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Entrainment of solid-state laser arrays
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We find that the natural antiphasing tendency in linear solid-state laser arrays can be overcome by an
injected field, even if the X elements are not identical. We derive a condition for full entrainment that
agrees well with numerical simulations using experimentally accessible parameters. The resulting output
intensity saturates near the maximum coherent value of X times that of a single laser. We find that the
entrained output can be modulated in a prescribed manner by a suitable choice of the injected field.

PACS number(s): 42.55.Rz, 42.60.Da

I. INTRODUCTION

Laser arrays are promising for applications that re-
quire high optical power from a compact source [1,2].
The most efficient mode of operation is when the ele-
ments are synchronized so that the output constructively
interferes and the light intensity is maximized. Both
semiconductor [3—6] and solid-state [7—9] arrays are sub-
jects of current research, and aspects of their dynamical
behavior have been reported previously. Solid-state
media, such as neodymium-doped yttrium aluminum gar-
net (Nd: YAG) [8], offer certain advantages for synchroni-
zation: unlike semiconductor lasers they do not suffer
from linewidth enhancement.

Quite apart from their potential applications, laser ar-
rays provide an intriguing class of nonlinear dynamical
systems with many degrees of freedom. Of particular
current interest is the spontaneous emergence of dynami-
cally ordered behavior wherein mutually interacting ele-
ments execute synchronized oscillations. This
phenomenon is believed to be important in a variety of
physical and biological systems [10], yet our current
theoretical understanding of the subject is in its infancy.
It will turn out that the laser array dynamics considered
in this paper reduces, under certain conditions, to
perhaps the most widely studied class of coupled non-
linear oscillators, so-called phase models [11].

In this paper we study the entrainment of frequency
and phase in a one-dimensional array of X solid-state
lasers. Sufficient motivation for this work likes in the ex-
periments of Goldberg et al. [12], who used less than 3
mW of injected power to generate 105 mW output power
from a ten-element laser diode array. The basic physics
of our system can be summarized as follows. Each laser
has its own internal nonlinear dynamics, governed by its
complex electric field and atomic inversion (the polariza-
tion is adiabatically eliminated). Adjacent lasers are
evanescently coupled through overlap of their electric
fields. The dynamical equations describing the time evo-
lution of coupled lasers were introduced by Basov,
Belenov, and Letokhov [13], Perel and Rogova [14], and
Spencer and Lamb [15]. In addition, we consider each
laser to be driven by an externally injected field, which we

discuss further below. The point of view described here
is that of N individual lasers governed by equations for
their own dynamical variables and coupled by evanescent
overlap. This approach is valid only in the limit of weak
coupling since generally one should start by determining
the global supermodes of the system and then write down
amplitude equations for their excitation [5]. Neverthe-
less, the weak-coupling limit is a physically important
one for the discussion of semiconductor and solid-state
arrays. Recent experiments on two coupled solid-state
(Nd:YAG) lasers have shown [8] that the effect of the
coupling is to frequency entrain the elements, but the
lasers are pushed out of phase. This is also true in semi-
conductor arrays [12] and can be compensated for by use
of a m phase shifter. Early studies of the phase locking of
laser arrays [16] developed a supermode theory, but did
not address the stability of the in-phase state: an in-phase
solution for the array exists, but is unstable with respect
to the out-of-phase state.

Dynamical studies of injection locking in semiconduc-
tor arrays have been made previously [5]. These include
the effects of linewidth enhancement and other specific
features not relevant to the solid-state arrays of interest
here. We show theoretically that the natural dephasing
effects of evanescent coupling can be overcome by inject-
ing a common field to each laser. Our goal is to achieve a
frequency entrained and nearly in-phase operation so that
maximum constructive interference is achieved. In so do-
ing the array must overcome the intrinsic coupling of ele-
ments responsible for destabilizing the in-phase state.
Moreover, any variation in the parameters across the ar-
ray introduces an element of disorder, which can further
hinder synchronization. We find that it is possible to
overcome both the intrinsic antiphasing and a degree of
disorder with a monochromatic external field to which
each laser is entrained in frequency and phase. More-
over, we find it is possible to entrain the array with non-
monochromatic fields, such as an amplitude modulated
field, and in this way simultaneously achieve constructive
interference and an output that is modulated according
to the frequency spectrum of the injected field.

The paper is organized as follows. In Sec. II we discuss
the theoretical model for the laser array and derive an ap-
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proximate description based on coupled equations for the
laser phases. This model is analyzed in Sec. III and a
simple analytic criterion for stability of the in-phase state
is derived for the cases of monochromatic and periodical-
ly modulated injected fields. In Sec. IV we present nu-
merical simulations of the full laser array equations to
test the predictions of Sec. III: good agreement is found.
The effects of disorder and the entrainment of arrays via
quasiperiodic injection fields are also illustrated. In Sec.
V we summarize our conclusions.
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II. THEORETICAL MODEL

The equations for a linear array of N lasers with the
polarization adiabatically eliminated are given by

EJ(t)=(GJ —g)+i5~ )E~+.v(E +,+EJ i)+E,(t), (la)

(lb)

where j=l, . . . ,N and with free end boundary condi-
tions Eo(t) =Ez+, (t) =0. The variables E and G are
the dimensionless complex electric field and gain for the
jth laser. All times and frequencies are scaled relative to
the cavity round-trip time v., and ~f is the fluorescence
time of the laser medium; g and p. are, respectively, the
dimensionless cavity decay and pump rates for the jth
laser, a is the evanescent coupling constant between adja-
cent lasers, and E,(t) is the slowly varying amplitude of
the external field that drives each laser [5,17]. Equations
(la) and (lb) are written in a frame rotating at the fre-
quency co„atwhich the external field has a nonzero
Fourier component. This frequency is tuned in such a
way as to minimize the detuning from the cavity reso-
nances. In practice, the output power emitted from
an array depends on how an external field is tuned to
the cavities [18]. The detuning 5&

=co, co,J
——

GJ hcoJ.

=co, —~, -, where cu, is the cavity resonance frequency
for laser j and Ace is the atomic detuning from co, in units
of the polarization decay rate. For solid-state lasers we
ignore the latter dynamic contribution to the detuning.
A variation in detuning among the lasers would result
from a variation in cavity lengths for the laser elements.
However, we have in mind a single cavity containing the
array. An additional contribution could arise from a
careful analysis of the intracavity propagation and the
inhuence of evanescent coupling. In the following we al-
low for a small spread in detunings as a way to test the
robustness of the entrainment mechanism to a physically
reasonable parameter spread.

Substituting E.(t)=+I (t)exp[i/ (t)], where I (t) and
(t ) are th. e intensity and the phase of laser j,

E,(t)=+I,f(t), and assuming that all the lasers have
the same losses (g =g) and pump rates (p =p) gives

I =2(G —g)I +2+I,I Re[f (t)e ']
+2m[+(I +,I )cos(P~+, P/). —

+Q(I~ ,I )cos(PJ. , PJ )], . . —(2a)

These are the equations we use in later numerical simula-
tions. When the amplitude of an injected field I, is small
enough, intensity variations across the array may be self-
consistently ignored provided ~I (t) —I~/I((1, where
the I are the independent laser (I, =v=0) stationary in-
tensities I=p/g —1. This condition is satisfied in our nu-
merical simulations. Simulations also show that this ap-
proximation breaks down when the coupling and detun-
ings become large enough. Assuming this is not the case,
the result is that the phase variables decouple from the
intensities and gains [19]:

P =5 +~[sin(/~+i —
PJ )+sin(P i

—P )]

—A, Im[f (t)e '], (3)

where A, =+I, /I is a measure of the injection field am-
plitude and f(t) is its temporal profile. The free end
boundary conditions imply that Po(t)=Pi(t) and
Pz(t) =Pz+ i(t). Although a complete first-principles
theory for the determination of ~ is lacking for solid-state
laser arrays at the present time (for the case of multi-
stripe semiconductor arrays see Ref. [5]), experiments on
evanescently coupled Nd: YAG arrays in the absence of
an external field have shown the physical effects of the
coupling to be consistent with re&0. We assume this to
be the case in what follows.

Before further analysis we can gain some insight into
the competing physical mechanisms by considering vari-
ous limits in Eq. (3). Consider first the case of zero driv-
ing field and zero detuning ( A, =5 =0), which corre-
sponds to laser oscillation at cavity resonance. The sys-
tem them admits a family of fixed points, by taking

i=0 or n. independently for each j. However,
for ~ & 0 the only stable states are the out-of-phase "anti-
ferromagnetic" states where p~

—p, =m for all j. By
contrast, the in-phase state (QJ =go for all j) is unstable:
setting P =go+i) and linearizing Eq. (6) for small devia-
tions i) yields g. =~(g~+, —2il +i), ). Since for ~(0
all X eigenvalues are positive, the coupling produces a
"negative diffusion, " which amplifies any difference be-
tween neighboring elements. In the opposite limit of zero
coupling and monochromatic injected field [a=O and
A, )0 with f (t)=const], the laser phases will tend to
lock to that of the drive provided the amplitude 2, is
sufficiently large to overcome any spread in detunings 5J..

Recapping, we see that Eq. (3) contains three compet-
ing effects. The evanescent coupling drives the system
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III. ANALYSIS QF THE PHASE MODEL

The next step is to try to understand, on the basis of
e injected fieldEq. 3, t e circumstances under which the in'e d

can overcome the effects of the coupling and any spread
in detunings. This is illustrated b 'dy consi ering a mono-
chromatic and an amplitude mod 1 t d
spectively.

u a e injection field re-

A. Monochromatic injection 6eld

In this case we set f (r) = 1 and Eq. (3) simplifies to
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e K ing approxi

B. Periodic amplitude modulated injection Seld

Consider an injected field with frequency components
at co, and co, +25„where 5 «g«, Th'co, . is physically
represents the sinusoidal amplitude modulation at fre-
quency 6, of a carrier wave at frequency co +5, I—i26 t

e e.
case we take f (t)= —'(I+e ' ). Th f
that the in'

e actor —,
' ensures

t at the injected field has the same peak am 1' d
nsidered in Sec. III A. Equation (3) then becomes
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tion (7) is identical to Eq. (4) up to the factor —,
' discussed

above. For identical array elements the in-phase fixed
point of Eq. (7) is stable for A ) 8~1r~ h'

espon ing stable periodic solution of Eq. (6). The

ban at co entrain
consequences of this result are 1 hre c ear: t e resonant side-

an at co, entrains the lasers to the in-phase stat h'1

pu is penodically modulated by the sideband fre-
quency component at ~ +25 . It '
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extend the argument to more general periodic functions
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We now treat the restricted but important case h
the cou lin thep g, e driving, and the detunings are all of the
same order of magnitude A, —

~lr~ -5.-0(e, —Ir —
~
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averaging theorem [20] states that we can re lace

correct to O(e):

'
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FIG. 1. Time series of the to-
tal intensity I„,for 1V= 10 lasers
array normalized to X I, where
I is the single laser intensity for
I, =O. The initial condition is
the in-phase state. The other pa-
rameters are /=0. 01,
K= —2.5X 10, P =0.015,
~, /~f =5.0X10, and I=0.5.
Detunings 5,. where chosen at
random in an interval
+3.75X10 and the time is in
units of the cavity round-tri- np
time ~, .
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0. 2

FIG. 2. Time series of the to-
tal intensity I„,normalized to
N I, where I is the single laser
intensity when monochromatic
field was injected to N = 10
lasers array. The amplitude of
the injected field is A, /4m=1
and the initial condition is the
out-of-phase state. The other
parameters are in Fig. 1. The in-
set shows the frequency com-
ponents of the injection field
(solid line) and the cavity reso-
nances (dotted lines).
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by writing f (t) in the form of a Fourier series. Provided
a resonant Fourier component can entrain the phases of
the lasers, the residual nonresonant components adiabati-
cally modulate the in-phase state. This presents a way to
simultaneously entrain the array to maximize the
coherent output intensity and modulate it for the purpose
of applications, for example, communications where the
modulation carries the information to be transmitted.

IV. NUMERICAL RESULTS

In order to test the predictions of Sec. III we have nu-
merically integrated the full set of laser equations Eqs. (2)

using parameter values from the experiments on
Nd: YAG arrays [8]. Comparing the phase evolution
from Eqs. (2b) and (3) indicates that as far as phase dy-
namics is concerned, intensity variations across the array
can be self-consistently ignored and the condition
~I~(t) I~/I=O(e—) is satisfied for the parameters used.
The phase entrainment amplitudes as well as the time
series for the phases (for a variety of amplitudes of the in-
jected field) calculated from the full laser equations Eqs.
(2) are in good agreement with the predictions of the
phase model of Secs. III A and III B.

Figure 1 shows the total array intensity
N(I„,= ~g,E.

~
) as a function of time with no injected

1.2

I„,/(N2I)
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FIG. 3. Time series of the to-
tal intensity I„,normalized to
N I, where I is the single laser
intensity when the sinusoidal
amplitude modulated field was
injected to N=10 lasers array.
The amplitude of the injected
field is A, /8' = 1, the initial
condition is the out-of-phase
state, 6, = 1.5 X 10, and the
other parameters are as in Fig. 1.
The inset shows the frequency
components of the injection field
(solid line) and the cavity reso-
nances (dotted lines).
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field, for an N=10 array. For simplicity we do not in-
clude the spatial distribution of lasers in the definition of
intensity here, i.e., Fig. 1 shows only the temporal coher-
ence properties. The vertical axis has been scaled to N I
to provide an approximate measure of the maximum
coherent output (where I=@/g —1 is the intensity of a
single laser in the uncoupled limit). The initial conditions
chosen correspond to an in-phase state. We observe a
rapid reduction of the array intensity as the dynamics
drives the system away from the in-phase state and to-
ward the out-of-phase state, as expected for a &0. If

there is no disorder to total intensity will fall to zero,
reflecting the complete destructive interference of the
out-of-phase state. However, we have included a spread
in the detunings 5, so there is a small residual output.
Figure 2 shows the efI'ect of switching on a mono-
chromatic injection field: after a transient, the array set-
tles into an entrained (nearly in-phase) state with a high
degree of constructive interference. Note that the simu-
lation also tells us something else: the initial condition in
Fig. 2, which corresponds to the stationary solution of
the undriven array, lies in the basin of attraction of the

Ig.(/(N'I)
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0.2 0. 4 O. S

A, /4K

1.2

FIG. 4 (a) Time-averaged in-
tensity divided by N I as a func-
tion of the injected field ampli-
tude A, /4~ (monochromatic
field), for N = 10 (the upper
curve) and N =20 (the lower
curve}. Other parameter values
are as quoted in Fig. 3. Detun-
ings 5J were chosen at random
in an interval +3.75X10 . (b)
Time-averaged intensity divided
by N I as a function of the in-
jected field amplitude A, /8a
(the sinusoidal modulated field),
for N=10 (the upper curve) and
N=20 (the lower curve). Other
parameter values are as quoted
in Fig. 3. Detunings 6J were
chosen at random in an interval
+3.75 X 10
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v0
0.2 0.4 0. 6 0, 8 1.2
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FIG. 5. Time series of the to-
tal intensity I„,normalized to
N I, where I is the single laser
intensity when the two-
frequency sinusoidal amplitude
modulated field was injected into
the N = 10 lasers array. The arn-
plitude of the injected field is
A, /8m=1 and the initial condi-
tion is the out-of-phase state.
The other parameters are as in
Fig. 3. The inset shows the fre-
quency components of the injec-
tion field (solid line) and the cav-

ity resonances (dotted lines).
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entrained state.
In Fig. 3 we illustrate the efFects of injecting a

sinusoidal amplitude modulated field. In agreement with
the predictions of Sec. III B, the array is attracted to an
entrained and periodically modulated state. In Fig. 4 we
show how the final output intensity varies with the exter-
nal injection amplitude for N=10 and 20 arrays, with
monochromatic and amplitude modulated injected fields,
respectively. In both cases we observe saturation at
values that agree well with the criteria derived from the
phase model with zero detunings, A, =4~~~ for the mono-
chromatic field [Fig. 4(a)] and 8~x

~
for the sinusoidal am-

plitude modulated field [Fig. 4(b)]. An appreciable boost
in array intensity is achieved even for drive amplitudes
less than the saturation value.

Finally, our simulations show that it is possible to
entrain the array output to more complicated
injection fields (f (t) =

—,
' [(1+a)+exp( 2i5, t)—

+a exp( —2iP5, t)], a=0. 1, and P=1.111.. . ). Figure 5
shows the total intensity versus time for a two-frequency
quasiperiodic injection field. The high value (close to uni-
ty) of the normalized output demonstrates that the lasers
are (nearly) in phase; at the same time the output shows
quasiperiodic modulation just like the input field. Al-
though the averaging theorem arguments of Sec. III B do
not apply in this case [21], the result is easy to under-
stand on physical grounds: The strong resonant sideband
of the injected Geld entrains the array, while the ofF-
resonant components adiabatically modulate the output
about the entrained state. This presumably generalizes to
injected fields with additional frequency components and
opens up the possibility of achieving prescribed output
modulation by control of the injected field spectrum. The
restriction phase entrainment puts on the frequency spec-
trum of the injected field is an interesting topic for fur-
ther study.

V. CONCLUSION

We have shown how the natural antiphasing tendency
in linear arrays of N solid-state lasers can be overcome by
an injection field applied to each laser. The resulting en-
trained state leads to a high degree of constructive in-
terference and consequently a large total intensity. The
temporal behavior of the entrained state depends on the
character of the injected field: a monochromatic field pro-
duces a stationary output, . while a periodic or quasi-
periodic field produces a corresponding time-dependent
output. Simple criteria for achieving full entrainment
were derived on the basis of an approximate model and
agree well with numerical simulations of the full non-
linear equations, even with disorder in the form of a vari-
ation of detunings. For somewhat weaker injected fields
the observed enhancement is still considerable. Existing
experiments fall within the parameter regime considered
here, so these effects should be observable with present
technology.

Our results suggest an interesting direction for future
research. Our analytic work was restricted to the case of
no disorder. However, we found that the essential dy-
namics is captured by a reduced set of phase equations
similar to Kuramoto's coupled oscillator model [10]. The
self-consistency methods used to study Kuramoto's mod-
el could be used to understand quantitatively the inter-
play between coupling and disorder on the dynamics and
how this afFects the threshold for full entrainment.
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