss here the validity of this approxi-
mation with regard to the atomic intensity measurements
considered in Sec. II. The inhuence of spontaneous emis-
sion can be readily evaluated in the limit I /b && 1. It re-
sults in a modification of Eq. (42a) of the form

In the case where the laser and atomic quantum states
are such that well-defined phases exist, this description
corresponds to the previously established equations (42),
(53), and (56).

CONCLUSION

In this paper, we have analyzed the coupling between
the Auctuations of the laser beam producing the evanes-
cent wave and the Auctuations of an atomic beam in-
cident on an evanescent wave mirror. We have derived
input-output relations for these fluctuations, which are
characteristic of a crossed Kerr effect. We have shown

is not modified in the limit I /6 «1. Second, the laser
phase fluctuations due to spontaneous emission result in a
supplementary term 5y„'~[co], which is not correlated
with 5y~"[co]. These fiuctuations are characterized by a
noise spectrum that reaches its maximum value at zero
frequency

r J.'"s" [o]=2—'
IKOI .

PE

(A.4)

In an interferometric measurement of the laser phase,
this leads to an added noise spectrum for the signal J„
(see Sec. II),
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(A5)

This spectrum has to be compared on one hand with the
photon noise of the incoming beam [Eq. (25)]

Sf[0]«S~ [0]

or, equivalently,

—I.'"ized, [ « I .r-;„ (A9)

Sq [0]=Iq, (A6)

Sq [0]=EoI~,I,'" .

The condition for spontaneous emission to be negligi-
ble is

(A7)

and on the other hand with the Auctuations of the atomic
intensity signal [Eq. (26)]

It is worth emphasizing that this condition is not con-
tradictory with condition Sz [0]&Sz [0] [Eq. (28)] for

Slg n

detectability of atomic intensity fluctuations. Both condi-
tions can indeed be fulfilled simultaneously provided 6/I
and I; are sufBciently large. In particular, they may be
satisfied in the present state-of-the-art experiments [3].
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